
Analysing and Improving Hash Table Performance
Using usage analysis to improve performance for cache

Tom van Dijk
t.vandijk@student.utwente.nl

ABSTRACT
In this paper we describe three methods for analysing how differ-
ent algorithms use a dictionary. With these methods, the imple-
mentation of the dictionary can be fine-tuned, in order to increase
performance. The methods aim at discovering patterns that can
be used to achieve more optimal use of hierarchical memory, es-
pecially L2 cache. Our research mainly focuses on improving the
performance of hash tables used by state search algorithms. We
also present some pitfalls that may appear when trying to improve
performance.

Keywords
analysis, performance, hash table, dictionary, cache, state search

1. INTRODUCTION
For many if not most applications of computer science, perfor-
mance is important. Sometimes, even small performance gains
can save a lot of time and memory. Improving performance can
be done at different levels. For example, an algorithm can be im-
proved by decreasing the number of calculations, by using extra
data structures to reduce the number of redundant calculations,
or by improving worst case time complexities. Performance can
also be improved by optimizing algorithms and datastructures for
the environment. For example, the implementation of an algo-
rithm can use special instructions on a specialized processor. A
different example is making smart use of cache memory on a pro-
cessor. Algorithms are often designed with a uniform memory
model in mind, in which the access time of memory is constant,
while in reality memory is hierarchical, with small fast memory
and large slower memory. In this paper we present the results of
an attempt to improve the performance of a data structure called
a dictionary, used by an algorithm called a state search algorithm.
Because a state search involves little calculation, most time is
spent accessing the dictionary. Even small improvements could
result in much faster searching. Maks Verver [8] investigated this
by comparing three implementations of a dictionary: a cache-
unaware hash table, which assumes a uniform memory model;
a cache-aware binary tree, which can be adjusted for a specific
cache configuration; and a cache-oblivious Bender set, which is
designed to perform well with any kind of cache. The results of
his research were that in his test environment the cache-unaware
hash table was fastest, despite not being designed for a cache
table. Our research focuses on hash tables and improving their
performance in an environment with hierarchical memory.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission.
10th Twente Student Conference on IT, Enschede 23th January, 2009
Copyright 2009, University of Twente, Faculty of Electrical Engineering, Mathe-
matics and Computer Science

In the introduction we introduce the main subjects of our re-
search. In section 3 we then present three methods for analysis
and we demonstrate how to use them. In section 4 we will extend
a hash table implementation with a secondary table and use the
secondary table to optimize in a specific case. We will then con-
clude the paper with conclusions and ideas for further research.

1.1 Dictionaries
A dictionary is an abstract data structure used in various applica-
tions. A dictionary is a set of keys. Often, but not always, these
keys have a value or data structure associated with them. Com-
mon operations on a dictionary are add(key), remove(key), length
and exists(key). A sorted dictionary is a dictionary that can effi-
ciently be browsed with nth(index). There are different ways to
implement dictionaries. Example implementations are a linked
list, (sorted) binary trees, tries and hash tables. A common ap-
proach is to use a chained hash table [4, Ch. 6.4]. The choice
of implementation depends on what the dictionary is going to be
used for.

1.2 Hash Tables
A hash table is a data structure that scatters data in a flat array
according to a hash function. Take for example a hash table with
hash function h and n entries. The hash function is a function
from a key K to a positive real number in a range 0 < h(x) < M,
M ≥ n. Usually the hash function generates a deterministic quasi-
random number, which can be used as an offset in the table. The
entry in the hash table that will be used for key K will then be at
offset h(K) mod n. The hash function generates quasi-random
numbers to scatter data as much as possible, so even similar keys
will be at totally different offsets.

If two different keys give the same offset (K1 ! K2, h(K1) = h(K2)
mod n), the keys will use the same entry in the hash table. This
is called a collision. Collisions can be dealt with in several ways.
Usually the entry in the table will simply point to the start of
a linked list, which on access is searched in linear time (O(n)).
If no collisions happen, a hash table is a flat structure and insert-
ing/deleting/retrieving data could be done in constant time (O(1)).
If there are many collisions, for example when the table is heav-
ily loaded or there is a bad hash function causing many keys to
hash to the same table offset, a hash table search will degrade
to a linear search on a linked list, resulting in time complexities
worse than O(1). If keys aren’t known in advance, it is usually
not possible to guarantee no collisions will happen.

There are several ways to tune hash tables. The main way is to in-
vent a very smart hash function, because hash functions directly
determine how well data is scattered in the hash table. Invent-
ing good hash functions is very hard, especially since very com-
plex hash functions can cause worse performance because they
take long to calculate, and because it is hard to invent a good

hash function without knowing the keys we are working with in
advance. There are several implementations of hash functions,
examples can be found on the Internet [3, 6]. There has been re-
search into perfect hashing functions and minimal perfect hash-
ing functions, which is an effort to create a hash function that
guarantees no collisions for a fixed set of keys that is known in
advance [1].

There are different ways to work around the O(n) complexity of
searching through a linked list when there are collisions, such as
using a binary tree instead of a linked list, or by moving the last
accessed entry to the front of the linked list (which can increase
performance when a few entries are often accessed, but is vul-
nerable to specific access patterns). There are also alternatives to
using an external data structure, for example by chaining in the
table with Linear Probing [4, p. 527]. A quite different alternative
is called Cuckoo Hashing [5]. Certain operations on a dictionary
can be sped up by using additional data structures next to the main
structure. A Bloom filter [7] is an example of a data structure that
can be used to quickly determine using multiple different hash
functions if a certain key is not in the table. Each of these options
has advantages, disadvantages and side requirements.

1.3 Tries
A trie is a N-ary tree in which every node is an array with N
branches. To find a key in the trie, the key is represented as a
sequence of characters. Every character is used as an index in
every node. For example, to find the key "920" first the array
index "9" is followed, then index "2" and then index "0" to find
the key. Tries are described in Knuth [4, Ch. 6.3]. Tries are also
called prefix trees.

1.4 Table Compression
Table compression is a method to decrease key size. If a key can
be chopped up in smaller pieces, the pieces can be stored in a ta-
ble and a value assigned to them. For example, a key "abcabcde-
fabc" can be chopped up in four pieces, "abc|abc|def|abc" and
each piece can be put in a table. Lets assume "abc" is assigned to
index 1 and "def" is assigned to index 2. The key "abcabcdefabc"
can be represented with value "1121". This compressed key is
much shorter than the uncompressed variant.

1.5 Hierarchical Memory
Often memory is assumed to be an unsophisticated, flat resource,
with simple properties, like a constant access time. In general,
this is not the case, because general purpose computers often have
four memory layers with different properties. Two of these layers
reside on the processor chip, one layer is the RAM memory and
one layer is the physical memory, for example a hard disk. The
layers on the processor chip are called L1 cache and L2 cache.
L1 cache is a very small piece of memory with very high access
time, used directly by the processor. L2 cache is slightly slower
and much larger than L1 cache. When accessing memory, the
CPU first looks in L1 cache, then in L2 cache, and only then in
main memory.

Cache memory is structured in cache lines. Every cache line is
N bytes long. When transferring data to or from the cache, this
is done per cache line, not per byte. A cache controller deter-
mines when to store data in cache. There are several possible
algorithms for this. A simple way is to always store accessed
data in L2, overwriting the least recently used cache line. A com-

puter program may not be able to control what is in cache and
what isn’t.

Understanding memory hierarchy might be useful to be able to
increase the performance of an algorithm or data structure. We
call algorithms and data structures that are tailored to specific
cache organisation cache-aware or cache-conscious. Algorithms
and data structures that are designed to perform well with caching
independent of the cache parameters are called cache-oblivious.
In order to design cache-aware and cache-oblivious algorithms
one must be aware of the caching algorithm used by the cache
controller. In other words, the cache-aware and cache-oblivious
algorithms must either trick the cache controller or incorporate
the caching algorithm.

Cache trashing is a problem that occurs when cached data that is
accessed often is overwritten by data that is only rarely accessed.
If this happens a lot, cache performances degrades and the use-
fulness of the extra layer of fast memory is lost.

2. RELATED WORK
Our research is rooted for some part in Maks Verver’s investiga-
tion of cache-oblivious algorithms [8]. We base our implemen-
tation on his framework and the test set he used in his research.
One of the conclusions in his paper was that hash tables outper-
form B-trees and Bender sets in his research, which leads us to
focus our investigation on hash tables.

In a paper in 1997 Holzmann reviews several compression meth-
ods for reducing the byte length of states in a state search algo-
rithm [2]. Our analysis of the keys inserted into the dictionary by
a state search algorithm shows that compressing the keys might
be an interesting approach to increase the performance of the dic-
tionary.

3. ANALYSIS
In order to understand how the performance of the dictionary can
be improved in specific cases, we need to do analysis. We use
a state search algorithm that runs a depth first search (DFS, see
listing 1) or a breadth first search (BFS, see listing 2) on a model.
The state search algorithm uses a queue and a dictionary as its
main datastructure. We analyse the behavior of the DFS and BFS
algorithm executed on several different models. Our goal is to
gain insight in how the datastructure is used and to discover prob-
lems that could cause bad performance. A state search algorithm
uses a dictionary to keep track of states the algorithm has vis-
ited before. It only uses two dictionary functions: insert(key) and
find(key). The keys for the dictionary are the binary representa-
tions of the visited states.

We execute this algorithm on the models described in table 1.

3.1 Analytical Tools
The three analytical tools we present in this paper all are static
tools. This basically means the data we gather and analyse is
independent of the implementation of the datastructure. We im-
plement each analysis method by extending a standard hash table.
The results of the data is converted to a graph to make it easier to
spot patterns. We don’t allow the state search algorithm to com-
plete a full search, but have chosen to let it run for N iterations
(unique visited states) instead.

Listing 1: Algorithm for depth first search
Deque deque;
Set generated;
deque.push_back(initial_state);
while (!deque.empty()) {
State state = queue.back();
queue.pop_back();
for (State s : successors(state)) {
if (generated.find(s)==false) {
generated.insert(s);
deque.push_back(s);

}
}

}

Listing 2: Algorithm for breadth first search
Deque deque;
Set generated;
deque.push_back(initial_state);
while (!deque.empty()) {
State state = queue.front();
queue.pop_front();
for (State s : successors(state)) {
if (generated.find(s)==false) {
generated.insert(s);
deque.push_back(s);

}
}

}

3.2 State Order Analysis
We can assign every unique state a unique number, based on the
order in which they are inserted into the dictionary. We keep
track of when every state is used in insert and find calls. This
is visualised in a chart, with time on the horizontal bar and or-
der index on the vertical bar. Time T is a counter that starts at 0
and increases every time insert or find is called. The algorithm
for the analysis can be found in listing 3. The algorithm gener-
ates its results in a comma-separated file. This file is processed
by a small tool that generates a simple chart. The tool also adds
horizontal lines to the chart that can be configured with a param-
eter. The chart is much smaller than the actual data set; every
pixel in the chart represents possibly thousands of states. We use
colours to distinguish between areas with low density and areas
with high density, by converting the relative density to a HSV
colour, with 100% saturation and 100% value and the hue vary-
ing from 0 (lowest density) to 360 (highest density).

This chart is useful for getting a general overview of how the al-
gorithm uses the dictionary. We will see a mostly diagonal line
going from the bottom-left corner to the top-right corner, which
is the insert line. All other dots and lines in the chart are from find
calls on earlier inserted states. Of course, the insert line doesn’t
need to be a straight line: if there are many find calls at some point
and few insert calls, the line will curve. The chart can show that
an algorithm visits old states often or not. For example, a chart
with only a diagonal line does not visit old states, but only states
recently inserted. It can be expected that dense horizontal lines
are cache-friendly, because it means (depending on scale of the
chart) that the same states are often visited, and will probably be
in cache all the time. If there are many find calls in many differ-

Table 1: Models
Model name Description
Eratosthenes A parallel implementation of the sieve

of Eratosthenes which is used to find
prime numbers. For every prime num-
ber found, a new process is created. Be-
cause of this, state size increases during
execution.

Leader2 Dolev, Klawe & Rodeh’s algorithm for
leader election in a unidirectional ring.

Peterson_N Peterson’s solution to the multi-process
mutual exclusion problem.

Mobile1 A model of a cell-phone handoff strat-
egy in a mobile network

PFTP A model of a file transfer protocol
Snoopy Snooping cache algorithm
Sort Algorithm that concurrently sorts N

random numbers

Listing 3: State order analysis algorithm
int counter = 0;
int ordercounter = 0;
FILE *record_file;
void insert(key) {
if (find(key)) return;
entry = insertInTable(key);
entry->order = ordercounter++;
record(counter++, entry->order);

}
bool find(key) {
entry = findInTable(key);
if (entry==null) return false;
record(counter++, entry->order);

}
void record(int T, int state) {
fprintf(record_file, "%d, %d\n", T, state);

}

ent places this might indicate a higher chance on cache trashing.
There might also be patterns that could indicate that the usual
cache algorithm is not efficient for this model. In that case, it
might be interesting to investigate possibilities to improve per-
formance.

See figure 1 for an example of a State-T chart. The horizontal
axis is T , the vertical axis is the state index. There is a clear
diagonal line representing insert calls, dots in other areas indicate
find calls. There are many diagonal lines, representing find calls
in those areas. These kind of diagonal find lines can be expected
in a depth first search. After backtracking to earlier states it is
not unlikely that a string of successors of new states have been
visited before in a similar order.

Figure 2 shows the State-T graph of the Leadership selection
model (Leader2) when searched breadth-first. What we see is a
single diagonal line. The graph shows that the algorithm appears
not to consider states that haven’t been visited recently. This is
visible in the graph because all find calls appear near the diago-
nal line. A breadth first search does not have backtracking like
a depth first search, so certain types of localisation in the state
graph do not appear in this figure like they do in figure 2.

Figure 1: State-T chart of Eratosthenes DFS

Tmax=4,923,218, bar at every 100,000 states

Figure 2: State-T chart of Leader2 BFS

Tmax=20,463,581, bar at every 500,000 states

The State-T chart of the Peterson_N model, searched depth-first,
is interesting. From this graph in figure 3 we can see that old
states will continue to be revisited (queried with find) often. Un-
fortunately, there does not appear to be an interesting pattern.

3.3 δT Analysis
We can keep track of the last time a state was accessed with insert
or find. Whenever a state is accessed using find, we compute
δT = Tnow − Tlast, or δT = 0 in case of an insert call. We display
this in a chart as well, with time T on the horizontal axis again
and δT on the vertical axis. Again, we use color to indicate the
density of the chart. See listing 4 for the algorithm. As with
the State-T analysis, a comma-separated file is generated which
is then processed to create a chart. All insert listings are on the
horizontal axis (δT = 0), anything above the axis represents a
find call.

The chart can be used to suggest that the default caching algo-
rithm is likely to be efficient. A bright line at the bottom of the
graph (on the horizontal axis) indicates the algorithm often vis-
its recently visited or inserted states again. It is likely that such
states already are in L2 cache, depending on the size of L2 cache.
If a different pattern appears, for example a line above the hori-
zontal axis, indicating that states are revisited after a certain time,

Figure 3: State-T chart of Peterson DFS

Tmax=18,488,822, bar at every 500,000 states

Listing 4: δT analysis algorithm
int counter = 0;
FILE *record_file;
void insert(key) {
if (find(key)) return;
entry = insertInTable(key);
record(counter, 0);
entry->last = counter++;

}
bool find(key) {
entry = findInTable(key);
if (entry==null) return false;
record(counter, counter-entry->last);
entry->last = counter++;

}
void record(int T, int deltaT) {
fprintf(record_file, "%d, %d\n", T, deltaT);

}

this might indicate that the cache controller will often cache the
wrong data, resulting in much cache trashing.

The chart in figure 4 looks nearly empty, most calls are located
near the bottom of the chart, with occasionally a find call to an old
state forming a dotted diagonal line. The chart shows that most
find calls have a diagonal pattern in the chart. This can easily be
explained by what could be expected in a depth-first search. In
some models states will be generated via different paths. After
some searching the algorithm will backtrack, eventually going
back to the successors of the first generated stats. The state search
algorithm will then find states that have been visited earlier. The
exact pattern doesn’t need to be diagonal, because this depends
on the model that is being searched depth-first, but in this case a
diagonal pattern appears. Most states are near the horizontal axis
and might still be in cache. The same kind of pattern appeared
for this pattern in figure 1.

The State-T chart for the leader BFS, figure 2, basically shows
only a diagonal line. Figure 5, the δT -T chart, shows detail the
State-T chart is unable to show. The pattern here is actually quite
interesting; for example it might be possible to try to optimize for
the broad line in the bottom and be less optimal for the curved
area above. The chart is generated with a horizontal bar every

Figure 4: δT -T chart of Eratosthenes DFS

Tmax=4,923,218, bar at every 500,000 δT

Figure 5: δT -T chart of Leader BFS

Tmax=20,463,681, bar at every 500 δT

500 δT .

There is a very clear difference between figure 4 and figure 5.
Figure 4 is nearly empty, because old states are visited all the
time. Figure 5 shows the opposite: old states are not visited at
all. This may suggest that old states won’t be visited at all, but
that cannot be guaranteed, because the chart isn’t generated for
the entire search, only for the first part up to a certain amount of
iterations. This is even likely if there are loops in the model.

Figure 6 shows the δT -T chart for the peterson_N depth-first
search. The State-T chart already showed that old states will con-
tinue to be generated throughout the search and the δT -T chart
shows the same.

3.4 Key Analysis
Lastly, we analyse the structure of the states. We keep a count
of every byte value of every byte in the keys. In other words, we
count how often each byte in the key has a certain value. As-
suming the largest key encountered is N bytes long, we will have
256N counts. We calculate the diversity in each byte by taking
the sum of all values divided by the maximum value. If a certain
byte has only one value for every or almost every key, this value
will be 1 or close to 1. If a certain byte has M different values

Figure 6: δT -T chart of Peterson DFS

Tmax=18,488,822, bar at every 1,500,000 δT

appearing roughly as much as the other, this value will be close
to M.

Key analysis can be used to find an optimal reordering of the key
to make it suitable for an efficient trie data structure instead of a
hash table. For example, bytes with high variety are most use-
ful high in a trie. We did not pursue further research in this. Key
analysis is also useful for finding opportunities for table compres-
sion, like repeating patterns and low diversity.

The charts generated by a depth-first search and a breadth-first-
search of the same model are very similar. An example of this
can be seen in the charts in figure 8 and figure 9. The chart in
figure 7 is an example of a key analysis that shows repeating pat-
terns and low diversity. All three tables show that many bytes in
the files have nearly always the same value. Table compression
will results in smaller keys that can be processed faster, either in
a trie and in a hash table.

Figure 7: Key analysis of Leader2 BFS

Maximum key length: 257 bytes.

4. IMPROVING PERFORMANCE
One of the goals of analysis is to find ways to improve perfor-
mance of dictionaries used by specific algorithms. We focus in
our tests on state search algorithms, using the analysis presented
earlier. Usually, standard hash tables are used to implement such

Figure 8: Key analysis of Eratosthenes BFS

Maximum key length: 428 bytes.

Figure 9: Key analysis of Eratosthenes DFS

Maximum key length: 428 bytes.

dictionaries. We measure performance by running the tests on a
dedicated machine with sufficient resources. By measuring the
amount of time elapsed since starting the program, we measure
how well it performs. The reason for this decision is that the
alternative - measuring the time spent by the processor execut-
ing instructions for the process - might be incomplete, because it
misses time spent waiting for I/O and time spent by processes on
behalf of the executing process. We repeat the test seven times
and take the median result to remove possible noise.

The experiments were performed on a 64-bit Linux system (ker-
nel 2.6.18) with eight Intel Xeon E5335 processors (2 GHz, 4 MB
cache) and 8 GB of main memory. Our code is single threaded
and uses only one core of one processor.

We use a simplified chained hash table implementation as a ref-
erence implementation. This implementation only has find and
insert calls. It deals with collisions using a singly linked-list. All
memory is preallocated, so it is not needed to consider different
strategies to deal with resizing the hash table.

4.1 Hash Tables and Hierarchical Memory
Our attempts to improve performance are based on a hash table.
In addition to the main hash table we use an additional, small

hash table we call the secondary table. This table is to be in L2
cache all the time. The secondary table deals with collisions by
dropping the old value from the table. Every time the hash table
is accessed, we first look in the secondary table before continuing
in the main table. This should guide the cache controller, so the
secondary table is in cache. Having the secondary table in cache
would allow us to use our own decision algorithm to store data
in cache or not, essentially replacing the cache controller’s algo-
rithm with our own. The algorithm of our two-table approach can
be found in listing 5.

4.2 Optimizing a Secondary Table
The goal of our first attempt is to determine optimal secondary
table sizes and the best general algorithm. We use different sizes
of the secondary table and tested this on every model, depth-first
search and breadth-first search. Algorithm 1 is very simple and
stores every key in the secondary table when it is accessed. The
implementation of algorithm 1 is simple and can be found in list-
ing 6. Algorithm 2 is more complex. It is like algorithm 1 when
dealing with insert calls. After accessing a key in the main table
using find, it uses a random number generator to decide whether
to insert the key in the secondary table or not. The chance de-
pends on the relative size of the secondary table versus the main
table. The pseudo-code for this algorithm can be found in list-
ing 7. Algorithm 2 is essentially a probabilistic approximation of
the idea that often-accessed data should be in cache. This way we
avoid tracking usage statistics for every entry in the hash tables.
An often-accessed entry has a larger chance to be promoted back
into the secondary cache. By manipulating the modifier MOD,
this chance can be tweaked. Our implementation is optimized for
speed by using bitwise operations. We tested the data structure
and the two algorithms using the Eratosthenes model.

Listing 6: Implementation of Algorithm 1
bool promoteThis(_entryMain *entry) {
return true;

}

Listing 7: Implementation of Algorithm 2
#define MOD 1
int rndMask = (mainMask >> MOD) & (~secondaryMask)
bool promoteThis(_entryMain *entry) {
// chance: 2^MOD * (secondarySize / mainSize)
return (rng()&rndMask)==0;

}
int rng(); // custom random number generator

4.3 Optimizing for the Leader2 Model
Analysis shows that a state search on the leader2 model has a
pattern in the δT graph that might be useful for improving perfor-
mance. The wide line in figure 5 is the area that can be described
with δT < 800. Our algorithm is a modification of the algorithm
in the general approach: we keep track of δT in our hash table
and insert a key in the secondary table (after a find call) only if
δT < 800. We then measure the performance of this datastruc-
ture against the performance of the standard datastructure. The
algorithm can be found in listing 8.

Listing 5: Hash table with secondary table
typedef struct {

void *key;
size_t length;

} key_t;

struct _entryMain {
key_t *key;
_entryMain *next;

} mainTable[];

struct {
key_t *key;
boolean inMain;

} secondaryTable[];

int mainMask, secondaryMask;

// mainSize must be a power of 2
// secondSize must be a power of 2
void init(int mainSize, int secondSize) {
mainMask = mainSize-1;
secondMask = secondSize-1;

}

void drop(int entry) {
key_t *key = secondaryTable[entry].key;
if (!secondaryTable[entry].inMain) {
int entry1 = hash(key) & mainMask;
if (mainTable[entry1].key!=null) {
_entryMain *copy = copy(entry1);
mainTable[entry1].next = copy;

}
mainTable[entry1].key = key;

}
secondaryTable[entry].key = null;

}

void promote(_entryMain *entry) {
key_t *key = entry->key;
int entry2 = hash(key) & secondaryMask;
if (secondaryTable[entry2].key!=null)
drop(entry2);

secondaryTable[entry2].key = key;
secondaryTable[entry2].inMain = true;

}

void insert(key_t *key) {
int entry2 = hash(key) & secondaryMask;
if (secondaryTable[entry2].key!=null))
drop(entry2);

secondaryTable[entry2].key = key;
secondaryTable[entry2].inMain = false;

}

bool find(key_t *key) {
int hash = hash(key);
int entry2 = hash & secondaryMask;
if (secondaryTable[entry2].key==key)
return true;

int entry1 = hash & mainMask;
_entryMain *entry = &mainTable[entry1];
while (entry!=null && entry->key!=key)
entry=entry->next;

if (entry==null) return false;
if (promoteThis(entry)) promote(entry);

}

bool promoteThis(_entryMain *entry);
int hash(key_t *key);

Listing 8: Implementation of custom algorithm for Leader2
BFS
int counter = 1;
void drop(int entry) {
...
mainTable[entry1].key = key;
// inserted line:
mainTable[entry1].last =
secondaryTable[entry].last;

...
}

void promote(_entryMain *entry) {
...
secondaryTable[entry2].last = entry->last;

}

void insert(key_t *key) {
...
secondaryTable[entry2].last = counter++;

}

bool find(key_t *key) {
...
if (secondaryTable[entry2].key==key) {
// inserted line:
secondaryTable[entry2].last = counter++;
return true;

}
...
if (entry==null) return false;
// replace last line with:
int deltaT = counter-entry->last;
entry->last = counter++;
if (deltaT < 800) promote(entry);

}

4.4 Results for Secondary Table Optimiza-
tion

Table 2 shows that there is no clear optimal configuration. It
seems the configuration with a 64k table is best, but the differ-
ence is very small. When doing further analysis by counting how
many "secondary table misses" (find calls only) there are, also
shown in table 2, the probabilistic approach seems to be better
in theory. Several questions remain unanswered and need to be
investigated: is the secondary table actually in cache or not? Is
the gain on faster memory access is larger than the loss of extra
calculations and extra data fields to maintain?

Our approach is probably the same as what the cache controller
already does, so it will probably be slower than the cache con-
troller’s own hardware implementation. This could explain why
our attempt doesn’t have any interesting results.

4.5 Results for Leader2 Optimalization
Table 3 shows that there is no improvement. The differences in
time are minimal and inconsistent. There are several explana-
tions possible that should be considered. We don’t know whether
the secondary table is in L2 cache all the time, like we want. The
algorithm also has too many indirections: the entry in the main ta-
ble and the secondary table have a pointer to the actual entry that
is in the linked list and these entries each store a pointer to the dy-
namically sized key. This inefficient use of memory might cause
more cache trashing. Perhaps key compression should be used to

Table 2: Results for secondary table optimization
Algorithm Scnd.

size
Time (sec.) Misses

Mock test 29.974
Original 6.367
Alg. 1 16k 6.092 33295
Alg. 1 32k 6.529 29709
Alg. 1 64k 5.583 9264
Alg. 1 128k 6.375 4993
Alg. 1 256k 6.608 2991
Alg. 2 MOD=0 32k 6.685 16951
Alg. 2 MOD=1 32k 6.776 17421
Alg. 2 MOD=2 32k 6.699 18437
Alg. 2 MOD=0 64k 6.730 8725
Alg. 2 MOD=1 64k 6.723 9246
Alg. 2 MOD=2 64k 5.515 10156
Alg. 2 MOD=0 128k 5.713 4500
Alg. 2 MOD=1 128k 6.254 4993

Time values are Telapsed − Tmock.
Misses are find calls to entries not in the secondary table.

Table 3: Results for Leader2 Optimalization
Secondary
table size

Algorithm 1
(Always promote)

Custom algorithm
(δT < 800)

8k 63.155 sec 63.098 sec
16k 65.628 sec 63.670 sec
32k 62.910 sec 63.111 sec
64k 63.779 sec 65.077 sec
128k 62.952 sec 62.956 sec
256k 63.115 sec 63.009 sec
512k 62.375 sec 62.661 sec

make the keys much shorter, enough to minimize wasted space
when removing all indirections from the data structure. Further-
more, states that were visited less than 800 find or insert calls
ago should probably be in L2 cache already. Hence we gain no
improvements in performance.

5. CONCLUSIONS
The result of our research so far is that it is unlikely that the per-
formance of hash tables can be improved for state search algo-
rithms on the models we tested, using secondary tables. It is not
proven that the secondary table is in L2 cache, because of cache
trashing in general and trashing due to following indirections in
particular. Applying table compression and removing indirec-
tions might alleviate this problem. Our analysis shows that ta-
ble compression may make keys much shorter. Our analysis also
shows that it is likely that visited states are already in cache, or
have never been seen yet - especially the δT -T charts show this.
There isn’t much to gain in those cases.

The cache controller is already performing well. There could be
room for improvement if the cache controller is inefficient; how-

ever, this seems not the case. If it would be the case, it is still
unclear if trying to trick the cache controller to cache the right
data is the best solution to the problem - it might be better to
simply replace the cache controller with custom hardware.

5.1 Further Work
It might be interesting to implement a dictionary using a trie in-
stead of a hash table, using key compression for shorter keys. A
trie usually has a complexity of log(K) for (compressed) key size
K. Our key analysis shows which bytes of the key are most inter-
esting higher up the trie, due to a high variation in values. Advan-
tages of using a trie are that no hash value needs to be calculated
and the key will be parsed only once, instead of every time a pos-
sible match is found. Further improvements might even be gained
by preallocating one block of memory for the first N levels of the
trie. N should be chosen so this block is in L2 cache at all times.

A different approach is finding a model that isn’t optimal for cur-
rent caching strategies, or changing the state search algorithm, or
applying the tools for analysis on completely different algorithms
with a dictionary as their main data structure.

Our analysis is far from complete and especially lacks an estima-
tion of cache efficiency. It might be interesting to generate a chart
that shows which calls to find are expected to be cache hits and
which are expected to be cache misses. It might be possible to
use tools like Valgrind for this.

REFERENCES
[1] Zbigniew J. Czech, George Havas, and Bohdan S.

Majewski. An optimal algorithm for generating minimal
perfect hash functions. Information Processing Letters,
43:257–264, 1992.

[2] Gerard J. Holzmann. State compression in spin: Recursive
indexing and compression training runs. In In Proceedings
of Third International SPIN Workshop, 1997.

[3] Bob Jenkins. Hash functions and block ciphers.
http://burtleburtle.net/bob/hash.

[4] Donald E. Knuth. Art of Computer Programming, Volume 3:
Sorting and Searching (2nd Edition). Addison-Wesley
Professional, 1998.

[5] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In Journal of Algorithms, 2001.

[6] Arash Partow. General purpose hash function algorithms.
http://www.partow.net/programming/
hashfunctions/index.html.

[7] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and
John Lockwood. Fast hash table lookup using extended
bloom filter: an aid to network processing. In In ACM
SIGCOMM, pages 181–192, 2005.

[8] Maks Verver. Evaluation of a cache-oblivious data structure.
2008.

