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Abstract Parity games have important practical applications in formal
verification and reactive synthesis. Solving parity games is equal to solving
the model-checking problem of the modal mu-calculus. They are also
central to practical solutions to the reactive synthesis of linear temporal
logic specifications. Furthermore, parity games are believed to admit a
polynomial-time solution, but so far no such algorithm is known.
We report on the implementation of a number of algorithms in the Oink
tool. These are mostly implementations of existing algorithms that have
been improved for speed and compared to existing implementations.
We discuss the challenges and findings of implementing these algorithms
and compare them with results in the original papers.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the game
is determined by the parity of the highest priority that is encountered infinitely
often. Player Odd wins if this parity is odd; otherwise, player Even wins.

We provide a more extensive introduction to parity games in [12]. In [12], we
implemented a number of modern solvers in the new Oink tool, which aimed
to provide a high-performance implementation of parity game solvers. We used
Oink to provide a modern empirical evaluation of parity game solvers based on
both real world benchmarks and randomly generated games. We compared the
implementations in Oink to implementations that were publicly available.

In the years before our work, various algorithms were collected in the PGSolver
tool and often compared against the implementation of Zielonka’s algorithm in
PGSolver [17]. However, since publications like [1,28,34,35] suggested that much
better performance can be obtained, we reimplemented Zielonka’s algorithm
with these and additional optimizations to outperform the implementation in
PGSolver by several orders of magnitude. We also implemented and compared a
number of different algorithms that have been proposed in the years.

We distinguish three broad categories of algorithms. The strategy improve-
ment family contains many variations around the idea of fixing a strategy for
one player, finding the best response of the opponent, and improving the strategy
of the first player until a fixed point is reached. In Oink, we only reimplemented



a parallelizable version of this algorithm due to Fearnley. The value iteration
family contains algorithms that are all based on labeling all vertices with values
from a lattice, computing the lowest fixed point of a monotonic function. These
algorithms include small progress measures, succinct progress measures, ordered
progress measures. In the category of attractor decomposition algorithms, we
have several versions of Zielonka’s recursive algorithm including one that runs in
quasi-polynomial time. We also include a number of algorithms in the priority
promotion family, as well as many of our own algorithms in the tangle learning
family.

2 Oink

We refer to [12] for preliminaries and details on the implementation of Oink
and the methodology of the empirical evaluation. The Oink tool itself is written
in C++ and is publicly available under a permissive Apache-2.0 license via
https://www.github.com/trolando/oink.

We had several aims when implementing Oink and writing [12]. First and
foremost, we were interested in practical performance and understanding the
state of the art, due to our practical interest in the model checking of properties
LTL, CTL* and the modal µ-calculus.

Furthermore, the possibility of finding a polynomial-time algorithm is com-
pelling for many researchers who (often briefly) study parity games. One way to
acquaint oneself with existing solutions is by implementing them. In the process,
we found that some papers are rather terse to read and a concise reformulation
of the algorithm could be beneficial for a wider audience. Thus, [12] was also
written to provide more accessible descriptions of the algorithms. Some of these
algorithms were difficult to find implementations of, as the authors often did
not provide any. This makes reproducing the results of a paper much harder,
as implementation details can have a significant impact on the performance,
sometimes resulting in a difference of several orders of magnitude.

Many algorithms were implemented in PGSolver, which is written in the
OCaml language. This is a (mostly) functional programming language with which
many practitioners are likely unfamiliar, so providing competitive implementations
can be difficult. As the evaluation in [12] shows, a re-implementation of basic
algorithms in C++ provides an improvement of several orders of magnitude.

3 Strategy Improvement

Strategy improvement is a technique where each player iteratively improves their
strategies until they are optimal. Strategy improvement algorithms were first
explored for parity games by Jurdziński and Vöge [36] and have been subsequently
improved in [7,13,18,29,32]. Parallel implementations have been studied for the
GPU [14,21,30]. Fearnley [14] also implements their parallel algorithm for multi-
core CPUs.
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Model checking Equiv checking Random games Total
psi-8 694 0 1078 0 315 0 2087 0
psi 860 0 3262 0 480 0 4603 0
psi-1 1190 0 4090 0 487 0 5767 0
parsi-seq 1471 0 4199 0 1534 0 7204 0
parsi-8 2501 1 2908 0 56529 27 61938 28
parsi-1 4200 1 13867 6 71280 39 89347 46
pgsi 167596 88 95407 49 58839 27 321842 164

Table 1: Runtimes in sec. (PAR2) and number of timeouts (15 minutes) of the three
solvers PGSolver (pgsi), the solver by Fearnley [14] with sequential (parsi-seq)
and multi-core variants, and Oink with sequential (psi) and multi-core variants.

We based our implementation on the work by Fearnley [14]. Over the years,
strategy improvement has been thoroughly studied to find a polynomial time
solution, as for any given game there always exists a way to solve it in polynomially
many iterations of the algorithm. However, no “pivot rule” that selects exactly
the right improving edge has been found; for each proposed rule, a game has
been found that makes that variant run in superpolynomial time.

In [12], we just implemented the basic greedy “all-switches” pivot rule and
we used Fearnley’s method of evaluating the paths. Furthermore, Fearnley im-
plemented a parallel version based on list ranking, while our algorithm used a
different technique based on independent execution of subtasks in a recursive
backward search. We compared the performance of Oink with the sequential
and parallel solvers (1 or 8 threads) by Fearnley [14] and the “optstratimprov”
solver in PGSolver. We disabled optional preprocessing in all solvers. We only
considered games without winner-controlled winning cycles, which are 289 model
checking, 182 equivalence checking and 279 random games, in total 750 games.
See Table 1 for the results of this evaluation.

While the parallel performance is somewhat interesting, the main point in the
context of reproducibility is that a re-implementation of the algorithm (albeit
using a different method of parallelization) resulted in a very similar performance,
comparing psi (our non-parallelized version) to parsi-seq (Fearnley’s non-
parallelized version). Similar to Fearnley, we find that both psi and parsi are
orders of magnitude faster than the implementations of essentially the same
algorithm. We did however not implement the GPU-based algorithm of Fearnley
and left this to future work. This GPU-based variant is again an order of
magnitude faster than the CPU-based version, and is as far as we are aware
the fastest method to solve these parity games. Of course, this would be an
interesting opportunity to revisit (reproduce) given the advances in the hardware.
The implementations by Fearnley are presently still available online1 and are
1 https://github.com/jfearnley/parallel-si
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published under the BSD 3-clause license. PGSolver can also be found online2

and is also published under the BSD 3-clause license.

4 Progress Measures (Value Iteration)

Progress measures is a technique that assigns to each vertex a monotonically
increasing measure. The measure of each vertex is lifted based on the measures
of its successors. By lifting vertices, players Even and Odd essentially play the
game backwards. The measure represents a statistic of the most optimal play so
far from the vertex, without storing the plays explicitly.

While progress measures have been used elsewhere, they were introduced for
parity games by Jurdziński [24]. Several improvements to the original algorithm
are due to Verver [35] and Gazda and Willemse [20]. A number of parallel
implementations have been proposed for the Playstation 3 [6], for multi-core
architectures [22,31] and for GPUs [8,21]. Different types of progress measures
were introduced after the recent breakthrough of a quasi-polynomial time al-
gorithm due to Calude et al. [9], which resulted in the succinct progress measures
algorithm by Jurdziński et al. [25] and the ordered progress measures algorithm
by Fearnley et al. [16].

In our implementation in Oink, we implemented several improvements to the
original work that were already known in the literature.

We also implemented the two quasi-polynomial time algorithms, succinct
progress measures and ordered progress measures. Regarding Fearnley’s work,
the original paper [16] and the journal version [15] both point to a website that
no longer exists. We were able to download the source code several years ago, but
were unable to compile and compare the implementation, as the implementation
depended on proprietary code that was not available. It is possible to find an
implementation online3 by Ding Xiang Fei, who is also acknowledged in [15] but
without referencing to this repository. In their journal article, the authors provide
some empirical results on the running times of the algorithm on two categories of
games: artificial hard games and random games. Their results mainly show that
the ordered progress measures algorithm is quite performant compared to succinct
progress measures (which times out on almost everything) and that it is quite
competitive with classical strategy improvement, Zielonka’s recursive algorithm,
and small progress measures. However, these results compare their implementation
in C++ to implementations of these algorithms in PGSolver, which as [12]
demonstrates, are significantly slower than our own C++ implementations. Thus
one can hardly call this comparison fair. In our study (Table 2) we find that
our implementation of the ordered progress performs better than small progress
measures on random games, however it is much worse than the other algorithms
on practical parity games. Strictly speaking, we did not reproduce any of the
results as they use a slightly different kind of random games (called “steady”
games) and we also did not investigate the behavior on the artificial games,
2 https://github.com/tcsprojects/pgsolver
3 https://github.com/dingxiangfei2009/qpt-parity
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Model checking Equiv checking Random games Total
spm 3637 1 7035 0 168271 93 178944 94
qpt 122549 64 65310 31 66303 35 254162 130
pbesspm 38397 20 52422 27 183742 101 274561 148
pgspm 88800 45 59885 30 320666 171 469351 246

Table 2: Runtimes in sec. (PAR2) and number of timeouts (15 minutes) of
PGSolver (pgspm), pbespgsolve (pbesspm) and the implementations spm and qpt
in Oink.

but those results are less interesting as there are unsurprisingly also artificial
hard games for ordered progress measures that can be solved quickly by other
algorithms.

The succinct progress measures algorithm is in our opinion more difficult
to understand and implement, although we eventually tackled this challenge.
The original paper [25] did not come with an implementation and also does not
provide any empirical evaluation. The Fearnley et al. article on ordered progress
measures [15] references an implementation of succinct progress measures by
Patrick Totzke that is available online4.

Table 2 presents the results in [12]. We compare our implemention of small
progress measures and quasi-polynomial progress measures to the small pro-
gress measures implementation of pbespgsolve that comes with the mCRL2
model checker [10,35] and the implementation of small progress measures in
PGSolver [17]. The implementation of the parity game solver in mCRL2 was
studied in the MSc thesis work by Maks Verver which is still available online5.

The main takeaway is that comparing to the implementation of small progress
measures in PGSolver is not a fair comparison. The online available implementa-
tion of succinct progress measures is not published with any license. Similarly,
the online available implementation of ordered progress measures is also not
published with any license. The mCRL2 toolset is published under the Boost
license, which is an open source license that is quite similar to the MIT license.

5 Zielonka’s Recursive Algorithm

The algorithm by Zielonka [37] is a recursive solver that despite its relatively bad
theoretical complexity is known to outperform other algorithms in practice [17].
Furthermore, tight bounds are known for various classes of games [19].

Zielonka’s recursive algorithm is based on attractor computation. By re-
peatedly computing the attractor (controlled predecessor, backward reachability
4 https://github.com/pazz/pgsolver/commits/sspm/
5 https://essay.utwente.nl/64985/1/practical-improvements-to-parity-game-solving.

pdf
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Model checking Equiv checking Random games Total
zlk-8 94 0 415 0 11 0 521 0
zlk 88 0 472 0 6 0 566 0
zlk-1 97 0 512 0 7 0 616 0
uzlk 89 0 472 0 69 0 630 0
pbeszlk 64 0 513 0 338 0 915 0
spg-seq 58 0 198 0 694 0 950 0
spg-mc 389 0 1451 0 72608 37 74447 37
pgzlk 65905 33 68013 36 41629 14 175547 83

Table 3: Runtimes in sec. (PAR2) and number of timeouts (15 minutes) of the
four solvers PGSolver (pgzlk), SPGSolver (spg), pbespgsolve (pbeszlk) and
Oink (sequential zlk, multi-core zlk-1 and zlk-8, unoptimized uzlk).

where one player wants to reach and the other player wants to avoid) towards the
highest priority vertex, a game can be decomposed into smaller parts. Zielonka’s
algorithm is one of the first and most well known algorithms. Although the
implementation of the recursive algorithm in PGSolver is typically used for
comparisons in the literature, improved implementations have been proposed
by Verver [35], Di Stasio et al. [34], Liu et al. [28], and Arcucci et al. [1]. Also
variations have been proposed such as a subexponential algorithm [26] and the
big steps algorithm [33] that have been reported to perform slower than ordinary
Zielonka. Arcucci et al. extended the implementation in [34] with a multi-core
implementation of attractor computation [1].

The implementation in Oink is based upon the ideas found in the literature,
and included a number of additional ideas to improve the implementaiton. We
compared our implementation with and without various optimizations to the
implementation in PGSolver, to Verver’s implementation pbespgsolve [10,35] and
to SPGSolver [1,34]. Unfortunately, the Java version of SPGSolver (all three
variations) suffered from severe performance degradation for unknown reasons.
They also provide a C++ implementation in their online repository, which we
used instead. See Table 3.

It is immediately obvious that the implementation in PGSolver is much worse
than all other implementations by several orders of magnitude. Furthermore, we
find that all other implementations are fairly close to each other in performance.
Also interesting was that the optimizations did not seem to have much of an
effect except for random games, where our implementation was faster still than
the competition. Already in 2013, the implementation by Verver was a highly
competitive parity game solver compared to PGSolver.

Unfortunately, Verver never compares their implementation directly to PG-
Solver’s implementation in the thesis. There is empirical evaluation in [1]. The
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tool is still available online6. Unfortunately, we did not manage to build the
Java version that was presented in the paper and thus did not reproduce its
performance. The C++ version did not scale very well. The paper was based
on earlier work in [34]. Here, they compare their implementation in the Scala
programming language to PGSolver which is written in OCaml. While their
implementation is faster than PGSolver, this should not be surprising considering
Table 3. The implementation of [1] and [34] is published under the MIT license.

6 Priority Promotion

Another family of algorithms closely related to Zielonka’s recursive algorithm is
priority promotion [4]. Priority promotion starts with a similar decomposition of
the game as Zielonka’s recursive algorithm, but uses a different method to refine
the decomposition.

Priority promotion was proposed in [4] and improved in [2,3]. Unfortunately,
these papers are rather terse for no obvious reason. We implemented all algorithms
in Oink and found that they all have very similar performance. The journal
article on priority promotion [5] contains an extensive evaluation of priority
promotion, however they implement their algorithm in the PGSolver framework.
We re-implemented the algorithms in C++ and found that the difference with
Zielonka’s recursive algorithm is not as much as in [5]. Their implementation is
publicly available now in the PGSolver repository, although it was not available
at the time of [12]. It thus has the same license as PGSolver.

7 Discussion

Apart from the algorithms mentioned above, we also implemented a number of
other algorithms that were not described in the original paper. In future work, we
may revisit these algorithms and provide an update to [12] with the additional
algorithms, such as tangle learning and its variations, fixed point algorithms
with freezing or with justifications, the succinct progress measures algorithms,
the quasi-polynomial variation of Zielonka’s recursive algorithm, new priority
promotion variations, etc, and consider including the one GPU implementation
by Fearnley.

The main barrier to reproducing results for the TACAS’18 paper was the lack
of available implementations. Some of the algorithms were difficult to understand
and implementations are very helpful. In a few cases, such as the succinct progress
measures, the authors did not provide an empirical evaluation and presumably did
not test their algorithm in practice. Most papers provided empirical results, but
not in a way that is reproducible. To some extent, this is also simply due to lack of
standards to provide artifacts that are reproducible. When implementations are
not available, and we have to provide implementations ourselves, small differences
in implementation choices can have significant impact on the outcome. Simply
6 https://github.com/umbertomarotta/SPGSolver/
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picking a different programming language already has a major influence, especially
when a C++ version is compared to an OCaml version. In recent times, some
authors are now using Oink to implement and compare their algorithms and in
some cases submitting their implementations to the Oink repository.

When we implemented Oink and submitted it to TACAS’18, artifact evaluation
was relatively new. The files to reproduce the results of [12] are available online7.
Unfortunately, the artifact was rejected in the artifact evaluation procedure of
TACAS’18 in a way that discouraged any potential effort to improve the artifact
anyway and publish it online. We learned from this experience for our follow-up
work on tangle learning (a novel parity game solving approach) at CAV’18 [11]
several months later, where the artifact was well received. One improvement was
to actually make the artifact self-contained, and another was to improve the
instructions in the README for the evaluation committee.

Another challenge in trying to reproduce a variety of work in a single way to
establish an overview of the state of the art is that every paper uses different
benchmarks. Often random games are employed that are not made available.
The number of random games is then relatively small, potentially resulting in
outliers having a major influence on the outcome. This is somewhat alleviated
by having publicly available benchmark sets such as [27] as well as competitions
like SYNTCOMP [23].

While most work was licensed with a permissive license, some of the unofficial
implementations on GitHub did not carry a license and can therefore not be
used.

7 https://github.com/trolando/oink-experiments
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