
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 103–122, 2024.
https://doi.org/10.1007/978-3-031-57246-3_7

Knor: reactive synthesis using Oink

Formal Methods and Tools
University of Twente, Enschede, The Netherlands

t.vandijk@utwente.nl, {f.vanabbema,n.tomov}@student.utwente.nl

Abstract. We present an innovative approach to the reactive synthesis
of parity automaton specifications, which plays a pivotal role in the
synthesis of linear temporal logic. We find that our method efficiently
solves the SYNTCOMP synthesis competition benchmarks for parity
automata from LTL specifications, solving all 288 models in under a
minute. We therefore direct our attention to optimizing the circuit size
and propose several methods to reduce the size of the constructed circuits:
(1) leveraging different parity game solvers, (2) applying bisimulation
minimisation to the winning strategy, (3) using alternative encodings from
the strategy to an and-inverter graph, (4) integrating post-processing with
the ABC tool. We implement these methods in the Knor tool, which has
secured us multiple victories in the PGAME track of the SYNTCOMP
competition.

Keywords: Reactive synthesis · Parity games · Binary decision diagrams

1 Introduction

Reactive synthesis as first stated by Church [8,9] and outlined in [32] is the
act of automatically constructing a reactive system such that all interactions
with an unknown environment satisfy a linear temporal logic (LTL) specification.
While early solutions were proposed to solve the synthesis problem via finite-
state automata [7], until recently reactive synthesis using deterministic parity
automata and parity games was deemed infeasible in practice, in part due to
the lack of efficient translations from LTL to deterministic ω-automata. With
the rise of direct translations, LTL synthesis tools such as ltlsynt [27,33,34] and
Strix [26] are capable of solving a wide range of specifications via deterministic
parity automata and parity games, and perform better than some of the previous
techniques avoiding deterministic parity automata.

The advantage of reactive synthesis is that synthesized systems are correct
by construction and therefore do not need to be tested nor model checked for
correctness. The reactive synthesis (SYNTCOMP) competition was founded to
increase the impact of reactive synthesis in industry and improve the quality of
synthesis tools [22,23]. Motivated by the new PGAME track in the SYNTCOMP
competition, we seek to use the Oink parity game solver [11] in the competition and
to implement the necessary infrastructure that translates the parity automata

Tom van Dijk(B) , Feije van Abbema, and Naum Tomov

https://doi.org/10.1007/978-3-031-57246-3_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_7&domain=pdf
http://orcid.org/0000-0002-5366-1051
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


of the competition into parity games suitable for Oink, and that translates
the winning strategy computed by Oink into a Boolean circuit. We name this
implementation Knor1.

Knor leverages Oink to solve parity games with state-of-the-art parity game
solvers [16], and the Sylvan binary decision diagrams (BDD) package [14] to
implement most of the steps before and after solving and a purely symbolic parity
game solver based on [25]. The techniques implemented in Knor have secured us
multiple victories in the SYNTCOMP competition, in 2021, 2022 and 2023.

Following initial success of Knor in the competition, we observe a major
difference with main competitors ltlsynt and Strix. While Knor can solve all
benchmarks in a remarkably short time, the constructed circuits are sometimes
several orders of magnitude larger than the circuits constructed by other tools.
Thus, we propose several techniques, mostly symbolic techniques that rely on
binary decision diagrams, to reduce the size of the constructed circuits.

Contribution. We present the Knor tool that solves the synthesis problem of
parity automata to Boolean circuits, built around the parity game solver Oink.
We consider three methods to translate the given parity automaton to a parity
game, and present a novel symbolic approach that improves upon an explicit
translation by several orders of magnitude. As Oink implements several parity
game solvers that have been shown in [16] to perform well for parity games
derived from reactive synthesis benchmarks, we consider whether changing the
algorithm impacts the size of the constructed circuit. We study whether applying
bisimulation minimisation as in [15], which aims to minimize the number of states
of the winning strategy after solving the parity game, can reduce the size of the
circuits. Similarly, we study different encodings from the winning strategies into
Boolean logic, in particular whether a onehot encoding of the states improves
the circuit size. Finally, we apply a similar post-processing step as Strix by using
the ABC tool [4,5] to minimize the constructed circuit after encoding it as an
and-inverter graph. Sec. 3 describes Knor and provides accessible descriptions of
the implemented techniques. We evaluate these techniques in Sec. 4. We discuss
our findings in Sec. 5.

2 Preliminaries

Given two disjoint sets of Boolean variables I and O representing input and output
signals, and an ω-regular language L of infinite words over the alphabet 2I∪O

representing a specification, the reactive synthesis problem asks us to construct
a controller that enforces L. The controller is a function

(
2I∪O

)∗ × 2I → 2O that
yields a valuation of the output signals 2O based on a history of input and output
signals

(
2I∪O

)∗ and the current input signals 2I .
While we are interested in the broader context of the synthesis of reactive

systems that enforce specifications given in linear temporal logic (LTL), we

1 Knor is the Dutch word for the sound that a pig makes, i.e., “oink”.

T. van Dijk et al.104



assume in this paper that L is given as a deterministic parity automaton. LTL
specifications can be translated to a parity automaton of doubly-exponential size.

Deterministic parity automata (DPA) are ω-regular automata that accept
ω-regular languages. A DPA is a tuple (Q, q0, AP,∆, F ), where Q is a finite
set of states, q0 ∈ Q is the initial state, AP is a set of atomic propositions,
∆ ⊆ Q× 2AP ×Q is the transition relation and F :Q → N assigns to each state
a priority. A run of the automaton is an infinite sequence of states consistent
with the transition relation. A run is accepting if and only if the maximum
priority that occurs infinitely often along the run is an even number. We define
parity automata with priorities on states. Alternatively, priorities can also be on
transitions.

A parity game is a DPA with two players Even and Odd, where the set of
states Q is partitioned into two sets Q0 and Q1. In this paper, we refer to the
states of the parity game as vertices and the transitions of the parity game as
edges. A run on a parity game is an infinite sequence of vertices where player
Even decides the next vertex if the current vertex is in Q0, and player Odd if
it is in Q1. A fundamental result for parity games is that they are memoryless
determined [18], i.e., each vertex is winning for exactly one player, and both
players have a positional strategy for each of their winning vertices.

To solve the synthesis problem, given a deterministic parity automaton over
AP = I ∪ O, we construct a parity game by splitting the automaton across I
and O, letting one player (the environment) choose a valuation of variables in I
and the other player (the controller) a valuation of variables in O.

The result of reactive synthesis is a Boolean circuit, structured as an and-
inverter graph (AIG). An AIG is a directed acyclic graph, featuring terminal
nodes that denote Boolean inputs (input signals and latches), internal nodes
representing AND-gates, and edges with complementation for logical negation.

Binary decision diagrams [6,17] (BDDs) are a well known data structure for
representing and manipulating Boolean functions. A binary decision diagram is a
rooted, directed acyclic graph. Its internal nodes represent decisions based on
the values of Boolean variables, directing the path to one of the two child nodes,
via the “true” edge (depicted as a solid arrow) and the “false” edge (depicted as a
dashed arrow). Reaching the terminal node “1” indicates that the represented
Boolean function evaluates to true for that particular valuation, and reaching
the “0” node indicates a false evaluation. BDDs are recognized as a canonical
representation of Boolean functions when they meet two conditions. First, they
must be ordered; that is, they follow a fixed variable ordering when encountering
Boolean variables. Second, they must be reduced, meaning that any redundant
decision nodes with identical successors are eliminated [6]. BDDs can be incredibly
efficient if a suitable variable ordering is found and the represented set is encoded
in a way that results in small decision diagrams.

Multi-terminal binary decision diagrams (MTBDDs) extend BDDs by allowing
terminal nodes to hold various types of data, not just the Boolean values true
and false. The MTBDD implementation in Sylvan [14] in particular allows for
terminal nodes to be labeled by 64-bit values. These labels can represent a wide

Knor: reactive synthesis using Oink 105



eHOA file parse file

translate to game
either explicit, or
half-symbolic, or
symbolic

solve game
any symbolic or
explicit solver

post-process strategy
bisimulation
minimisation
(optional)

encoding
ISOP or ITE
binary or onehot

AIGER file

minimization
with ABC
compress2rs
or drewrite

AIGER file

Fig. 1. Overview of Knor from input file to output file.

range of data, including 64-bit integers, pointers, floating-point numbers, or even
pairs of 32-bit values.

3 Knor

We study reactive synthesis from parity automata to Boolean circuits in the
Knor research tool. Knor is written in C++ and is publicly available under a
permissive license via https://www.github.com/trolando/knor. See Fig. 1 for an
overview of Knor. All steps of the program are discussed in the following sections.

3.1 Input format

Knor reads input files formatted using the extended Hanoi Omega-Automata
(HOA) format [31].

The HOA format [1] is a file format to describe finite-state automata that
accept sets of infinite words. The automata consist of a finite set of states Q, one or
more initial states I ⊆ Q, a set of atomic propositions AP , and a labeled transition
relation ∆ ⊆ Q× B(AP )×Q, where each transition is labeled with a Boolean
formula ϕ ∈ B(AP ), where we use B(AP ) to denote the set of Boolean formulas
over AP . Furthermore, the HOA format describes an acceptance condition of
the automaton, i.e., a set of infinite runs of the automaton which are considered
accepting. For the purposes of the current paper, we are only interested in the
parity condition, i.e., the automaton is accepting if and only if the lowest/highest
priority seen infinitely often along the run is even/odd, depending on whether
the acceptance condition is min even, min odd, max even or max odd. In the
HOA format, the priorities are either on states or on transitions.

The extended HOA format adds a distinction between controllable (output)
and uncontrollable (input) atomic propositions [31].

T. van Dijk et al.106

https://www.github.com/trolando/knor


pA

pB

pC

pD

ϕ1

ϕ2

ϕ3

pA

pB

pC

pD

i

ϕ1
(i)

ϕ2(i)

ϕ
3 (i)

p1,
ϕ1

p2, ϕ2

p3 , ϕ3

p1

p2

p3

i

ϕ1
(i)

ϕ2(i)

ϕ
3 (i)

Fig. 2. Splitting a transition on the parity automaton (left) to construct the parity
game (right), with priorities on the states (above) or on the transitions (below). We
depict states by squares, vertices of the environment player by pentagons and vertices
of the controller player by circles.

3.2 Output format

Knor can produce parity games in the standard PGSolver [20] format that is also
accepted by Oink, as well as Boolean circuits in the AIGER format [3].

3.3 Translation from automaton to game

As described above, the parity automaton consists of a number of states with
transitions labeled by a Boolean formula, and with the priorities either on the
transitions or on the states.

To translate the automaton to a parity game, we need to split every transition
into two parts. The environment player “moves first” by choosing a valuation of
the input signals, and the controller player responds by setting output signals such
that the specification is guaranteed. That is, the output signals are determined
by the current state and the current input signals.

We propose three methods to convert the parity automaton to a parity game:
a naive explicit method, a half-symbolic method and a fully symbolic method.

(Naive) Explicit method. The explicit method simply creates a parity game
vertex for every state in the parity automaton, and then splits the transitions
into two parts as in Fig. 2.

Knor: reactive synthesis using Oink 107



For every valuation i of the input signals, we create an intermediate vertex
that is controlled by the controller player. This intermediate vertex should have
the least relevant priority, typically 0. For every transition with a label (Boolean
formula) that is satisfiable for i, we then create an edge from the intermediate
vertex to the successor of the transition.

Since we want our parity games to have priorities on the vertices and not on
the edges, we need to create extra vertices in case the automaton has priorities
on transitions. This is also shown in Fig. 2. Priorities on the source vertex,
intermediate vertex, and target vertices should be set to the least relevant
priority (typically 0) or be ignored by the solver.

The result is an explicit parity game which Knor directly constructs using
Oink. The game is then solved with any algorithm implemented by Oink.

Half-symbolic method. The fully explicit method works reasonably well for
many of the smaller input models, however some models result in a significant
exponential blowup of the parity game, as any game with n input signals has 2n

outgoing edges per source vertex. The extended HOA format actually encodes the
labels on the transitions symbolically using Boolean formulas, so an exponential
blowup in some cases can be expected. We propose a method that still results
in an explicit game constructed using Oink, but that employs binary decision
diagrams to reduce the number of intermediate vertices and extra transitions in
the parity game.

For every state, we produce a multi-terminal binary decision diagram (MTBDD)
encoding all outgoing transitions, with decision variables representing input sig-
nals ordered before variables representing output signals, and terminal nodes
encoding both priority and successor state as a pair of two 32-bit numbers.

We then collect all subroots of the MTBDD after the input signals, i.e.,
along each path from the root node to a terminal node, we find the first node that
is either a decision node with a variable of an output signal, or a terminal node.
For every such node N , we create a corresponding intermediate vertex owned
by the controller player. The paths leading to N correspond to valuations of
the input signals that lead to that intermediate vertex, where the controller can
decide how to respond. We let the controller choose to go to any state (vertex)
encoded by a terminal node that is reachable from N . For every such terminal
node, we simply add an edge from the intermediate vertex to the target vertex.

Fully-symbolic method. While the half-symbolic method already results in a
major reduction in the size of the parity games, we can go further and encode
the full transition relation of the parity automaton as a single BDD, which can
then automatically be interpreted as a symbolic parity game simply by ordering
variables as follows:

1. Variables s corresponding to the source state.
2. Variables i corresponding to input signals.
3. Variables o corresponding to output signals.

T. van Dijk et al.108



4. Variables p and s′ corresponding to the priority (either from the transition
or from the target state) and the target state.

One can read this BDD intuitively as follows: given some current state (1)
and some current input values (2), if the controller sets certain output values (3)
we arrive with some priority at our next state (4). Variables within these four
groups can be ordered freely; however, we implement a naive approach and have
not optimized this ordering; this is left as an opportunity for future work.

Since we encode the entire automaton as a single BDD, states that share
some transitions can benefit from the automatic reduction offered by BDDs.

We present a translation from this symbolic parity game to an explicit parity
game that explicitly uses the structure of the decision diagram to construct the
game. This procedure consists of the following steps:

1. We create a state vertex controlled by the environment player for every state
(with transitions) in the symbolic parity game. These vertices get priority 0.

2. Along each path in the BDD, we find the first decision node after the input
signals. We create an intermediate vertex controlled by the controller
player for every such node. These vertices also get priority 0.

3. Along each path in the BDD, we find the first decision node after the output
signals. We decode the priority and the target state and create a priority
vertex for the environment player with the decoded priority and with a
single edge to the state vertex corresponding to the target state.

4. For every state, we compute the reachable decision nodes of step 2 and create
edges from the state vertices to the intermediate vertices.

5. For every decision node of step 2, we compute the reachable decision nodes of
step 3 and create edges from the intermediate vertices to the priority vertices.

Further improvements to this procedure are possible by considering that
vertices may share many transitions, and additional vertices could be added
based on the structure of the BDD. This could reduce the number of edges at
the cost of more vertices. Furthermore, we do not merge the state vertices and
priority vertices, which might reduce the number of vertices. This is left as an
opportunity for future work.

3.4 Solving the parity game

Using the procedure described above, we can produce an explicit parity game
that can be solved by Oink. As shown in [16], several solvers implemented in
Oink are very efficient for parity games derived from reactive synthesis:

– strategy iteration (psi) [11,19]
– tangle learning (tl) [10]
– priority promotion (npp) [2,11]
– Zielonka’s recursive algorithm (zlk) [11,35]
– fixpoint iteration using freezing (fpi) [16]
– fixpoint iteration using justifications (fpj) [24]

Knor: reactive synthesis using Oink 109



We also implement a symbolic solver based on [25]. This symbolic solver
implements fixpoint iteration with freezing using BDD operations, and operates
directly on the BDD obtained by the fully-symbolic translation.

3.5 Post-processing the strategy

After applying the strategy to the symbolic parity game, we perform two post-
processing steps. In the case that the strategy does not give all output signals a
value, we default to setting output signals to false (or 0). We also compute all
reachable vertices of the parity game from the initial state vertex, restricted to
the winning strategy, and remove unreachable vertices.

3.6 Bisimulation minimisation

To further reduce the number of vertices of the parity game, we apply bisimulation
minimisation. Bisimulation minimisation computes equivalence classes of vertices,
i.e., all vertices that have the same behavior w.r.t. input and output signals. We
use the signature-based partition refinement approach of [15].

Recall that the symbolic parity game is a BDD over the variables s, i, o, p, s′

as described in Sec. 3.3. We first drop the priority variables p from the BDD, as
the priorities on the states are not relevant after solving. We reserve fresh BDD
variables c for the classes, which are ordered after the next state variables, i.e.,
s < i < o < s′ < c. We maintain the current assignment from states to classes
in a BDD over variables s′ and c. The reason for s′ rather than s is that this
reduces the number of BDD operations. The initial partition assigns all states
to a single equivalence class. We then repeatedly compute the current signature
of all states, which is a BDD encoding for every state the classes that can be
reached and the input/output values to reach them, as follows:

1. Given a BDD G encoding the symbolic parity game over the variables s, i, o, s′,
and a BDD P encoding the current partition over the variables s′ and c, we
compute the BDD S representing the signatures over variables s, i, o, c by
performing the operation and_exists(G,P, s′).

2. We use the refine operation of [15] to replace the signatures (over variables
i, o, c) in S by new classes, reusing previous class identifiers whenever possible,
and renaming s variables to s′ variables on-the-fly, resulting in the next BDD
P over the variables s′ and c.

3. We repeat steps 1 and 2 until the number of classes is stable.

Afterwards, we apply the obtained partition by replacing the states in the symbolic
parity game by the equivalence classes.

3.7 Encoding the strategy as a circuit

There are several methods to create a Boolean circuit from the solver parity game.
We first need to encode all reachable states of the parity game as latches in the

T. van Dijk et al.110



x

Fx=1 Fx=0

x

Fx=1

Fx=0

Fig. 3. Sketch of the encoding from a BDD decision node (left) to three AND-gates
(right), representing the Boolean formula (Fx=1 ∧ x) ∨ (¬x ∧ Fx=0).

Boolean circuit. We employ two methods for this: (1) one latch per state; and (2)
one latch per BDD state variable. We call the former method onehot and the
latter binary; in the first case at all times only a single latch is set, whereas in
the second case the latches form a binary encoding of the states, similar to how
they are encoded in the symbolic parity game. As the initial state of a Boolean
circuit has all latches reset (to 0), we invert the latch that encodes the initial
state for the onehot encoding and we encode the initial state as state 0 for the
binary encoding.

We then compute a BDD F for every latch and for every output signal, where
F is a BDD over the variables s, i (current state and current input signals) such
that the latch or signal will be set if and only if F evaluates to true. We then
translate each BDD F to an and-inverter graph. Again we propose two methods
to achieve this:

– by using Shannon expansion (ITE) as in Fig. 3 recursively;
– by first obtaining the irredundant sum-of-products [28] (ISOP) of F in the

form of a ZBDD [29], which can then directly be translated to an AIG: first all
products are created, and then the products are connected through inverted
AND-gates (as ab ∨ cd ≡ ¬(¬(ab) ∧ ¬(cd))).

We thus have four combinations: ITE with binary or onehot encoding and
ISOP with binary or onehot encoding. Furthermore, we use a cache when creating
AND-gates to avoid duplicate gates.

3.8 Post-processing with ABC

After encoding the strategy as a circuit, we apply optional post-processing of the
circuit using ABC [5].

Similar to Strix, we apply the compress2rs script, which is described in [4].
The compress2rs script performs rewriting, refactoring, balancing, and truth-
table-based resubstitution. While Strix applies the script until no further im-
provement is found, we halt when the improvement is less than 2.5%.

We also apply a sequence of three ABC commands, drw, balance and drf,
which we call the drewrite script here. We apply this script until the improvement
is less than 1%.

Knor: reactive synthesis using Oink 111



3.9 Usage of Knor

Knor expects an eHOA file on standard input; it also accepts a filename as
a command line parameter instead. With the options -a and -b, Knor writes
the constructed circuits to standard output as an AIGER file in ASCII or
binary format respectively. With the option -v, Knor prints timings and other
information to standard error.

By default, Knor uses the fully symbolic translation to a parity game. One can
use --naive for the naive explicit encoding and --explicit for the half-symbolic
encoding, and --print-game to print the resulting parity game in PGSolver
format to standard output. Only the fully symbolic translation supports the full
synthesis pipeline.

To choose an explicit-state solver of Oink, one can pick any solver from the list
obtained with --solvers, in particular the solvers --tl, --npp, --fpi, --fpj,
--psi. and --zlk. To solve using the symbolic solver, use --sym. With the option
--real, Knor will only decide realizability and use tangle learning (--tl) as the
default solver. The default solver for synthesis is the symbolic solver (--sym).

Bisimulation minimisation is applied by default, unless the --no-bisim option
is used. To encode the circuit, Knor uses by default ITE and onehot encoding.
To change this one can use the options --isop and --binary. To apply post-
processing with ABC after constructing the circuits, use the options --compress
and --drewrite.

4 Empirical Evaluation

We present the empirical results here.

4.1 Benchmarking

We evaluate the techniques implemented in Knor using the benchmarks of
SYNTCOMP for the PGAME track that come from reactive synthesis, i.e.,
they are based on LTL specifications in the TLSF file format. In recent years,
SYNTCOMP has also incorporated benchmarks in the PGAME track that do not
come from reactive synthesis, such as artificial hard games that are designed to
be time consuming for specific parity game solvers. Oink can easily handle such
hard games by using a solver for which no hard game has been designed yet, and
since our aim is to develop techniques for reactive synthesis specifically, we limit
ourselves to benchmarks from the TLSF dataset2. We also exclude input files that
are not parity automata; this removes the aut*.ehoa files, two test*.ehoa files,
and UnderapproxStrengthenedDemo, which is a Büchi automaton consisting of
a single state. In total 288 input files remain.

The benchmarks are run on a machine with an Intel i5-13600KF processor.
This is a 14-core processor, but we only use a single thread. Knor is compiled using
gcc version 13.2.1. We repeat benchmarks 5 times and take the median to obtain
2 https://github.com/SYNTCOMP/benchmarks/tree/v2023.4/parity/tlsf_based

T. van Dijk et al.112

https://github.com/SYNTCOMP/benchmarks/tree/v2023.4/parity/tlsf_based


Model explicit half-symbolic symbolic

amba_decomposed_lock_15 T.O. 46 24
amba_decomposed_lock_14 T.O. 46 24
amba_decomposed_lock_13 T.O. 46 24
TwoCountersDisButA9 T.O. 668,065 7,249
amba_decomposed_lock_12 402,997,254 46 24
amba_decomposed_lock_11 100,820,998 46 24
amba_decomposed_lock_10 25,237,510 46 24
TwoCountersGui 21,022,475 256 155
TwoCountersDisButA8 15,254,863 497,310 4,721
full_arbiter_8 11,287,306 1,669,066 177,690
amba_decomposed_lock_9 6,323,718 46 24
amba_decomposed_encode_16 4,981,507 876 330
TwoCountersDisButA7 3,939,305 98,947 2,365
TwoCountersDisButA6 3,806,249 101,175 1,733

Table 1. Sizes in number of vertices of the largest parity games, sorted descending by
size of parity games constructed using the explicit method.

Technique Sum of Vertices Time (sec)

explicit 622,987,565 1,177.91
half-symbolic 8,491,540 18.28
symbolic 620,510 11.76

Table 2. Cumulative size of parity games and time required for construction of the
parity games of the 284 inputs that could be constructed by all three techniques.

the runtimes. All experimental scripts and log files are available as [12], and are
also available online via http://www.github.com/trolando/knor-experiments.

4.2 Translating the parity automaton to a parity game

We first compare the three different techniques to obtain a parity game from the
parity automaton: explicit, half-symbolic (only symbolic splitting) and fully
symbolic.

Of the 288 benchmarks, the explicit method could not construct the parity
game for four benchmarks within the timeout of 3600 seconds. See Table 1 for the
largest parity games constructed by the explicit method, as well as the four input
models for which no parity game could be constructed within 3600 seconds. The
two other methods could construct the parity games within a reasonable amount
of time, as is displayed in Table 2. The given time is only the time required for
constructing the games and excludes time required for parsing the input file,
which is the same for all methods.

Clearly, the fully symbolic method is superior to the other methods, both in
the speed of construction and in the size of the constructed parity games. When

Knor: reactive synthesis using Oink 113

http://www.github.com/trolando/knor-experiments


Solver Circuit size Time (sec)
binary onehot

symbolic fpi (--sym) 317,403 122,514 18.45
fixpoint with justifications (--fpj) 350,035 139,900 0.16
fixpoint with freezing (--fpi) 353,120 140,297 0.22
strategy iteration (--psi) 334,149 140,916 0.57
priority promotion (--npp) 427,048 161,244 0.17
Zielonka (--zlk) 480,472 175,427 0.18
tangle learning (--tl) 604,044 213,632 0.17

Table 3. Cumulative circuit size in number of gates and cumulative solving time in
number of seconds for the tested parity game solvers.

we consider individual input models, we find 20 cases where the half-symbolic
approach results in slightly smaller parity games than the fully symbolic approach.
The largest difference is 13 vertices (100 vertices instead of 113 vertices), which
is negligible compared to the several orders of magnitude advantage that the
fully symbolic method has in larger parity games, as Table 1 demonstrates. The
cumulative time for the fully symbolic method is dominated by a handful of input
models that require more than a second. Almost all parity games are constructed
in fewer than 10 milliseconds.

Although the size of the parity game does not necessarily always correspond
to the size of the constructed circuit or the required time for the entire synthesis
process, it seems an obvious choice to only consider the fully symbolic translation
in the remainder of this study.

4.3 Solving the parity game

We consider several parity game solvers, which have been shown in the past
to be successful for solving games derived from synthesis: Zielonka’s recursive
algorithm, priority promotion, tangle learning, the two fixpoint algorithms using
freezing and justifications, strategy iteration, and symbolic fixpoint iteration. One
of these, symbolic fixpoint iteration, directly operates on the symbolic parity
game constructed by the fully symbolic method. All other solvers require the
procedure outlined in Sec. 3.3 to translate the symbolic representation to an
explicit game. The game is then solved, and we construct the circuit using the
standard ITE encoding and either the binary or the onehot encoding of the states.
We do not yet perform bisimulation minimisation or postprocessing using ABC.

The reason that it is interesting to consider different solvers is that different
solvers may result in entirely different strategies to win the parity game. In
particular, it may be that some solvers favor winning regions that reach either
higher priorities or lower priorities, which can result in significant differences.
This is in fact supported by the results presented here.

We report runtimes for solving the parity games (thus excluding time
before solving and after solving) as well as the sizes of the circuits in Table 3.

T. van Dijk et al.114



0.1ms

1ms

10ms

0.1s

1s

10s

200 210 220 230 240 250 260 270 280 290
Model count

T
im

e
(s

ec
)

Solver
fpi
fpj
pp
psi
tl
sym
zlk

Fig. 4. Cactus plot of the number of parity games that can be solved within the given
amount of time per solver.

Model tl sym pp psi zlk fpi fpj

generalized_buffer_unreal1 0.02 7.36 0.02 0.14 0.02 0.03 0.02
generalized_buffer 0.01 5.37 0.01 0.07 0.01 0.02 0.01
genbuf2 0.01 1.98 0.01 0.03 0.01 0.01 0.01
full_arbiter_unreal3 0.00 1.00 0.00 0.06 0.00 0.02 0.01
amba_decomposed_arbiter_10 0.02 0.76 0.01 0.04 0.01 0.02 0.02
full_arbiter_8 0.02 0.74 0.02 0.08 0.02 0.02 0.02

Table 4. Overview of individual runtimes of each solver in seconds for the benchmarks
for which at least one solver requires at least 500 milliseconds.

We observe that only the symbolic algorithm requires any time at all. The
other algorithms each require less than a second to solve all benchmarks! When
we consider the circuit sizes, the fully symbolic algorithm is superior with a
cumulative 122,514 gates for all circuits. If we are interested in the best solver
that solves all benchmarks in a fraction of a second, then clearly FPJ is the best
algorithm, with a cumulative time of 0.16 seconds and a cumulative circuit size
of 139,900 gates, although the difference with FPI is not that great.

Remarks. The solving time with the symbolic fixpoint iteration algorithm is
dominated by just a few benchmarks. All algorithms solve the vast majority of
parity games in a fraction of a second. See Fig. 4. Notice the logarithmic scale
and that the vast majority of models are computed within a second for all solvers.
Just a few models require more than 500 milliseconds to be solved, as is shown
in Table 4.

We also did not take parallel operation into account. The symbolic FPI
solver, the explicit FPI solver, and the strategy iteration solver have parallel
implementations; the symbolic solver leverages the automatic parallelisation of
decision diagram operations in Sylvan.

Knor: reactive synthesis using Oink 115



Solver Circuit size Time (sec)
binary onehot

symbolic fpi (--sym) + minimisation 166,839 106,500 0.19
fixpoint with justifications (--fpj) + min. 205,937 124,489 0.15
symbolic fpi (--sym) 317,403 122,514 –
fixpoint with justifications (--fpj) 350,035 139,900 –

Table 5. Cumulative circuit size in number of gates and cumulative minimisation time
in number of seconds for the symbolic fpi and the fixpoint with justifications solvers,
with and without bisimulation minimisation after solving.

Solver Encoding Circuit size Time

symbolic fpi (--sym) ISOP, onehot 102,294 0.69
symbolic fpi (--sym) ITE, onehot 106,500 0.61
fixpoint with justifications (--fpj) ISOP, onehot 113,134 0.72
fixpoint with justifications (--fpj) ITE, onehot 124,489 0.64
symbolic fpi (--sym) ITE, binary 166,839 0.09
fixpoint with justifications (--fpj) ITE, binary 205,937 0.12
symbolic fpi (--sym) ISOP, binary 431,316 1.39
fixpoint with justifications (--fpj) ISOP, binary 476,502 1.61

Table 6. Cumulative circuit size in number of gates and cumulative encoding time in
seconds for the symbolic fpi and fixpoint with justification solvers, after bisimulation
minimisation, using different encodings to obtain the circuit.

4.4 Bisimulation minimisation

We study the effects of bisimulation minimisation for the fully symbolic fixpoint
iteration solver and for the explicit fixpoint iteration with justifications solver
implemented in Oink.

As Table 5 shows, running bisimulation minimisation on the resulting strategy
reduces the total circuit size in all cases. The required time to perform bisimulation
minimisation is negligible with a cumulative time of a fraction of a second.

Bisimulation minimisation does not always improve the circuit size. There are
a few cases where the procedure slightly increases the circuit size. There are also
several models where the circuit size is reduced by several orders of magnitude.
Interestingly, in some cases the circuit size is reduced to 0 AND-gates. It seems
worthwhile to always apply bisimulation minimisation.

4.5 Encoding strategy to circuit

We now consider different encodings from the BDD of the strategy to the controller
circuit. See Table 6. Surprisingly, the combination of ISOP and a binary encoding
leads to a significantly worse result; whereas using ISOP with a onehot encoding
slightly reduces the circuit sizes, but not by a significant amount.

T. van Dijk et al.116



Solver Encoding Method Circuit size Time

symbolic fpi (--sym) ISOP compress 61,434 149.26
symbolic fpi (--sym) ITE compress 62,506 121.27
fixpoint with justifications (--fpj) ISOP compress 71,240 125.29
fixpoint with justifications (--fpj) ITE compress 72,897 108.10
symbolic fpi (--sym) ISOP drewrite 80,077 58.72
symbolic fpi (--sym) ITE drewrite 80,425 53.21
fixpoint with justifications (--fpj) ISOP drewrite 80,454 60.88
fixpoint with justifications (--fpj) ITE drewrite 80,903 58.58
symbolic fpi (--sym) ISOP 102,294 44.88
symbolic fpi (--sym) ITE 106,500 39.81
fixpoint with justifications (--fpj) ISOP 113,134 31.66
fixpoint with justifications (--fpj) ITE 124,489 25.77

Table 7. Cumulative circuit size in number of gates for the two solvers, after bisimulation
minimisation and using onehot encoding, then using different postprocessing methods to
reduce circuit sizes. Given times are total times from parsing until writing, in seconds.

Tool Circuit size
no post-processing with post-processing

strix 68,550 41,314
sym-bisim-isop-onehot 87,823 50,624
ltlsynt 544,804 98,996

Table 8. Cumulative size of the circuits for the 201 realizable inputs that could be
constructed by all three tools, before and after post-processing with ABC.

Looking at individual benchmarks, we find that the most interesting differences
occur with the full_arbiter_* and amba_decomposed_arbiter_* benchmarks.
For these benchmarks, ISOP performs much worse than ITE with a binary
encoding, but shows moderate improvement with the onehot encoding.

While there are some differences in the encoding times between the different
approaches, the cumulative encoding time is less than two seconds in all cases.

4.6 Postprocessing with ABC

Finally, we apply postprocessing of the constructed circuit using ABC. See Table 7
for the results. We observe a very clear tradeoff of space and time. The best
result is obtained by using the compress algorithm, which reduces the number
of gates by about 40%, but this triples the runtime.

4.7 Comparison with other tools

We compare Knor to the tools Strix [26] and ltlsynt [27,33,34]. We obtain the two
competing tools from the SYNTCOMP 2023 artifact [21]. We use the following

Knor: reactive synthesis using Oink 117



command lines, similar to those used in the SYNTCOMP 2023 competition, to
run the tools:

– Run Strix without post-processing in ABC:
strix --auto --no-compress-circuit -t --hoa <filename>

– Run Strix with post-processing in ABC:
strix --auto -t --hoa <filename>

– Run ltlsynt (without post-processing in ABC):
ltlsynt --from-pgame=<filename> --aiger --verbose

In the competition, ltlsynt had optional post-processing in ABC as part of
the script rather than the executable. This script executed the following ABC
commands: collapse;strash;refactor;rewrite. The Strix executable runs
an embedded version of ABC, repeating the compress2rs script until no more
improvement is found. To improve the fairness of the comparison, we change the
post-processing for ltlsynt to start with collapse;strash, as this re-encoding of
the circuit via binary decision diagrams significantly improves upon the circuit
encoding by ltlsynt, followed by repeating the compress2rs script until there
is no more improvement. This gives better results than obtained by ltlsynt in
SYNTCOMP 2023.

Only 208 of the 288 input files are realizable. Of these, Strix did not solve the
following inputs within the 3600 seconds time limit: amba_decomposed_lock_14,
amba_decomposed_lock_15, Automata325, Gamelogic, genbuf2, SPIPureNext,
generalized_buffer. Except for amba_decomposed_lock_15, ltlsynt solved all
inputs. Disregarding inputs that could not be solved by Strix or ltlsynt, we
have 201 realizable inputs that can be solved within the time limit by all three
tools. We provide the results with and without post-processing using ABC in
Table 8. Considering individual results, we observe that Strix yielded smaller
circuits in 142 cases (147 with post-processing) and Knor yielded smaller cir-
cuits in 47 cases (also 47 with post-processing). For the larger circuits, the
amba_decomposed_arbiter_* inputs favored Knor (1527 vs 8282 gates, after
post-processing), while Strix did better on the full_arbiter_ inputs (1594 vs
26040 gates, after post-processing).

Table 8 clearly shows that all tools benefit from the post-processing. While
Strix gives the best results for circuit size, the cumulative circuit size of Knor is
only 23% more. Knor solves the entire set of inputs, including post-processing by
ABC, in about 2.5 minutes, while Strix and ltlsynt cannot solve some benchmarks
within the time limit of 1 hour, before post-processing.

5 Discussion

In this work, we studied techniques to improve reactive synthesis of parity
automata to Boolean circuits using a new tool named Knor. We proposed
a number of techniques and empirically evaluated these techniques using the
benchmarks of the SYNTCOMP competition derived from LTL specifications.
Knor has won the PGAME track of the competition several times.

T. van Dijk et al.118



The evidence presented in the empirical evaluation suggests that the best
approach for deciding realizability is to use the fully symbolic translation from
parity automaton to parity game, and any fast explicit-state parity game solver
(like a tangle learning variation) for which no hard games have yet been designed.
The latter is only needed to counteract any efforts aimed at impairing Knor’s
performance in SYNTCOMP through the introduction of artificially difficult
benchmarks.

For synthesis, considering a low circuit size as our primary objective, the clear
solution is to use either symbolic fpi (--sym) or fixpoint with justifications (--fpj),
preferring the former at the cost of speed in a few benchmarks, always apply
bisimulation minimisation (--bisim), use a onehot encoding (--onehot) with
either ITE or ISOP encoding, and apply postprocessing using ABC’s compress2rs
script (--compress).

Knor is publicly available via https://www.github.com/trolando/knor.

Future work There are many opportunities for future improvements to the
entire pipeline. We already mentioned playing with the variable ordering within
the variable groups of the symbolic parity game, and considering slightly more
efficient translations from the symbolic parity game to an explicit game in Oink.

We could also consider designing a parity game solving algorithm that explic-
itly results in small strategies. Some solvers might yield a multi-strategy, where
multiple edges in the parity game can be taken to win the game. This could
potentially be exploited to simplify the circuits.

It may also be useful to consider bisimulation minimisation on the parity
game before solving, and to change the encoding of the states into the BDD, as
we currently use a naive binary encoding of the state identifiers in the eHOA
format. There may also be other encoding strategies to obtain the Boolean circuit,
such as a different encoding of the latches or the approach of [30].

Beyond the reactive synthesis of parity automaton specifications, we may
also explore symbolic techniques, including those outlined in this paper, for the
synthesis of LTL specifications, building on the preliminary results from our
earlier prototype described in [13].

Acknowledgements

We thank Alan Mishchenko for his helpful comments on using ABC for Boolean
circuit minimisation. The first author is supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 893732.

Data availability statement

The software, benchmarks and analysed dataset are available as [12]. In addition,
the version of Knor studied in the current paper is tagged in the Github repository
of Knor as: https://github.com/trolando/knor/tree/TACAS24.

Knor: reactive synthesis using Oink 119

https://www.github.com/trolando/knor
https://github.com/trolando/knor/tree/TACAS24


References

1. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretínský, J., Müller, D.,
Parker, D., Strejcek, J.: The Hanoi Omega-Automata Format. In: CAV (1). Lecture
Notes in Computer Science, vol. 9206, pp. 479–486. Springer (2015)

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving Parity Games via Priority
Promotion. In: CAV 2016. LNCS, vol. 9780, pp. 270–290. Springer (2016)

3. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2,
Formal Models and Verification, Johannes Kepler University (2011), https://fmv.
jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf

4. Brayton, R., Mishchenko, A.: Scalable logic synthesis using a simple circuit structure.
In: Proc. of Internal Workshop on Logic Synthesis. vol. 6, pp. 15–22 (2006)

5. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer
(2010)

6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

7. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society 138, 295–311 (1969)

8. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Summaries of the Summer Institute of Symbolic Logic 1, 3–50 (1957)

9. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians. pp. 23–35 (1962)

10. van Dijk, T.: Attracting tangles to solve parity games. In: CAV (2). Lecture Notes
in Computer Science, vol. 10982, pp. 198–215. Springer (2018)

11. van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: TACAS (1). Lecture Notes in Computer Science, vol. 10805, pp. 291–308.
Springer (2018)

12. van Dijk, T.: Artifact of Knor: reactive synthesis using Oink (2023). https://doi.
org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7

13. van Dijk, T., Abraham, R., Sickert, S.: Almost-symbolic synthesis via delta-2-
normalisation for linear temporal logic. In: 10th Workshop on Synthesis (2021)

14. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017)

15. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. Int. J.
Softw. Tools Technol. Transf. 20(2), 157–177 (2018)

16. van Dijk, T., Rubbens, B.: Simple fixpoint iteration to solve parity games. In:
GandALF. EPTCS, vol. 305, pp. 123–139 (2019)

17. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Int. J.
Softw. Tools Technol. Transf. 3(2), 112–136 (2001)

18. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended
abstract). In: FOCS. pp. 368–377. IEEE Computer Society (1991)

19. Fearnley, J.: Efficient parallel strategy improvement for parity games. In: CAV (2).
LNCS, vol. 10427, pp. 137–154. Springer (2017)

20. Friedmann, O., Lange, M.: Solving parity games in practice. In: ATVA. LNCS,
vol. 5799, pp. 182–196. Springer (2009)

21. Jacobs, S., Perez, G., Schlehuber-Caissier, P.: Data, scripts, and results from
SYNTCOMP 2023. Zenodo (2023). https://doi.org/10.5281/zenodo.8161423

22. Jacobs, S., Bloem, R.: The reactive synthesis competition: SYNTCOMP 2016 and
beyond. In: SYNT@CAV. EPTCS, vol. 229, pp. 133–148 (2016)

T. van Dijk et al.120

https://fmv.jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf
https://fmv.jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.5281/zenodo.8161423
https://doi.org/10.5281/zenodo.8161423


23. Jacobs, S., Pérez, G.A., Abraham, R., Bruyère, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, K.J., Michaud, T., Pommellet, A., Renkin,
F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines, C., Tentrup,
L., Walker, A.: The reactive synthesis competition (SYNTCOMP): 2018-2021.
CoRR abs/2206.00251 (2022)

24. Lapauw, R., Bruynooghe, M., Denecker, M.: Improving parity game solvers with
justifications. In: VMCAI. Lecture Notes in Computer Science, vol. 11990, pp.
449–470. Springer (2020)

25. Lijzenga, O., van Dijk, T.: Symbolic parity game solvers that yield winning strategies.
In: GandALF. EPTCS, vol. 326, pp. 18–32 (2020)

26. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3–36 (2020)

27. Michaud, T., Colange, M.: Reactive synthesis from ltl specification with spot. In:
Proceedings of the 7th Workshop on Synthesis, SYNT@CAV. vol. 5 (2018)

28. Minato, S.: Fast generation of prime-irredundant covers from binary decision
diagrams. IEICE transactions on fundamentals of electronics, communications and
computer sciences 76(6), 967–973 (1993)

29. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: DAC. pp. 272–277. ACM Press (1993)

30. Miyasaka, Y., Mishchenko, A., Wawrzynek, J., Fraser, N.J.: Synthesizing a class of
practical boolean functions using truth tables. In: 31st International Workshop on
Logic and Synthesis (2022)

31. Pérez, G.A.: The extended HOA format for synthesis. CoRR abs/1912.05793
(2019)

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. pp.
179–190. ACM Press (1989)

33. Renkin, F., Schlehuber, P., Duret-Lutz, A., Pommellet, A.: Improvements to ltlsynt.
In: 10th Workshop on Synthesis (2021)

34. Renkin, F., Schlehuber-Caissier, P., Duret-Lutz, A., Pommellet, A.: Dissect-
ing ltlsynt. Formal Methods in System Design (2023). https://doi.org/10.1007/
s10703-022-00407-6

35. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

Knor: reactive synthesis using Oink 121

https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6


T. van Dijk et al.122

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Knor: reactive synthesis using Oink



