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Overview

• Lecture I
• Labeled Transition Systems, Kripke Structures
• The CTL∗, CTL and LTL languages
• The difference between CTL and LTL

• Different intuition: properties of all runs vs branching structure
• Incomparable in expressiveness

• How to express common properties in LTL
• Fixed points and the modal µ-calculus
• Naive µ-calculus model checking
• Translation of µ-calculus to parity games
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Overview

• Lecture II
• Concepts of “attractor computation”, “tangle”, “distraction”
• Zielonka’s recursive algorithm
• Priority promotion
• Tangle learning

• Lecture III
• Small progress measures algorithm
• Universal trees and the succinct progress measures algorithm
• “Ordered” progress measures algorithm

• Lecture IV
• Strategy iteration
• Fixed point iteration
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Outline

1 Temporal logics CTL and LTL

2 The modal µ-calculus

3 Parity games

4 Attractor based algorithms

5 Fixed point based algorithms
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Transition Systems

The behaviour of a system is modelled by a graph consisting of:
• nodes, representing states of the system
(e.g. the value of a program counter, variables, registers, etc.)
• edges, representing state transitions of the system
(e.g. events, input/output actions, internal computations)

Information can be put in states or on transitions (or both):
• Kripke Structures (KS)
Information on states, called atomic propositions
• Labelled Transition Systems (LTS)
Information on edges, called action labels
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Transition Systems

Transition systemM= 〈S,S0,Act,R,L〉 over set AP of atomic propositions:
• S is a set of states
• S0 is a set of initial states (or s0 is a single initial state)
• Act is a set of action labels
• R is a labelled transition relation: R⊆ S×Act×S
• L is a labelling: L ∈ S→ 2AP

Notation: s a−→ t denotes (s,a, t) ∈R

Special cases:
• Kripke Structures: Act is a singleton (only one transition relation)
• Labelled Transition Systems: AP is empty

6 / 120



Temporal Logics

We want to reason about transition systems, i.e., to specify system properties,
behavior, etc.

• Reachability graph: starting from s0, the system runs evolve
• Consider the reachability graph as an infinite computation tree

• Different tree nodes may denote occurrences of the same state
• Every path in this tree is infinite
• Temporal logic CTL reasons about the computation tree

• Consider the reachability graph as a set of system runs
• Same state may occur multiple times (in one or in different runs)
• Temporal logic LTL reasons about each run
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Computation Trees versus System Runs

Edmund Clarke et al: “Model Checking”, 1999.

Set of system runs:
[a,b]→ c→ c→ . . .
[a,b]→ [b,c]→ c→ . . .
[a,b]→ [b,c]→ [a,b]→ . . .
[a,b]→ [b,c]→ [a,b]→ . . .
. . .
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Temporal Logics: CTL∗

CTL∗ is the Full Computation Tree Logic
• CTL∗ formulae express properties over states or paths
• CTL∗ has the following temporal operators, which are used to express

properties of paths: neXt, Future, Globally, Until, Weak Until, Strong
Release (M), Release

X f f holds in the next state also: #
F f f holds somewhere (eventually) also: 3
G f f holds everywhere also: 2
f U g g holds eventually, and f in all preceding states
f W g (G f)∨ (f U g)
f M g g U (f ∧g)
f R g (G g)∨ (f M g)

Example
F G p versus G F p: almost always versus infinitely often
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Temporal Logics: CTL∗
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Temporal Logics: CTL∗

CTL∗ consists of:
• Atomic propositions (AP)
• Boolean connectives: ¬ (not), ∨ (or), ∧ (and)
• Temporal operators (on paths)
• Path quantifiers (on states)

Path quantifiers are capable of expressing properties on a system’s branching
structure:

for All paths versus there Exists a path

Path quantifiers have the following intuitive meaning:
• A f : f holds for all paths from this state
• E f : f holds for at least one path from this state
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Temporal Logics: CTL and LTL

E X black E G black A X black A G black

E F black E red U black A F black A red U black
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Temporal Logics: CTL∗

CTL∗ state formulae (S) and path formulae (P) are defined simultaneously
by induction:

S ::= true | false | AP | ¬S | S ∧S | S ∨S | E P | A P
P ::= S | ¬P | P ∧P | P ∨P | X P | F P | G P |

P U P | P R P | P W P | P M P

Summarising:
• State formulae (S) are:

• constants true and false and atomic propositions (basis)
• Boolean combinations of state formulae
• quantified path formulae

• Path formulae (P) are:
• state formulae (basis)
• Boolean combinations of path formulae
• temporal combinations of path formulae
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Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative
to a fixed Kripke StructureM= 〈S,S0,R,L〉 over AP:

For state formulae:
s |= true
s 6|= false
s |= p iff p ∈ L(s)
s |= ¬f iff s 6|= f
s |= f ∧g iff s |= f and s |= g
s |= f ∨g iff s |= f or s |= g
s |= E f iff ∃π ∈ path(s) . π |= f
s |= A f iff ∀π ∈ path(s) . π |= f
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Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative
to a fixed Kripke StructureM= 〈S,S0,R,L〉 over AP:

For path formulae:

π |= f iff π(0) |= f (if f is a state formula)
π |= ¬f iff π 6|= f
π |= f ∧g iff π |= f and π |= g
π |= f ∨g iff π |= f or π |= g
π |= X f iff π1 |= f
π |= F f iff ∃i . πi |= f
π |= G f iff ∀i . πi |= f
π |= f U g iff ∃i . πi |= g and ∀j < i . πj |= f
π |= f W g iff π |= G f or π |= f U g
π |= f M g iff ∃i . πi |= g and ∀j ≤ i . πj |= f
π |= f R g iff π |= G f or π |= f M g
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Temporal Logics: CTL and LTL
Two simpler sublogics of CTL∗ are defined

CTL: Computation Tree Logic
φ,ψ ::= true | ¬φ | AP | φ∧ψ | EX φ | EG φ | E(φ U ψ)
(derived: false, ∨, EF, EW, EM, ER, AX, AG, AF, AU, AW, AM, AR)

CTL expressions: AG EF p, E p U (E X q);
syntactically not in CTL: A F G p, A X X p, E(p U (X q))
Question: A X X p

?≡ AX AX p

LTL: Linear Time Logic
φ,ψ ::= true | ¬φ | AP | φ∧ψ | X φ | (φ U ψ)
(derived: false, ∨, F, G, W, M, R)

LTL expressions: F G p, (¬(G F p)∨F q);
syntactically not in LTL: A F A G p, A G E F p

Question: A F G p
?≡ A F A G p
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Branching versus Linear Time Logic

We use temporal logic to specify a formula φ.
• Model checking question: M |= φ (“φ holds in systemM”).
• Branching time logic (CTL)

• M |= φ ⇔ ∀s0 ∈ S0 . s0 |= φ
• φ is evaluated on the computation tree of s0.

• Linear time logic (LTL)
• M |= φ ⇔ π |= φ for every run π ofM.
• φ is evaluated on all paths of the computation tree originating in s0.
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Branching versus Linear Time Logic

B. Berard et al: “Systems and Software Verification”, 2001.

• Linear time logic: both systems have the same runs.
• Thus every formula has same truth value in both systems.

• Branching time logic: the systems have different computation trees.
• Take formula AX(EX Q∧EX ¬Q).
• True for left system, false for right system.

The two variants of temporal logic have different expressive power.
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Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?
• CTL formula: AG(EF φ).

• “In every run, it is at any time still possible that later φ will hold”.
• Property cannot be expressed by any LTL logic formula.

• LTL formula: 32φ (i.e. FG φ).
• “In every run, there is a moment from which on φ holds forever.”.
• Naive translation AFG φ is not a CTL formula.

• G φ is a path formula, but F expects a state formula!
• Translation AFAG φ expresses a stronger property (see next page).
• Property cannot be expressed by any CTL formula.

None of the two variants is
strictly more expressive
than the other one; no
variant can express every
system property.

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Branching versus Linear Time Logic

Proof that AFAG F (CTL) is different from 32F (LTL).
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Linear Time Logic

Why using linear time logic (LTL) for system specifications?
• LTL has many advantages:

• LTL formulas are easier to understand.
• Reasoning about computation paths, not computation trees.
• No explicit path quantifiers used.

• LTL can express most interesting system properties.
• Invariance, guarantee, response, . . . (see later).

• LTL can express fairness constraints (see later).
• CTL cannot do this.
• But CTL can express resettability (which LTL cannot).

• LTL has also some disadvantages:
• LTL is strictly less expressive than other specification languages.

• CTL∗ or µ-calculus.
• Asymptotic complexity of model checking is higher.

• LTL: exponential in size of formula; CTL: linear in size of formula.
• In practice the number of system states dominates the checking time.
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Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name
G φ always φ invariance
F φ eventually φ guarantee
G F φ φ holds infinitely often recurrence
F G φ eventually φ holds permanently stability
G (φ⇒ F ψ) always, if φ holds, then response

eventually ψ holds
G (φ⇒ (ψ U χ)) always, if φ holds, then precedence

ψ holds until χ holds

Typically, there are at most two levels of nesting of temporal operators.
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Examples

• Mutual exclusion: G ¬(pc1 = C ∧pc2 = C).
• Alternatively: ¬F (pc1 = C ∧pc2 = C).
• Never both components are simultaneously in the critical region.

• No starvation: ∀i : G (pci =W ⇒3pci =R).
• Always, if component i waits for a response, it eventually receives it.

• No deadlock: G ¬∀i : pci =W .
• Never all components are simultaneously in a wait state W .

• Precedence: ∀i : G (pci 6= C⇒ (pci 6= C U lock = i)).
• Always, if component i is out of the critical region, it stays out until it

receives the shared lock variable (which it eventually does).
• Partial correctness: G (pc = L⇒ C).

• Always if the program reaches line L, the condition C holds.
• Termination: ∀i : F (pci = T ).

• Every component eventually terminates.
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Example

If event a occurs, then b must occur before c can occur (a run
. . . ,a,(¬b)∗, c, . . . is illegal).

• First idea (wrong): a⇒ . . .
• Every run d, . . . becomes legal.

• Next idea (correct): G (a⇒ . . .)
• First attempt (wrong): G (a⇒ (b U c))

• Run a,b,¬b,c, . . . is illegal.
• Second attempt (better): G (a⇒ (¬c U b))

• Run a,¬c,¬c,¬c, . . . is illegal.
• Third attempt (correct): G (a⇒ (¬c W b))

Think in terms of allowed/prohibited sequences.
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LTL Expansion Laws

Basic LTL expansion laws (e.g. for unfolding)
F φ ≡ φ ∨ X (F φ)
G φ ≡ φ ∧ X (G φ)
φU ψ ≡ ψ ∨ (φ ∧ X (φ U ψ))
φW ψ ≡ ψ ∨ (φ ∧ X (φ W ψ))
φM ψ ≡ ψ ∧ (φ ∨ X (φ M ψ))
φ R ψ ≡ ψ ∧ (φ ∨ X (φ R ψ))

Notice the recursion

Think of F, G, U, W, M, R as specialized recursive operators.
What if we could have more powerful (arbitrary) recursions?
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Outline

1 Temporal logics CTL and LTL

2 The modal µ-calculus

3 Parity games

4 Attractor based algorithms

5 Fixed point based algorithms
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Background: Fixed-points

Reductive
f(x)v x

Extensive
xv f(x)

Tarski-Knaster theorem
A monotonic function f : L→ L on a complete lattice L has a greatest fixed
point (gfp) and a least fixed point (lfp).

gfp(f) =
⊔
{x ∈ L | xv f(x)} =

⊔
{Ext(f)} ∈ Fix(f)

lfp(f) =
l
{x ∈ L | f(x)v x} =

l
{Red(f)} ∈ Fix(f)
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Background: Fixed-points

Reductive
f(x)v x

Extensive
xv f(x)

Kleene fixed-point theorem
gfp = f∞(>) =

d
n≥0 f

n(>)
lfp = f∞(⊥) =

⊔
n≥0 f

n(⊥)

⊥v f(⊥)v f(f(⊥))v ...v lfp(f)
v gfp(f)v ...v f(f(>))v f(>)v> 26 / 120



µ-calculus: syntax and semantics

Idea of µ-calculus: add fixed point operators to basic modal logic.

• µ-calculus is very expressive (subsumes CTL, LTL, CTL∗).
• µ-calculus is very pure (“assembly language” for modal logic, cf:
λ-calculus for functional programming).
• drawback: lack of intuition.
• fragments of the µ-calculus are the basis for practical model checkers,
such as µCRL, mCRL2, CADP, LTSmin

µ-calculus
CTL∗

CTLLTL
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µ-calculus: syntax and semantics

Some notation and terminology:
• The µ-calculus introduces variables representing sets of states.
• An occurrence of X is bound by a surrounding fixed point symbol µX or
νX. Unbound occurrences of X are called free.
• A formula is closed if it has no free variables, otherwise it is called open
• A valuation V : Var→ 2S interprets the free variables as sets of states.
• V[X :=Q] is a valuation like V, but X is set to Q
• The semantics of a µ-calculus formula φ is a set of states
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µ-calculus: syntax and semantics
Syntax
φ,ψ ::= tt | ff | p | ¬p | φ∧ψ | φ∨ψ | [a]φ | 〈a〉φ | X | µX.φ | νX.φ

Semantics
JttKM = S
JffKM = ∅
JpKM = {s ∈ S | p ∈ L(s)}
J¬pKM = {s ∈ S | p 6∈ L(s)}
Jφ∨ψKM = JφKM∪ JψKM

Jφ∧ψKM = JφKM∩ JψKM

(notice that there is no negation on formulae, only on the propositions)
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J¬pKM = {s ∈ S | p 6∈ L(s)}
Jφ∨ψKM = JφKM∪ JψKM

Jφ∧ψKM = JφKM∩ JψKM

J[a]φKM = {s ∈ S | ∀t.(s a−→ t)→ (t ∈ JφKM)}
J〈a〉φKM = {s ∈ S | ∃t.(s a−→ t)∧ (t ∈ JφKM)}
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µ-calculus: syntax and semantics
Syntax
φ,ψ ::= tt | ff | p | ¬p | φ∧ψ | φ∨ψ | [a]φ | 〈a〉φ | X | µX.φ | νX.φ

Semantics
JttKM = S
JffKM = ∅
JpKM = {s ∈ S | p ∈ L(s)}
J¬pKM = {s ∈ S | p 6∈ L(s)}
Jφ∨ψKMV = JφKM∪ JψKMV
Jφ∧ψKMV = JφKM∩ JψKMV
J[a]φKMV = {s ∈ S | ∀t.(s a−→ t)→ (t ∈ JφKMV )}
J〈a〉φKMV = {s ∈ S | ∃t.(s a−→ t)∧ (t ∈ JφKMV )}
JXKMV = V(X)
JµX.φKMV =

d
{S′ ⊆ S | JφKMV[S′/X] ⊆ S

′} (lfp)
JνX.φKMV =

⊔
{S′ ⊆ S | S′ ⊆ JφKMV[S′/X]} (gfp)

where V : Var→ 2S assigns a set of states to the variables X,Y, . . .
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µ-calculus: Example (1/3)

µX.[a]X represent states with no infinite sequences of a-transitions

µ0X.[a]X = ∅ false
µ1X.[a]X = [a]∅

= {s ∈ S | ∀t. s a−→ t→ t � ∅}
since no t satisfies ∅, the right hand side (RHS) of → is false;
thus the left hand side (LHS) of → cannot be true.
This represents states with no outgoing a-transitions

µ2X.[a]X = [a]T
where T = µ1X.[a]X are states with no outgoing a-transitions
Thus µ2 means states with no aa-paths
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µ-calculus: Example (2/3)

νX.p∧ [a]X is informally analogous to LTL G p

ν0X.p∧ [a]X = S true
ν1X.p∧ [a]X = p∧ [a]S

Intersection between all nodes satisfying p (LHS of ∧)
and all nodes (RHS of ∧)

ν2X.p∧ [a]X = p∧ [a]T
Where T = ν1X.p∧ [a]X are all nodes that satisfy p
Thus µ2 is the intersection between all nodes that satisfy p
and all nodes that have an outgoing edge labeled a
to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable through
a-transitions also satisfy p.
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µ-calculus: Example (3/3)

µX.p∨ (〈a〉True∧ [a]X) is informally analogous to LTL F p

µ0X.p∨ (〈a〉True∧ [a]X) = ∅
µ1X.p∨ (〈a〉True∧ [a]∅) = p∨ (〈a〉True∧ [a]∅)

〈a〉True is the set of states with an outer a-transition
[a]∅ is the set of states with no outgoing a-transition
Therefore, intersection ∧ is empty
and the formula boils down to the set of states satisfying p

µ2X.p∨ (〈a〉True∧ [a]T ) = p∨ (〈a〉True∧ [a]T )
where T = µ1 which means nodes satisfying p
[a]T are nodes whose children reachable via a-transitions satisfy p

Thus either p is satisfied, or it is satisfied via a node reachable through an
a-transitions, or via an aa-transition, or via an an-transition.
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Note

• Increasing complexity with alternation of fixed point types
• With one fix-point we talk about termination properties
• With two fix-points we can write fairness formulas

• See also Chapter 26 of the Handbook of Model Checking
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Alternation Depth

Nesting Depth: maximum number of nested fixed points

ND(f) := 0 for f ∈ {p,¬p,X}
ND( a©f) := ND(f) for a© ∈ {[a],〈a〉}
ND(f2g) := max(ND(f),ND(g)) for 2 ∈ {∧,∨}
ND(µν X.f) := 1 +ND(f) for µ

ν∈ {µ,ν}

Example: ND
(

(µX1. νX2. X1∨X2)∧ (µX3. µX4. (X3∧µX5. p∨X5))
)
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Example:

ND

(
(µX1. νX2. X1∨X2)∧ (µX3. µX4. (X3∧µX5. p∨X5))

)
= 3

X3,X4 and X5 have no alternation between fixed point signs
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Alternation Depth

Alternation Depth: number of alternating fixed points

AD(f) := 0 for f ∈ {p,¬p,X}
AD( a©f) := AD(f) for a© ∈ {[a],〈a〉}
AD(f2g) := max(AD(f),AD(g)) for 2 ∈ {∧,∨〉}
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Examples:
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Examples:

AD

(
(µX1. νX2. X1∨X2)∧ (µX3.µX4. (X3∧µX5.p∨X5))

)
= 2

AD

(
(µX1. νX2. X1∨X2)∧ (µX3.νX4. (X3∧µX5.p∨X5))

)
= 3

X5 does not depend on X3 and X4
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Alternation Depth

Dependent Alternation Depth (dAD): number of alternating fixed points,
such that the innermost fixed point depends on the outermost.
The definition of dAD is identical to AD, except for
dAD(µX.f) := max(dAD(f),

1 +max{dAD(g) |
g is a ν-subformula of f and X occurs in g}

dAD(νX.f) := max(dAD(f),
1 +max{dAD(g) |

g is a µ-subformula of f and X occurs in g}
Examples:

dAD

(
(µX1. νX2. X1∨X2)∧ (µX3.µX4. (X3∧µX5.p∨X5))

)
dAD

(
(µX1. νX2. X1∨X2)∧ (µX3.νX4. (X3∧µX5.p∨X5))

)
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Naive Algorithm

1 def eval(f):
2 if f = tt : return S
3 elif f = ff : return ∅
4 elif f = p : return {s ∈ S | p ∈ L(s)}
5 elif f = ¬p : return {s ∈ S | p 6∈ L(s)}
6 elif f = g1∧g2 : return eval(g1)∩ eval(g2)
7 elif f = g1∨g2 : return eval(g1)∪ eval(g2)
8 elif f = [a]g : return {s ∈ S | ∀t ∈ S : s a−→ t⇒ t ∈ eval(g)}
9 elif f = 〈a〉g : return {s ∈ S | ∃t ∈ S : s a−→ t∧ (t ∈ eval(g))}

10 elif . . . : . . .
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Naive Algorithm

1 def eval(f):
2 if . . . : . . .
3 elif f =Xi : return A[i]
4 elif f = νXi.g(Xi) :
5 A[i] := S
6 while A[i] changes :
7 A[i] := eval(g)
8 return A[i]
9 elif f = µXi.g(Xi) :

10 A[i] := ∅
11 while A[i] changes :
12 A[i] := eval(g)
13 return A[i]
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Embedding CTL-formulae

Assume Act = {a}. There is a straightforward translation of CTL to the
µ-calculus:
• Tr(p) = p

• Tr(¬f) = ¬Tr(f)
• Tr(f ∧g) = Tr(f)∧Tr(g)
• Tr(E X f) = 〈a〉 Tr(f)
• Tr(E G f) = νY.(Tr(f)∧〈a〉 Y )
• Tr(E [f U g]) = µY.(Tr(g)∨ (Tr(f)∧〈a〉 Y ))
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Outline

1 Temporal logics CTL and LTL

2 The modal µ-calculus

3 Parity games

4 Attractor based algorithms

5 Fixed point based algorithms
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Bird’s Eye View

• Area: formal verification of systems
• Verify if a system implements the specification
• Synthesize a controller for an incomplete system that implements the

specification
• “Does X have property p” as a game (or compute X such that...)

• player 0 wants to prove this (or synthesize a controller)
• player 1 wants to refute this
• players make choices

• Interesting systems are often “reactive” (run forever)
• when a car arrives, eventually the traffic light turns green
• the reset button always works
• “X is true until Y is true”
• “X may not happen before Y”

Hence: properties regarding infinite runs of a finite-state system
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Parity Games

Why do we want to solve parity games?

• Capture the expressive power of nested least and greatest fixpoint
operators
• Equivalent (in polynomial time) to:

• modal µ-calculus model-checking (CTL*, LTL...)
• solving Boolean Equation Systems

• Backend for LTL model checking and LTL synthesis
• important industrial applications (PSL, SVA)

Open question: Is solving parity games in P?
• It is in UP ∩ co-UP and NP ∩ co-NP
• It is believed a polynomial solution exists
• Hot topic! Recently: quasi-polynomial solution sparked great

interest, several new algorithms that are all quasi-polynomial
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Parity Games

(Incomplete list of) published algorithms
McNaughton/Zielonka O(e ·nd), O(2n) 1998
Small Progress Measures O(d ·e · (n/d)d/2) 1998
Strategy Improvement O(n ·e ·2e) 2000
Dominion Decomposition O(n

√
n) 2006

Big Step O(e ·nd/3) 2007
APT O(nd) 2016
Priority Promotion Ω(2

√
n) 2016

Quasi-Polynomial (multiple) O(n6+logd) 2016 – 2018
Tangle Learning Ω(2

√
n) 2018

Recursive Tangle Learning tbd 2018
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Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d}
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even
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How do we determine who wins a play?
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How do we determine who wins a vertex?



Parity Games

• A parity game is played on a directed graph
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• The players move a token along the edges of the graph
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• Each vertex has a priority {0,1,2, . . . ,d}
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even
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A player wins a vertex if it has a strategy
to win all plays from that vertex



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor
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• Each vertex has a priority {0,1,2, . . . ,d}
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even
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Which vertices are won by which player?



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6

a 5

b

2

c

1

d

3

e

• Each vertex has a priority {0,1,2, . . . ,d}
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even
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Parity Games

Known facts of parity games

• Some vertices are won by Even, some vertices are won by Odd
• The winner has a memoryless strategy to win

“If I always play from v to w, then I win all plays from v”

Memoryless strategy

Solving a parity game

• Determine the winner of each vertex
• Compute the strategy for each player
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Games and automata for verification and synthesis

• Verification with automata
1 Construct an automaton of the specification (typically negation)
2 Cross-product with the Kripke Structure or LTS
3 Solve resulting automaton (accept/reject)

(typically produces a counterexample)
• Verification with games

1 Construct a two-player game of the specification
• one player tries to prove the specification (‘existential‘)
• one player tries to violate the specification (‘universal‘)

2 Cross-product with the Kripke Structure or LTS
3 Solve resulting game

(winner + strategy of winner.)
• Synthesis with games

• strategy is an implementation of a controller (or a counterexample)
• system + controller = guaranteed to implement the specification
• (Actually used in practice to synthesize controllers for LTL properties!)
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Model checking via parity games

• Adam picks t from s
a−→ t such that t 2 (p1∨ (p2∧p3)

• Eve replies by showing that either t � p1 or that t � p2 and t � p3.
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Model checking via parity games
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Model checking via parity games
Create node (s,ψ) for every state s ofM and every formula ψ in the closure
of φ. Eve’s goal is to show that a formula holds.

(s,p) Eve wins if p holds in s, that is s � p
Thus assign (s,p) to Adam and we put no transitions from it

(s,¬p) Same as (s,p) but reversing Adam and Eve’s roles

(s,〈a〉β) Connect to (t,β) for all t such that s a−→ t and
(s, [a]β) assign (s, [a]β) to Adam and (s,〈a〉β) to Eve

(s,µX.β(X)) Connect to (s,β(µX.β(X))) and to (s,β(νX.β(X)))
(s,νX.β(X)) This corresponds to the intuition that a fixed-point

is equivalent to its unfolding.

JµX.αKMV = Jα[µX.α/X]KMV
JνX.αKMV = Jα[νX.α/X]KMV

• Parity winning condition based on dependent alternation depth.
• Priority 2 · bdAD(φ)/2c if φ is of the form νX.ψ
• Priority 2 · bdAD(φ)/2c+ 1 if φ is of the form µX.ψ
• Priority 0 otherwise 49 / 120



Oink

• Modern implementation of parity game algorithms
• Zielonka’s Algorithm (with optimizations; parallel)
• Small progress measures (with optimizations)
• Priority Promotion (different versions)
• Strategy Improvement (parallel)
• QPT progress measures
• Succinct progress measures
• Tangle learning

• The usual preprocessing algorithms
• Inflation and compression
• Remove self-loops
• Detect winner-controlled winning cycles
• SCC decomposition

• https://www.github.com/trolando/oink
• Simple to use/extend library in C++
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Oink

Easy to use

#include "oink.hpp"

pg::Game parity_game;
parity_game.parse_pgsolver(cin);

pg::Oink solver(parity_game);
solver.setSolver("zlk");
solver.run();

parity_game.write_sol(cout);

Easy to extend

• Implement Solver interface
• Add one line to solvers.cpp
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Parity Games

Notation for parity games

• A parity game a is a tuple (V ,V ,E,pr)
• Vertices V = V ∪V controlled by players Even and Odd
• Transitions E : V ×V such that E is left-total.

• We write u→ v for (u,v) ∈ E
• E(u) denotes the successors of u: {v | u→ v}
• E(U) denotes all successors of vertices in {v | u→ v | u ∈ U}
• Each vertex has at least one successor.

• Priority function pr : V →{0,1,2, . . . ,d}
• A path is a finite sequence v0v1v2 . . . consistent with E
• A play is an infinite sequence v0v1v2 . . . consistent with E
• A play π is won by player Even iff max(pr(inf π)) is even
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Parity Games

Notation for strategies

• A strategy for player α is a partial function σ : Vα→ V that assigns one
successor to each vertex of player α.
• A path or play is consistent with σ if each vi for which σ(vi) is defined,
vi+1 = σ(vi).
• Plays(v,σ) is the set of plays consistent with σ starting in v.
• σ is a winning strategy from v for player α if all plays in Plays(v,σ) are
winning for α
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Parity Games

Notation for closed sets and dominions
• A set W is closed w.r.t. a strategy σ if for all v ∈W :

• if v is owned by α, then σ(v) ∈W (strategy in W )
• if v is owned by α, then E(v)⊆W (all successors in W )

• A set D is a dominion of player α if α has a strategy σ that is winning
for all v ∈D and D is closed w.r.t. σ.
• The winning regions of either player are dominions.
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Outline

1 Temporal logics CTL and LTL

2 The modal µ-calculus

3 Parity games

4 Attractor based algorithms

5 Fixed point based algorithms
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Parity Games

Attractor computation
Compute all vertices from which player α ∈ { , } can ensure arrival in a
given target set

Start with the target set A, then iteratively add vertices to A:
• All vertices of α with an edge to A
• All vertices of α with only edges to A
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Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Initial set: {a}
Can attract: d but not b
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Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Current set: {a,d}
Can attract: b but not e
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Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Current set: {a,b,d}
Can attract: neither c nor e
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Parity Game Algorithms

Roughly two types

• Local value iteration
Based on locally improving the value of individual vertices by looking at
their successors.
• Attractor-based
Based on properties over sets of vertices computed with attractors.
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Parity Game Algorithms

Attractor-based algorithms

• Partition the game into regions using attractors.
• Start with the highest priority (top-down).
• Each region is tentatively won by one player.
• Refine winning regions until dominion found.

Example: Zielonka’s Recursive Algorithm (1998)
Attract higher regions downward after computing lower regions.
If your opponent attracts from your region, recompute your part.

Example: Priority Promotion (2016)
Merge regions upwards when the region is closed (in the subgame).
Then recompute lower regions.
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Zielonka’s recursive algorithm

1 def zielonka(a):
2 if a = ∅ :
3 return ∅,∅ // empty game

4 α ← pr(a) mod 2 // winner of highest priority

5 Z ← pr−1(pr(a)) // vertices of highest priority

6 A ← Attraα(Z) // attracted to highest priority

7 W ,W ← zielonka(a\A) // recursive solution

8 B ← Attraα(Wα) // check if opponent attracts

9 if B =Wα :
10 Wα ← Wα∪A // A is won by α

11 else:
12 W ,W ← zielonka(a\B) // recompute remainder

13 Wα ← Wα∪B // B is won by α

14 return W ,W
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Zielonka’s recursive algorithm

Computing strategy

• Strategy is computed by attractor
• Every attracted α-vertex u to some v in the set: strategy is u→ v

• Special case: α-vertices of the original target set
• Pick any successor in winning region as strategy

• Implementation: use only a single strategy array, reset the strategy of
highest priority vertices before attracting
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Zielonka’s recursive algorithm
1 def zielonka(a):
2 if a = ∅ :
3 return ∅,∅ // empty game

4 α ← pr(a) mod 2 // winner of highest priority

5 Z ← pr−1(pr(a)) // vertices of highest priority

6 A,σA← Attraα(Z) // attracted to highest priority

7 W ,W ,σ ,σ ← zielonka(a\A) // recursive solution

8 B,σB ← Attraα(Wα) // check if opponent attracts

9 σB ← σB ∪σα // add strategy of Wα

10 if B =Wα :
11 Wα ← Wα∪A // A is won by α

12 σα← σα∪σA∪
(
(z ∈ Z) 7→ pick(E(z)∩Wα)

)
13 else:
14 W ,W ,σ ,σ ← zielonka(a\B) // recompute remainder

15 Wα ← Wα∪B // B is won by α

16 σα← σα∪σB
17 return W ,W ,σ ,σ
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Zielonka’s Algorithm
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• We start by attracting to 8 for player Even.
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• After region 8 (player Even).
• Continue (recursively) with region 7.

63 / 120



Zielonka’s Algorithm

0

a

2

b

7

c

1

d

5

e

8

f

6

g

2

h

3

i
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• Continue (recursively) with region 5.
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• After regions 8, 7, 6 and 5.
• Continue (recursively) with region 3.
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Zielonka’s Algorithm
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• After regions 8, 7, 6, 5 and 3.
• Now remains just region 2.

63 / 120



Zielonka’s Algorithm
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• Game is partitioned fully, now go up in the recursion.
• Up in region 2, does the lower opponent’s winning region attract?
• Region 2: no (because the subgame is empty).
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• Up in region 3: does the lower Even region attract from region 3?
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• Up in region 5: does the lower Even region attract from region 5?
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• Up in region 6: does the lower Odd region attract from 6?

63 / 120



Zielonka’s Algorithm

0

a

2

b

7

c

1

d

5

e

8

f

6

g

2

h

3

i

• Up in region 6: does the lower Odd region attract from 6?
• Yes: the lower Odd region attracts vertex g.
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• Vertex g is attracted to the Odd region.
• So now recompute the (remainder of the) lower regions of Even.

• Actually, nothing changes in the recursion.
• Up in region 7: does the lower Even region attract from 7?
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• Vertex g is attracted to the Odd region.
• So now recompute the (remainder of the) lower regions of Even.

• Actually, nothing changes in the recursion.
• Up in region 7: does the lower Even region attract from 7?
• Yes, the lower Even region attracts vertex c.
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Zielonka’s Algorithm
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• Vertex c is attracted to the Even region.
• Recompute the remainder of the lower regions of Odd.
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Zielonka’s Algorithm
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• Partition the remainder into regions 6, 5 and 3.
• Up in region 3: no attraction from Even.
• Up in region 5: no attraction from Even.
• Up in region 6: the lower Odd regions attract g again!
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Zielonka’s Algorithm
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• Region 6: now the Odd region attracts vertex g again.
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• Vertex g is attracted to the Odd region.
• Recursive game of 6 is empty.
• Up in region 8, does Odd now attract 8?
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Zielonka’s Algorithm
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• Vertex g is attracted to the Odd region.
• Recursive game of 6 is empty.
• Up in region 8, does Odd now attract 8?
• But vertex f is attracted to the Odd region.
• Attracting at priority 8 attracts all vertices to player Odd.
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Zielonka’s Algorithm
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• Final result, entire game won by player Odd.
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Priority promotion

The main idea of priority promotion...

Region invariant

• In any region, the opponent either plays to a higher region of the player,
or via the highest priority vertices.
• (Invariant holds for the regions of the “α-maximal partition”)

Closed region

• A region of player α that is globally closed is a dominion of player α.
• A region of player α is locally closed iff the opponent can only escape to
a higher region of player α.
• So: the opponent must escape to the lowest higher region.
⇒ Promote the region, i.e., merge the regions.
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Priority promotion
1 def prioprom(a):
2 r← V 7→ ⊥ // all vertices to ⊥
3 p← pr(a) // highest priority

4 while True :
5 α← p mod 2 // current player

6 Z←{v | r(v)≤ p} // current subgame

7 A← Attra∩Zα ({v ∈ Z | r(v) = p∨pr(v) = p}) // attract

8 C←{v ∈Aα | E(v)∩A= ∅} // open α-vertices

9 X ← E(Aα)\A // escapes

10 if C 6= ∅∨ (X ∩Z) 6= ∅ :
11 r← r[A 7→ p] // set region

12 p← pr(Z \A) // continue with next highest

13 elif X 6= ∅ :
14 p←min{r(v) | v ∈X} // set p to lowest escape

15 r← r[A 7→ p][{v | r(v)< p} 7→ ⊥] // merge and reset

16 else:
17 return α,A // dominion!
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Priority promotion

Notes

• The lowest region is always locally closed.
• Region resets only if at least 1 vertex promotes.
• This is sufficient to prove termination.
• Each call to prioprom computes a dominion of a player α.
• Attract for player α to the computed dominion, repeat until game solved.

Computing strategy

• Strategy is computed by attractor
• Every attracted α-vertex u to some v in the set: strategy is u→ v

• Special case: α-vertices of the original target set
• Pick any successor in result as strategy

• Implementation: use only a single strategy array, reset the strategy of
highest priority vertices before attracting
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Priority promotion
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• We start by attracting to 8 for player Even, 7 for player Odd, etc.
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Priority promotion
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• After regions 8 (player Even) and 7 (player Odd).
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• After regions 6 and 5.
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Priority promotion
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• After region 3, region 3 is now closed!
• Note: region 2 would also be closed.
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Priority promotion
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• After region 3, region 3 is now closed!
• Note: region 2 would also be closed.
• The loser must escape to a higher region of the winner.
• So promote 3 to 5.
• Meaning the set {h, i} is attracted as a whole to region 5.
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Priority promotion
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• Region 3 is promoted to region 5.
• Now region 5 is closed. (region 2 would also be closed)
• So promote 5 to 7.
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Priority promotion
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• After promotion, vertex g is attracted to region 7.
• Continue the partition with region 2...
• Region 2 is locally closed.
• So promote 2 to (the lowest escape) 8.

67 / 120



Priority promotion
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• Region 2 is promoted to region 8.
• Meaning the set {a,b} is attracted to region 8.
• Region 8 now also attracts vertex c!!
• Recompute the subgame...
• Now {h, i} can be attracted to region 5 again.
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Priority promotion
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Region 5 is closed in the entire game.
Meaning that it is a dominion won by player Odd.
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Priority promotion

Variations

• PP+: only reset regions of α.
• RP: only reset a region when the strategy of player α of the remaining
vertices of the stored region leaves the region
• DP: “delayed promotion” strategy
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Tangle Learning

Tangle
A tangle is:
• a (strongly connected) subgraph of a parity game,
• such that one player α has a strategy σ,
• such that the tangle restricted by σ is still strongly connected,
• and player α wins all plays (cycles) in the tangle.

Definition
A p-tangle is a nonempty set of vertices U ⊆ V with p= pr(U), for which
player α≡2 p has a strategy σ : Uα→ U , such that the graph (U,E′), with
E′ := E∩

(
σ∪ (Uα×U)

)
, is strongly connected and player α wins all cycles

in (U,E′).
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Tangle Learning

Tangle
A tangle is a strongly connected subgraph for which one player has a strategy
to win all cycles in the subgraph.

Properties

• Player α has a single strategy for every α-vertex.
• Player α must escape (or lose).
• Player α can reach all vertices of the tangle.
• Tangles have subtangles when player α can avoid vertices.
• Every dominion is naturally composed of subtangles.
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Tangle Learning

Tangle
A tangle is a strongly connected subgraph for which one player has a strategy
to win all cycles in the subgraph.
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A 5-dominion with a 5-tangle and a 3-tangle
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Tangle learning

Tangle attractor
Because player α must escape the tangle, we can use tangles to attract the
vertices of a tangles together, if player α can only escape to the attracting
set.
• Add all v ∈ Vα \A for which E(v)∩A 6= ∅.
• Add all v ∈ Vα \A for which E(v)⊆A.
• Add all {v ∈ VT (t)\A | t ∈ Tα } for which ET (t)⊆A.

Tangle learning

• Partition game into α-maximal regions with tangle attractor.
• Add bottom SCCs of closed regions to the set of tangles.
• Repeat until a dominion is found, i.e., ET (t) = ∅.
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Tangle learning (1/2)

• search returns new tangles of a, given known tangles T .
• Note: store for each tangle its player α strategy.

1 def search(a, T):
2 if a = ∅ : return ∅
3 p← pr(a), α← pr(a) mod 2
4 Z,σ← TAttra,Tα

(
pr−1(p)

)
5 O←{v ∈ Zα | E(v)∩Z = ∅}∪{v ∈ Zα | E(v) 6⊆ Z}
6 if O = ∅ :
7 return search(a\Z,T) ∪ bottom-sccs(Z,σ)
8 else:
9 return search(a\Z,T)
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Tangle learning (1/2)

• search returns new tangles of a, given known tangles T .
• Note: store for each tangle its player α strategy.

1 def search(a, T):
2 if a = ∅ : return ∅
3 p← pr(a), α← pr(a) mod 2
4 Z,σ← TAttra,Tα

(
pr−1(p)

)
5 O←{v ∈ Zα | E(v)∩Z = ∅}∪{v ∈ Zα | E(v) 6⊆ Z}
6 if O = ∅ :
7 return search(a\Z,T) ∪ bottom-sccs(Z,σ)
8 else:
9 return search(a\Z,T) ∪ search(a∩ (Z \TAttra∩Z,Tα (O)),T)

The “recursive” variant of tangle learning
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Tangle learning (2/2)

1 def tanglelearning(a):
2 W ←∅, σ ←∅, W ←∅, σ ←∅, T ←∅
3 while a 6= ∅ :
4 Y ← search(a,T)
5 T ← T ∪{ t ∈ Y | ET (t) 6= ∅}
6 D←{ t ∈ Y | ET (t) = ∅}
7 if D 6= ∅ :
8 D+,σ← TAttra,T (

⋃
D )

9 W ←W ∪D+, σ ← σ ∪σ
10 D+,σ← TAttra,T (

⋃
D )

11 W ←W ∪D+, σ ← σ ∪σ
12 a← a\ (D+∪D+)
13 T ← T ∩a
14 return W ,W ,σ ,σ
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Tangle learning

Computing strategy

• Similar to priority promotion: compute strategy with the attractor, select
any successor in the region for the highest priority vertices of α
• Store the σ of every tangle and use the stored σ as the strategy for α
when attracting a tangle
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Tangle learning
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• After first partition into α-maximal regions.
• Regions 2 and 3 are closed (in their subgame).
• Tangle {a,b} attracted to 8.
• Tangle {h, i} attracted to 5.
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Tangle learning
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• Tangles: {a,b} (2) and {h, i} (3).
• After tangle attractor to 8...
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Tangle learning
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• After tangle attractor to 5...
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Tangle learning
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• Only closed region: 5.
• One tangle, which is also a dominion.
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Distractions
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• Vertex b is a distraction for player Even.
• Learn opponent tangles to attract the distractions.
• Tangle {c} is attracted to region 5.
• Now vertex a is not distracted by vertex b.
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Distractions

0

a

2

b

1

c

3

d

0

e

4

f

1

g

3

h

• First round: tangle {c} (attracts distraction b).
• Second round: tangle {a,e} (attracts distraction h).
• Third round: tangle {g} (dominion).
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Outline

1 Temporal logics CTL and LTL

2 The modal µ-calculus

3 Parity games

4 Attractor based algorithms

5 Fixed point based algorithms
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Value iteration

Core idea of value iteration (1/2)

• Measure ρ : V →M assign a value to every vertex from some domain M,
containing a special symbol >.
• The measure represents how good is the “best” continuation?

• “best” for one of the players, e.g., Even
• symbol > means “winning for the player“ (Even)
• Even wants high values, Odd wants low values

• A monotone∗ function Prog(m,p) that computes the value of playing
from a vertex with priority p to a vertex with measure m
• ρ is the least parity game progress measure, if smallest ρ such that:

∀v ∈ V : ρ(v) =
{

max<{Prog(ρ(w),pr(v)) | w ∈ E(v)} v ∈ V
min<{Prog(ρ(w),pr(v)) | w ∈ E(v)} v ∈ V

∗with respect to a special ordering (see later)
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Value iteration

Core idea of value iteration (2/2)

• If ρ is the least parity game progress measure, then:
• W = {v | ρ(v) =>}, W = {v | ρ(v) 6=>}
• if v ∈W , then ρ(v) = Prog

(
ρ(σ(w)),pr(v)

)
meaning: the winning strategy for Odd is the best continuation

• no∗ winning strategy for Even
• It is a least fixed point: starting with ⊥, update ρ until fixed point
• This is called lifting the measures
• Idea: this is like playing an “optimal” game backwards

• Player Even finds better paths
• Player Odd then selects the least bad option

∗except with some extra effort: Gazda and Willemse, 2014
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Small progress measures

Even measures

• Measures are tuples 〈e6,e4,e2,e0〉 (with highest even priority 6)
• Each ep = [0..np] with np the number of vertices with priority p
• Example: M=

(
{0}×{0,1,2}×{0}×{0,1}

)
∪{>}

• A total order < which is lexicographic: m1 <m2 iff there is a highest
unequal priority z and m1(z)<m2(z) (and >=>)

〈1,0,0,0〉 < 〈1,0,0,1〉
〈4,2,10,5〉 < 〈4,3,0,0〉

Odd measures

• Same, but with the odd priorities
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Small progress measures

Even measures

• Measures are tuples 〈e6,e4,e2,e0〉 (with highest even priority 6)
• A p-truncation keeps only elements ≥ p:

〈1,2,3,2〉|1 = 〈1,2,3〉
〈1,2,3,2〉|4 = 〈1,2〉
〈1,2,3,2〉|7 = ε

• Notation: m1 =p m2 ≡ m1|p =m2|p
• An edge v→ u is progressive if ρ(v)wpr(v) ρ(u) if v is odd and
ρ(v) =pr(v) ρ(u) if v is even
• ρ is a progress measure if:

• for every vertex of Even, some outgoing edge is progressive in ρ
• for every vertex of Odd, every outgoing edge is progressive in ρ

(remember: we are interested in the least progress measure)
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Small progress measures

The Prog function
Playing from a vertex with priority p to a vertex with measure m yields:

Prog(m,p) :=
{

min{m′ ∈M |m′ =p m} p is even
min{m′ ∈M |m′ wp m} p is odd

Example (with highest value 3 for all elements):

Prog(〈3,2,3,2〉,0) = 〈3,2,3,3〉
Prog(〈3,2,3,2〉,1) = 〈3,2,3,0〉
Prog(〈3,2,3,2〉,2) = 〈3,3,0,0〉
Prog(〈3,2,3,2〉,3) = 〈3,2,0,0〉
Prog(〈3,2,3,2〉,4) = 〈3,3,0,0〉
Prog(〈3,2,3,2〉,5) = 〈3,0,0,0〉
Prog(〈3,2,3,2〉,6) = >
Prog(〈3,2,3,2〉,7) = 〈0,0,0,0〉
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Small progress measures

Operational interpretation [Gazda, Willemse, 2015]

• p-dominated stretches: how often priority p is encountered before a
higher priority
• Example: play 00102120232142656201 corresponds to 〈2,1,3,2〉

• priority 0 is seen 2× before a higher priority
• priority 2 is seen 3× before a higher priority
• priority 4 is seen 1× before a higher priority
• priority 6 is seen 2× before a higher priority

• If priority p is seen more than np times, there must be a cycle!

Operational interpretation [Van Dijk, 2018]

• Notice the “overflow mechanism”!
If priority p overflows, our optimal path contains a cycle of priority p.
Keep increasing the measure until the opponent “escapes”
(Compare to priority promotion / tangles!)
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Small progress measures
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a 〈0,0,0,0,0〉 to 〈0,0,0,0,1〉 0
b 〈0,0,0,0,−〉 to 〈0,0,0,1,−〉 2
c 〈0,−,−,−,−〉 to 〈0,−,−,−,−〉 7
d 〈0,0,0,0,−〉 to 〈0,0,0,0,−〉 1
e 〈0,0,−,−,−〉 to 〈0,0,−,−,−〉 5
f 〈0,−,−,−,−〉 to 〈1,−,−,−,−〉 8
g 〈0,0,−,−,−〉 to 〈0,1,−,−,−〉 6
h 〈0,0,0,0,−〉 to 〈0,0,0,1,−〉 2
i 〈0,0,0,−,−〉 to 〈0,0,0,−,−〉 3
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a 〈1,0,0,1,1〉 b
b 〈1,0,0,1,−〉 f
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d 〈0,0,0,0,−〉 e
e 〈0,0,−,−,−〉 d/i
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• All vertices are won by Odd
No vertices are lifted to >

• Strategy for Odd
• from b to f
• from d to e
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Small progress measures

1 def spm(a):
2 ρ← V 7→ 〈0, . . . ,0〉
3 while ρ(v) < Lift(ρ,v) for some v : ρ← ρ[v 7→ Lift(ρ,v)]
4 W ←{v | ρ(v) =>}
5 W ←{v | ρ(v) 6=>}
6 σ ← (v ∈W ∩V ) 7→ pick({u ∈ E(v) | ρ(v) = Prog(ρ(w),pr(v))})
7 return W ,W

Lift(ρ,v) :=
{

max<{Prog(ρ(w),pr(v)) | w ∈ E(v)} v ∈ V
min<{Prog(ρ(w),pr(v)) | w ∈ E(v)} v ∈ V

Prog(m,p) :=
{

min{m′ ∈M |m′ =p m} p is even
min{m′ ∈M |m′ wp m} p is odd
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Small progress measures

1 def spm(a):
2 ρ← V 7→ 〈0, . . . ,0〉
3 Z← V // use a queue or a stack

4 while Z 6= ∅ :
5 v← pick(Z)
6 Z← Z \{v}
7 if ρ(v) < Lift(ρ,v) :
8 ρ← ρ[v 7→ Lift(ρ,v)]
9 Z← Z ∪E−1(v)

10 W ←{v | ρ(v) =>}
11 W ←{v | ρ(v) 6=>}
12 σ ← (v ∈W ∩V ) 7→ pick({u ∈ E(v) | ρ(v) = Prog(ρ(w),pr(v))})
13 return W ,W
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Small progress measures

Implementation notes

• Use a queue or stack to store “to do” vertices
• After lifting a vertex, add its predecessors to the queue (only once!)
• When lifting an even priority vertex to >, decrease np by 1
• Also compute odd measures (strategy for Even)
• Advanced technique: occasionally, compute the attractor to vertices in
Z, any vertex not attracted and not > is won by the other player!
• Preprocessing: use compression and SCC-decomposition and

self-loop solving.
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Measures as tree navigation paths

Core idea

• A tuple 〈4,2,3〉 can be a navigation path of a tree
• Follow branch 4, then branch 2, then branch 3
• Then:

• the set of measures form a tree with n leaves and dd/2e height
• the measures essentially encode the current order between vertices
• the exact numbers (4, 2, 3) are not important!
• what matters is the order

• Example: (1,2), (0,2), (1,1), (1,2), (2,1), (0,1), (1,0)
• Draw tree corresponding to this set of navigation paths
• Notice how the labels of the tree are irrelevant, only the order matters
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Measures as tree navigation paths

Universal trees (see explanation by Fijalkow 2018)
A (n,h)-universal tree is a tree that can embed all trees of height h and with
n leaves.

The naive (5,2)-universal tree of size 25 A (5,2)-universal tree of size 11
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Measures as tree navigation paths

Universal trees
A (n,h)-universal tree is a tree that can embed all trees with height h and n
leaves.

The tree on the left is embedded into the universal tree
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Measures as tree navigation paths

Universal trees

Simple algorithm:
• Split tree in three parts: Left, Middle, Right
• Such that |Left|< n/2 and |Right|< n/2
• Repeat left/right to obtain all branches, and repeat recursively...
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Measures as tree navigation paths

Universal trees

Tree encoding:
• Instead of 〈4,2,3〉, encode as a tuple of bitstrings
• For example 〈100,010,011〉
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Measures as tree navigation paths

Universal trees
Tree encoding:
• Instead of 〈4,2,3〉, encode as a tuple of bitstrings
• For example 〈100,10,11〉
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Measures as tree navigation paths

Universal trees
Succinct tree encoding:
• Encode as a tuple of bitstrings (empty allowed)
• Order on bits: 0 < ε< 1
• Order on bitstrings: 0s < s < 1s

Example: 00 < 0,0 < 01,1 < 10
• Order on tuples: lexicographic, and shorter prefix is lower
Example: 〈01,ε〉< 〈01,ε,00〉, but 〈01,ε,000〉< 〈1000,ε〉
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Measures as tree navigation paths

Universal trees
Succinct tree encoding:
• Prefix Left with 0, Right with 1, Middle with ε.
• For example 〈100,10,11〉

• Maximum bitstring length: 2 bits
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Measures as tree navigation paths

Universal trees
Lifting in the succinct tree encoding
(notice: slightly different notation here)

Example of lifting v5: it is pushed to the left in order to satisfy v5 /3 v7 and v5 /2 v1
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Succinct progress measures

Implementation notes

• Implementation is complicated.
• Core idea is the same: keep lifting vertices to the smallest higher
measure, either the maximum (player Even) or the minimum (player
Odd)
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“Ordered” progress measures

Core idea

• Domain: _< 7< 5< 3< 1< 0< 2< 4< 6
• Tuples 〈i32, i16, i8, i4, i2, i1〉 encode so-called i-witnesses
• An ik-witness encodes the existence of a path where Even (or Odd)
dominates k times
• Example: 1213142321563212
• _ means “no such witness”
• 7 means a witness, but starting with odd 7
• 6 means a witness, startng with even 6
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“Ordered” progress measures

Update rules

• 〈7,_,_,_〉 and we see a 6: 〈7,_,_,6〉
• 〈7,_,_,6〉 and we see a 2: 〈7,_,2,_〉
• 〈7,_,2,_〉 and we see a 1: 〈7,_,2,1〉
• 〈7,_,2,1〉 and we see a 0: 〈7,_,2,0〉
• 〈7,_,2,0〉 and we see a 6: 〈7,6,_,_〉
• 〈7,6,_,_〉 and we see an 8: 〈8,_,_,_〉

Problem

• Not quite monotone.
• Solution: “antagonistic update”. Given measure m and priority p,
compute min{Prog(m′,p) |m′ wm}
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“Ordered” progress measures

Implementation notes

• See paper by Fearnley et al on arXiv
• See qpt.cpp in Oink
• It’s complicated...
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Winner-controller winning cycles

Simple algorithm to find trivial winning regions

Algorithm

• For every vertex v that is controlled by player α := pr(v) mod 2
• Z,σ := attract vertices in {u ∈ Vα | pr(u)≤ pr(v)} to v

• Just backward DFS from v via α-vertices with ≤ priority
• If Z is closed (v is reached), then Z is an α-dominion with strategy σ;

maximize Z by attracting from the entire game to Z and remove from
the game

There are more optimal algorithms, employing SCC reductions, etc. See also
Maks Verver’s MSc Thesis “Practical Improvements to Parity Game Solving”
and fatal attractors of [Huth, Kwo, Piterman, 2014]
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Strategy iteration

Strategy improvement/iteration overview

• Originates from policy iteration algorithms for Markov decision processes
and similar algorithms for stochastic games.
• First parity game specific algorithm by Vöge and Jurdzinski in 2000
• Later numerous modified versions

• better “best response” computation
• smarter strategy selection heuristics (hoping to find one requiring

polynomially many changes)
• learning snares (kind of tangles): Fearnley 2011

• Suitable for parallel computation (e.g. van de Pol and Weber; Kandziora
(2009) and Van de Berg (2010) on the Playstation 3; various GPU and
multi-core implementations)

104 / 120



Strategy iteration

Core idea of strategy iteration

• Both players have a total strategy
• strategy σ for all v ∈ V
• strategy τ for all v ∈ V

• These induce a single play π for every v ∈ V
• Every play π ends in a cycle
• Play profile ρ : V →M assigns a value to v based on π
• The value represents how optimal are current strategies σ and τ?
• Keep improving strategies until fixed point

• Odd computes the best response to σ
• Even uses ρ to improve the strategy σ once
• Repeat

• Why improve against the best response? Because then each time you
improve σ, you know that Odd could not find a better response
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Strategy iteration

Algorithm

1 Start with some σ for player 0
2 Compute the best response τ for player 1

• Traditional approach: Bellman-Ford shortest path algorithm
• [Fearnley 2017] proposes: use strategy iteration to compute τ :

1 Start with some τ for player 1 (e.g. previous τ)
2 Compute play profiles and switchable edges
3 Select switchable edges for the next τ
4 Repeat until no more switchable edges

3 Compute the play profiles and the switchable edges (that would locally
improve the valuation) for player 0

4 Select switchable edges for the next σ
• Different proposed switching rules (can we do it in P iterations)

5 Repeat from step 2 until no more switchable edges

106 / 120



Strategy iteration

Play profiles

• Relevance order < (value is priority):
• u < v ⇔ pr(u)< pr(v)
• max<(V ) = highest priority vertex

• Reward order ≺ (value as seen from player 0):
• V+ = {v | pr(v) is even} V− = {v | pr(v) is odd}
• u≺ v ⇔ (u < v∧v ∈ V+)∨ (v < u∧u ∈ V−)
• P ≺Q ⇔ P 6=Q∧max<(P4Q) ∈ (Q4V−)

• highest vertex in symmetric difference is in Q and even
• highest vertex in symmetric difference is in P and odd

• Reward order ≺ (alternative formulation)
• rew(v) := pr(v)× (−1)pr(v) (that is: negate if pr(v) is odd)
• u≺ v ⇔ rew(u)< rew(v)
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Strategy iteration

Play profiles [VJ00]

• Relevance order < and reward order ≺
• Original play profile of [Vöge, Jurdzinski 2000]: tuple 〈u,P,e〉

• uπ is most relevant vertex in the loop of π: uπ =max<(inf(π))
• Pπ is the set of vertices more relevant than uπ in π

(seen once in the prefix of uπ)
• eπ is the number of vertices in π before uπ

• 〈u,P,e〉 ≺ 〈v,Q,f〉 ⇔


u≺ v ∨
(u= v∧P ≺Q) ∨
(u= v∧P =Q∧v ∈ V−∧e < f) ∨
(u= v∧P =Q∧v ∈ V+∧e > f)

• A strategy is optimal in vertex v if it selects the ≺-maximal successor in
E(v) for player 0 (or ≺-minimal for player 1)
• A strategy is optimal if it is optimal for all vertices
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Strategy iteration

Play profiles [F17]

• Modify σ: now player Even is also allowed to halt the play (if the
continuation is not favorable)
• Initially σ is ⊥ (halt) for all Even’s vertices
• Result: now every infinite play (cycle) is won by Even!

• because otherwise Even would halt to avoid the losing cycle
• except if Odd can win a cycle without any vertices of Even

• Requires preprocessing: remove winner-controlled winning cycles of Odd
• or maybe: let Even force Odd vertices to halt instead...

• Play profile: > if π is infinite; otherwise 〈ed,ed−1, . . . ,e1,e0〉 with
ep = |{v ∈ π | pr(v) = p}|, i.e., count how often each priority p is
encountered in the finite path π
• Profile X ≺ Y if the highest different priority p is either even and
X(p)< Y (p) or odd and X(p)> Y (p); also X ≺> for all X 6=>
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Strategy iteration
Compute using a backward search from vertices where Even halts

1 def compute-valuations(a, σ, τ):
2 θ← σ∪ τ // for easier notation

3 Z← θ−1(⊥) // where Even halts

4 ρ← (V 7→ >) // initialize

5 while Z 6= ∅ :
6 v← pop(Z) // pop any v from Z

7 m←
{
〈0, . . . ,0〉 θ(v) =⊥
ρ(θ(v)) otherwise

// get successor profile

8 m(pr(v))←m(pr(v)) + 1 // update profile

9 ρ(v)←m // set profile of v

10 Z← Z ∪θ−1(v) // add predecessors to Z

11 return ρ

Implementation note
Two stages: first compute θ−1, then do the backward search
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Strategy iteration

Switching rule Greedy All Switches
Extend ρ with a valuation of ⊥; define ρ over sets; define Bestα as the set of
successors of v with the optimal profile for player α; define GreedyAllα to
update the strategy with a switchable edge (if current strategy is not optimal)

ρ⊥ := ρ∪{⊥ 7→ 〈0, . . . ,0〉}

ρ⊥(X) := {ρ⊥(x) | x ∈X}

Best (a,ρ,v) := {u ∈ E(v) | ρ(u) = min≺ ρ(E(v))}

Best (a,ρ,v) := {u ∈ E(v)∪{⊥} | ρ(u) = max≺ ρ(E(v)∪{⊥})}

GreedyAllα(a,σ,ρ) := Vα 7→
{
σ(v) σ(v) ∈ Bestα(a,ρ,v)
pick(Bestα(a,ρ,v)) otherwise
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Strategy iteration

1 def si(a):
2 σ ← (V 7→ ⊥), τ ← random strategy for Odd
3 repeat
4 repeat
5 ρ← compute-valuations(a, σ, τ)
6 τ ← GreedyAll (a, τ,ρ)
7 until τ is unchanged
8 σ ← GreedyAll (a,σ,ρ)
9 until σ is unchanged

10 return W ,W ,σ,τ where W ← {v | ρ(v) =>}, W ← V \W

Implementation note
After line 7, any vertex v with ρ(v) =>, can be added to W already and does not
need to be improved anymore; any vertex remaining in the end is then won by Odd
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Strategy iteration
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σ: a→⊥, c→⊥, e→⊥, f→⊥, g→⊥, h→⊥, i→⊥

best response τ : b→ a and d→ c
σ: a→ b, c→ g, e→⊥, f→ g, g→ h, h→⊥, i→⊥
best response τ : b→ f and d→ c
σ: a→ b, c→ b, e→⊥, f→ g, g→ h, h→⊥, i→⊥
best response τ : b→ f and d→ e
Odd wins entire game with strategy τ
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Fixed point iteration

Core idea

• We can solve µ-calculus model checking by solving the fixed points
explicitly
• We can solve µ-calculus model checking by solving a parity game
• Here: we solve parity games by via a fixed point iteration
• Via weak alternating automata [Kupfermann, Vardi, 1998]
• APT implementation [Di Stasio, Murano, Perelli, Vardi, 2016]
• Via µ-calculus: [Bruse, Falk, Lange, 2014]
• Quite fast for games with low number of priorities
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Fixed point iteration

Core idea

• “Using fixed points, update winning regions using a 1-step attractor”
• Record “distraction sets” Zp ⊆ Vp (Vp = {v | pr(v) = p})
• A vertex is a distraction if:

• it has even priority and is won by Odd
• it has odd priority and is won by Even

• Monotonically update Z0, then Z1, etc.
• When adding vertices to Zp, reset Z<p to ∅
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Fixed point iteration

Given some set of distracted vertices Z = Z0∪Z1∪·· ·∪Zd,

winner(v,Z) :=
{
pr(v) mod 2 v /∈ Z
1− (pr(v) mod 2) v ∈ Z

next(v,Z) :=


0 v ∈ V ∧∃u ∈ E(v) : winner(u,Z) = 0
1 v ∈ V ∧∀u ∈ E(v) : winner(u,Z) = 1
1 v ∈ V ∧∃u ∈ E(v) : winner(u,Z) = 1
0 v ∈ V ∧∀u ∈ E(v) : winner(u,Z) = 0
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Fixed point iteration

1 def fpi(a):
2 p← 0 // start with lowest priority

3 Z←∅ // start with no distractions

4 while p≤ d :
5 Y ←{v ∈ Vp \Z | next(v,Z) 6= pr(v) mod 2} // distractions

6 if Y 6= ∅ :
7 Z← Z ∪Y // update current fixed point Zp

8 Z← Z \{v | pr(v)< p} // reset all lower fixed points

9 p← 0 // continue with lowest priority

10 else:
11 p← p+ 1 // fixed point, continue higher

12 return W ,W where W ← {v | winner(v,Z) = 0}, W ← V \W

Note: algorithm does not give a strategy (see [BFL14] for a method)!
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Fixed point iteration
1 def fpi(a):

/* assume vertices are sorted by priority, V (i) for ith vertex */

2 Z← V 7→ 0 // start with no distractions

3 i← 0 // start with lowest vertex

4 p← pr(V (i)) // start with lowest priority

5 Chg← False // whether Zp is updated

6 while True :
7 if i= n∨pr(V (i)) 6= p :
8 if Chg :
9 Z← Z[{v | pr(v)< p} 7→ 0] // reset all lower vertices

10 goto 3 // restart with lowest vertex

11 elif i= n :
12 return {v | winner(v,Z) = 0}, {v | winner(v,Z) = 1}
13 else:
14 p← pr(V (i)) // Zp not updated; continue

15 else:
16 if ¬Z[i]∧next(V (i),Z) 6= pr(V (i)) mod 2 :
17 Z[i]← 1 // ith vertex is distraction

18 Chg← True // mark that Zp is updated

19 i← i+ 1
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Fixed point iteration

Some notes...

• That was my own version of the fixed point algorithm
• To prove: that it is correct
• To show: that it is equivalent to [BFL14] and [KV98] and [dSMPV16]
• To study: whether [BFL14] also leads to a method of finding strategies
• Implementation can be a tight loop with Z implemented as a bit vector,

and all vertices sorted by priority... going from low to high, and resetting
all lower priority vertices plus restarting the loop whenever some Z[v] is
set

119 / 120



Fixed point iteration
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