Software Science - Parity Games!
Tom van Dijk
University of Twente, 2019

Acknowledgements

These slides were created in part based on earlier presentations
by Tim Willemse, Wolfgang Schreiner and Nathanael Fijalkow.

1/120

Overview

® |ecture |

® Labeled Transition Systems, Kripke Structures

® The CTL*, CTL and LTL languages

® The difference between CTL and LTL
® Different intuition: properties of all runs vs branching structure
® Incomparable in expressiveness

How to express common properties in LTL

Fixed points and the modal pu-calculus

Naive p-calculus model checking

Translation of u-calculus to parity games

2/120

Overview

e |Lecture Il
® Concepts of “attractor computation”, “tangle”, “distraction”
Zielonka's recursive algorithm
Priority promotion
Tangle learning
e Lecture |l
® Small progress measures algorithm
® Universal trees and the succinct progress measures algorithm
® “Ordered"” progress measures algorithm
® Lecture IV

® Strategy iteration
® Fixed point iteration

3/120

@ Temporal logics CTL and LTL

4/120

Transition Systems

The behaviour of a system is modelled by a graph consisting of:

® nodes, representing states of the system
(e.g. the value of a program counter, variables, registers, etc.)

® edges, representing state transitions of the system
(e.g. events, input/output actions, internal computations)

Information can be put in states or on transitions (or both):

e Kripke Structures (KS)
Information on states, called atomic propositions

* Labelled Transition Systems (LTS)
Information on edges, called action labels

5/120

Transition Systems

Transition system M = (S,Sy,.Act, R, L) over set AP of atomic propositions:
e S is a set of states
e Sy is a set of initial states (or sg is a single initial state)
e Actis a set of action labels

R is a labelled transition relation: R C S x Actx S

L is a labelling: L € § — 24P

Notation: s % t denotes (s,a,t) € R

Special cases:
e Kripke Structures: Act is a singleton (only one transition relation)

® Labelled Transition Systems: AP is empty

6/120

Temporal Logics

We want to reason about transition systems, i.e., to specify system properties,
behavior, etc.

® Reachability graph: starting from sg, the system runs evolve
e Consider the reachability graph as an infinite computation tree

® Different tree nodes may denote occurrences of the same state
® Every path in this tree is infinite
® Temporal logic CTL reasons about the computation tree

e Consider the reachability graph as a set of system runs

® Same state may occur multiple times (in one or in different runs)
® Temporal logic LTL reasons about each run

7/120

Computation Trees versus System Runs

State Transition Graph or
Kripke Model

Q Set of system runs:

la,b] = c—c— ...

la,b] = [b,c] = c— ...
@ ° la,b] — [b,c] — [a,b] — ...
[a,b] = [b,c] = [a,b] — ...

,b

Unwind State Graph to obtain Infinite Tree

Figure 3.1
Computation trees.

Edmund Clarke et al: “Model Checking”, 1999.

8/120

Temporal Logics: CTL*

CTL* is the Full Computation Tree Logic

e CTL* formulae express properties over states or paths

e CTL* has the following temporal operators, which are used to express
properties of paths: neXt, Future, Globally, Until, Weak Until, Strong
Release (M), Release

X f f holds in the next state also: O
Ff f holds somewhere (eventually) also: <&
Gf f holds everywhere also: O

fUyg g holds eventually, and f in all preceding states
fWyg (Gf)v(fUy)

fMg gU(fAg)

fRg (Gg)V(fMy)

Example

F G p versus G F p: almost always versus infinitely often

9/120

Temporal Logics: CTL*

f >

f
X f >

f
Ff - N
f

Gf -- N

fr r r f
ng —>e - >——>—>e - >

for r 9
fWg —>e - ->——>——>e - -> OR ——>e - >e—>e- - >0

fr r r f fr r 9
fMg >0 - >0—>0—>0- - ->

fRyg — e - ->e— > >0 - > OR — e -->— >0 - >e

9 9 9 9 g 9 9 9 fg

10/120

Temporal Logics: CTL*

CTL™ consists of:
* Atomic propositions (AP)
® Boolean connectives: — (not), V (or), A (and)
® Temporal operators (on paths)

® Path quantifiers (on states)

Path quantifiers are capable of expressing properties on a system’s branching
structure:

[for All paths versus there Exists a path]

Path quantifiers have the following intuitive meaning:
e A f: f holds for all paths from this state
e E f: f holds for at least one path from this state

11/120

Temporal Logics: CTL and LTL

E X black E G black A X black A G black

AR, AR, SR AN

E F black E red U black A F black A red U black

AR SR SR SR

12/120

Temporal Logics: CTL*

CTL" state formulae (S) and path formulae (P) are defined simultaneously
by induction:

true | false | AP | -S| SAS|SVS|EP|AP
S|-P|PAP|PVP|XP|FP|GP|
PUP|PRP|PWP|PMP

S
P

Summarising:
e State formulae (S) are:
® constants true and false and atomic propositions (basis)
® Boolean combinations of state formulae
® quantified path formulae
® Path formulae (P) are:

® state formulae (basis)
® Boolean combinations of path formulae
® temporal combinations of path formulae

13/120

Temporal Logics: CTL*

The semantics of CTL* state formulae and path formulae is defined relative
to a fixed Kripke Structure M = (S, Sy, R, L) over AP:

For state formulae:

s = true

s [false

sEDp iff pe L(s)
skE-f iff spEf

sEfAg iff sEf and skEg
sEfVyg iff sEf or skg

sEEf iff 3Irepath(s).mE=f
sEAf iff Vmepath(s) . mk=f

14/120

Temporal Logics: CTL*

The semantics of CTL* state formulae and path formulae is defined relative
to a fixed Kripke Structure M = (S, Sy, R, L) over AP:

For path formulae:

TE=f ifft 7(0)Ef (if f is a state formula)
TE-f iff 7w f

TEfAg iff wEf and 7wy

TEfVyg ifft 7Ef o wmEy

TEXf iff wllf

TE=F f iff Ji.rEf

=G f iff Vi.mlEf

tE=fUg iff Ji.m'kEg and Vi<i.mlEf
TEfWg iff 7EGf or mEfUgyg
TEfMg iff Ji.7kEg and Vi<i.nwllf
TEfRyg iff 7EGf or TEfMyg

14/120

Temporal Logics: CTL and LTL

Two simpler sublogics of CTL* are defined
CTL: Computation Tree Logic

¢,¢ == true| ¢ | AP| A | EX ¢ | EG ¢ | E(¢ U ¢)
(derived: false, v, EF, EW, EM, ER, AX, AG, AF, AU, AW, AM, AR)

CTL expressions: AG EF p, Ep U (E X q);
syntactically not in CTL: AF Gp, AX X p, E(p U (X ¢))

Question: A X X p=AX AX p
LTL: Linear Time Logic

¢, n= true [2@ | AP [9AY [X ¢ [(6 U Y)
(derived: false, v, F, G, W, M, R)

LTL expressions: F G p, (—=(G F p) VF q);
syntactically not in LTL. AFAGp, AGEFp

Question: AF Gp=AFAG p

15/120

Branching versus Linear Time Logic

We use temporal logic to specify a formula ¢.

* Model checking question: M = ¢ (“¢ holds in system M").
* Branching time logic (CTL)

g M'Zd) = V80€SO.80|=¢
® ¢ is evaluated on the computation tree of sg.

® Linear time logic (LTL)
°* ME¢® & m ¢ for every run m of M.
® ¢ is evaluated on all paths of the computation tree originating in sg.

16 /120

Branching versus Linear Time Logic

A As:
@) &)
D

Fig. 2.4. Two automata, indistinguishable for PLTL

B. Berard et al: “Systems and Software Verification”, 2001.

® Linear time logic: both systems have the same runs.
® Thus every formula has same truth value in both systems.
e Branching time logic: the systems have different computation trees.

® Take formula AX(EX QAEX Q).
® True for left system, false for right system.

The two variants of temporal logic have different expressive power.

17/120

Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?
* CTL formula: AG(EF ¢).

® “In every run, it is at any time still possible that later ¢ will hold".
® Property cannot be expressed by any LTL logic formula.
¢ LTL formula: ¢0¢ (i.e. FG 9¢).
® “In every run, there is a moment from which on ¢ holds forever.”.
® Naive translation AFG ¢ is not a CTL formula.
® G ¢ is a path formula, but F expects a state formula!
® Translation AFAG ¢ expresses a stronger property (see next page).
® Property cannot be expressed by any CTL formula.

CcTL*

None of the two variants is , e

. . P it et pesha? Sl Theorem 4-4 \\\
strictly more expressive p e \
than the other one; no N ot

variant can express every
system property.

Fig. 4-8. Expressiveness of CTL*, CTL+, CTL and LTL
Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

18/120

Branching versus Linear Time Logic

Proof that AFAG F' (CTL) is different from GOF (LTL).

F F F F F F
VRN U2 2 R A
F ~F F ~F F F F
PR N [I A
F ~F F F F ~F F F
VRN N N [B |
F ~F F F F F F ~F F
PN X A T
~F F F F F F F -~F
NpoN N A
AN
AFAG F <=> false <>[] F <=> true
In every run, there is a moment when In every run, there is a moment
it is guarantueed that from now on from which on F holds forever.

F holds forever.

19/120

Linear Time Logic

Why using linear time logic (LTL) for system specifications?

® LTL has many advantages:
® LTL formulas are easier to understand.

® Reasoning about computation paths, not computation trees.
® No explicit path quantifiers used.

® LTL can express most interesting system properties.
® Invariance, guarantee, response, ... (see later).

® LTL can express fairness constraints (see later).
® CTL cannot do this.
® But CTL can express resettability (which LTL cannot).

® LTL has also some disadvantages:

® LTL is strictly less expressive than other specification languages.
® CTL* or u-calculus.

® Asymptotic complexity of model checking is higher.

® LTL: exponential in size of formula; CTL: linear in size of formula.
® In practice the number of system states dominates the checking time.

20/120

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

G o always ¢ invariance

F ¢ eventually ¢ guarantee

GF ¢ ¢ holds infinitely often recurrence

FGo eventually ¢ holds permanently stability

G (¢p=Fv) always, if ¢ holds, then response
eventually ¢ holds

G (¢= (v Ux)) always, if ¢ holds, then precedence

1) holds until x holds

Typically, there are at most two levels of nesting of temporal operators.

21/120

® Mutual exclusion: G —=(pc; = C Apcy =C).
® Alternatively: —=F (pc; = C Apey =C).
® Never both components are simultaneously in the critical region.
® No starvation: Vi: G (pc; =W = $pe; = R).
® Always, if component ¢ waits for a response, it eventually receives it.
No deadlock: G —Vi: pc; = W.
® Never all components are simultaneously in a wait state W.
Precedence: Vi: G (pc; # C = (pc; # C U lock =1)).
® Always, if component ¢ is out of the critical region, it stays out until it
receives the shared lock variable (which it eventually does).
® Partial correctness: G (pc=L = C).
® Always if the program reaches line L, the condition C' holds.
® Termination: Vi: F (pc; =T).
® Every component eventually terminates.

22/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

* First idea (wrong): a = ...
® Every run d,... becomes legal.

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

* First idea (wrong): a = ...
® Every run d,... becomes legal.

¢ Next idea (correct): G (a=...)

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

* First idea (wrong): a = ...
® Every run d,... becomes legal.

¢ Next idea (correct): G (a=...)

* First attempt (wrong): G (a= (b U ¢))
® Run a,b,—b,c,... is illegal.

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

First idea (wrong): a = ...
® Every run d,... becomes legal.

Next idea (correct): G (a=...)

First attempt (wrong): G (a=- (b U ¢))
® Run a,b,—b,c,... is illegal.

Second attempt (better): G (a = (—c U b))
® Run a,—¢,—c,—c,. .. is illegal.

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

First idea (wrong): a = ...
® Every run d,... becomes legal.

Next idea (correct): G (a=...)

First attempt (wrong): G (a=- (b U ¢))
® Run a,b,—b,c,... is illegal.

Second attempt (better): G (a = (—c U b))
® Run a,—¢,—c,—c,. .. is illegal.

Third attempt (correct): G (a = (-c W b))

23/120

If event a occurs, then b must occur before ¢ can occur (a run
coya,(2b)* e, ... s illegal).

First idea (wrong): a = ...
® Every run d,... becomes legal.

Next idea (correct): G (a=...)

First attempt (wrong): G (a=- (b U ¢))
® Run a,b,—b,c,... is illegal.

Second attempt (better): G (a = (—c U b))
® Run a,—¢,—c,—c,. .. is illegal.

Third attempt (correct): G (a = (-c W b))

Think in terms of allowed/prohibited sequences.

23/120

LTL Expansion Laws

Basic LTL expansion laws (e.g. for unfolding)

Fo
Go
pUy
PW
pMp
¢RY

¢ vV X(F9)
¢ N X(Gog)
vV (¢ AX(pUY))
PV (oA X (oW)
v A (VX (¢ M)
YA (o V X (o RY))

Notice the recursion

24 /120

LTL Expansion Laws

Basic LTL expansion laws (e.g. for unfolding)

Fo = ¢V X(Fg¢)
Go = ¢ AX(G9)
oUy = ¢V (¢ AX(dU))
WY = V(oA X (W)
oMy = Y A(6V X(pMUY))
oRy = Y AoV X(¢RY))

Notice the recursion

Think of F, G, U, W, M, R as specialized recursive operators.
What if we could have more powerful (arbitrary) recursions?

24 /120

@ The modal p-calculus

25/120

Background: Fixed-points

()
Reductive Red(f) - - - -
flx)Ca Maf™(T)

&fo(f)

Fix(f) - - -

Ip(f)
Extensive L, F(L)
xzC f(x) Ext(f) - - - -

(L)

1

Tarski-Knaster theorem
A monotonic function f: L — L on a complete lattice L has a greatest fixed

point (gfp) and a least fixed point (Ifp).
gip(f)=| {zeL|2C f(z)} = | [{Ext(f)} € Fix(f)
lip(f)=[Hz €L | flx)Ca} = [|{Red(f)} € Fix(f)

26 /120

Background: Fixed-points

(T)
Reductive Red(f) - - - -
f(l') Ca Maf™(T)
&fo(f)
Fix(f) - - -
Ip(f)
Extensive U, /(L)
rC f(x) Ext(f) - - - -
(L)
1

Kleene fixed-point theorem
fee(m)
feed)

LEf(L)Cf(f(L) E... Clip(f)
Cofp(A)C...C f(F(THE f(TYC T 26/120

gfp
Ifp

[0 f™(T)
Ln>o f™ (L)

p-calculus: syntax and semantics

Idea of p-calculus: add fixed point operators to basic modal logic.

¢ p-calculus is very expressive (subsumes CTL, LTL, CTL*).

¢ p-calculus is very pure (“assembly language” for modal logic, cf:
A-calculus for functional programming).

e drawback: lack of intuition.

e fragments of the u-calculus are the basis for practical model checkers,
such as yCRL, mCRL2, CADP, LTSmin

p-calculus

27 /120

p-calculus: syntax and semantics

Some notation and terminology:

® The p-calculus introduces variables representing sets of states.

® An occurrence of X is bound by a surrounding fixed point symbol uX or
vX. Unbound occurrences of X are called free.

A formula is closed if it has no free variables, otherwise it is called open

A valuation V: Var— 25 interprets the free variables as sets of states.
V[X := Q)] is a valuation like V, but X is set to Q
The semantics of a u-calculus formula ¢ is a set of states

28/120

p-calculus: syntax and semantics

Syntax
g 0=t | [f1p|-p| oA |6V | [ald | (@) | X | uX. | vX.¢
Semantics

[tt]™M = S

[f FIM = 0

[P = {seS|pelL(s)}

[-p]M = {seS|pégL(s)}

[pvel™ = [g]MU]M

[pAgIM = [gIMN oM

(notice that there is no negation on formulae, only on the propositions)

29 /120

p-calculus: syntax and semantics

Syntax
o=ttt ff|p|l-p|lodAY|dVY|lalo]| (a)o | X | uX.¢|vX.0
Semantics

[tt]™M = S

[f /1M = 0

[p]™* = {seS|peL(s)}

[-p]" = {seS[p¢gL(s)}

[pvel™ = [g]Mufp]M

[pAg]™ = [gIMN M

[[a]p] M = {seS|vt(s>t) = (te[o]M)}

[{a)g] ™ {seS[3t(s S)N (e e}

29 /120

p-calculus: syntax and semantics

Syntax
o, n=tt | ff|lp|-p|l oAy | oV |ag]| (a)p | X | uX.o | vX.0
Semantics
[tt]™M = S
[f M = 0
[p]™* = {seS[pel(s)}
[-p]M = {seS|pgL(s)}
[ovelyt = [elMUlv]y
[onvlyt = [elMN[v]
[[a]o]3" = {seS|Vi(s 1) = (te oK)}
[{a)¢]3" = {seS[H(s >t (teely)}
[X]5" = V(X)
XOl = TS CS | [80Ys 5 €5} (Ifp)
Xol = L(S'CS|S Cély))

where V: Var — 29 assigns a set of states to the variables X,Y,...

29 /120

p-calculus: Example o3

puX.la] X represent states with no infinite sequences of a-transitions

X [a] X =0 false
p X [a]X = [a]0
={scS|Vt.sSt—=tED}
since no ¢ satisfies @, the right hand side (RHS) of — is false;
thus the left hand side (LHS) of — cannot be true.
This represents states with no outgoing a-transitions
p?X.[a)X = [a]T
where T'= ;' X.[a] X are states with no outgoing a-transitions

Thus ;2 means states with no aa-paths

30/120

p-calculus: Example @)

vX.pAlalX is informally analogous to LTL G p

WYX pA[a)X =5 true
V' XpAla)X =pAlalS
Intersection between all nodes satisfying p (LHS of A)
and all nodes (RHS of A)
vV’ XpAla)X =pAlaT
Where T = ! X.pA[a] X are all nodes that satisfy p
Thus ,u2 is the intersection between all nodes that satisfy p
and all nodes that have an outgoing edge labeled a

to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable through
a-transitions also satisfy p.

31/120

p-calculus: Example @)

uX.pV ({a)TrueA |a]X) is informally analogous to LTL F p

' X.pv ((a)TrueAla)X) =0
! X.pV ((a)True Ala)®) = pV ((a)True A[a]))
(a)True is the set of states with an outer a-transition
[a]0 is the set of states with no outgoing a-transition
Therefore, intersection A is empty
and the formula boils down to the set of states satisfying p
p*X.pV ((a)TrueAla)T) =pV ((a)True Ala)T)
where T' = ul which means nodes satisfying p

[a]T are nodes whose children reachable via a-transitions satisfy p

Thus either p is satisfied, or it is satisfied via a node reachable through an
a-transitions, or via an aa-transition, or via an a”-transition.

32/120

® Increasing complexity with alternation of fixed point types

® With one fix-point we talk about termination properties
® With two fix-points we can write fairness formulas

e See also Chapter 26 of the Handbook of Model Checking

33/120

Alternation Depth

Nesting Depth: maximum number of nested fixed points

ND(f) == 0 for f € {p,—p, X}
ND(@f) = ND(f) for @ € {[al, (a)}
ND(fag) := max(ND(f),ND(g)) forOe€{A,V}

ND#X.f) := 1+ ND(f) for Le {p,v}

Example: ND((,qu. vXo. X1V Xo) A (uX3. pXy. (X3 ApuXs. p\/Xg,)))

34/120

Alternation Depth

Nesting Depth: maximum number of nested fixed points

ND(f) == 0 for f € {p,—p, X}
ND(@f) = ND(f) for @ € {[al, (a)}
ND(fag) := max(ND(f),ND(g)) forOe€{A,V}
DU X.f) = 1+ND(f) for Le {p,v}
Example:

ND((MXl vXo. X1 \/XQ)/\(/J/X?,. Xy, (X3/\MX5. p\/X5))> =3

X3,X4 and X5 have no alternation between fixed point signs

34/120

Alternation Depth

Alternation Depth: number of alternating fixed points

AD(f) = 0 for f € {p,~p,X}
AD(@f) = AD(f) for @ € {[al, (a)}
AD(fog) = max(AD(f),AD(g)) for o€ {A,V)}

AD(uX.f) = 1+max{AD(g)|g is a v-subformula of f}
AD(wX.f) = 1+maz{AD(g)|gis a u-subformula of f}
Examples:

AD((,U,Xl. vXs. X1VX2)/\(/LX3.;LX4. (X3/\/1,X5.p\/X5)))

AD((,U,Xl. vXo. X3 \/XQ)/\(,U,X3.I/X4. (X3/\,U,X5.p\/X5))>

35/120

Alternation Depth

Alternation Depth: number of alternating fixed points

AD(f) = 0 for f € {p,~p,X}
AD(@f) = AD(f) for @ € {[al, (a)}
AD(fog) = max(AD(f),AD(g)) for o€ {A,V)}

AD(uX.f) = 1+max{AD(g)|g is a v-subformula of f}
AD(wX.f) = 1+maz{AD(g)|gis a u-subformula of f}
Examples:

AD((,U,Xl. vXs. X1VX2)/\(/LX3.;LX4. (X3/\/1,X5.p\/X5))> =2

AD((,U,Xl. vXo. X3 \/XQ) A (,U,X3.I/X4. (X3/\,U,X5.p\/X5))> =3
X5 does not depend on X3 and X4

35/120

Alternation Depth

Dependent Alternation Depth (dAD): number of alternating fixed points,
such that the innermost fixed point depends on the outermost.

The definition of dAD is identical to AD, except for

dAD(pX.f) = max(dAD(f),
1+maz{dAD(g) |
g is a v-subformula of f and X occurs in g}

dAD(vX.f) = max(dAD(f),
1+maz{dAD(g) |
g is a p-subformula of f and X occurs in g}

Examples:

dAD((,LLXl vXs. X, \/Xg) /\(,LLXg.‘U,X4. (Xg/\/,tX5.p\/X5))>

dAD((qu. vXs. X4 VXQ) A (;LX3.VX4. (Xg /\;LX5.p\/X5))>

36 /120

Alternation Depth

Dependent Alternation Depth (dAD): number of alternating fixed points,
such that the innermost fixed point depends on the outermost.

The definition of dAD is identical to AD, except for

dAD(pX.f) = max(dAD(f),
1+maz{dAD(g) |
g is a v-subformula of f and X occurs in g}

dAD(vX.f) = max(dAD(f),
1+maz{dAD(g) |
g is a p-subformula of f and X occurs in g}

Examples:

dAD((,LLXl vXo. X7 \/Xg) /\(,LLXg.‘U,X4. (Xg/\/,tX5.p\/X5))> =2

dAD((qu. vXs. X4 VXQ)/\(;LX3.VX4. (Xg/\;LX5.p\/X5))> =2

36 /120

Naive Algorithm

1 def eval(f):

2 if f=1it:return S

3 elif f=ff:return(

4 elif f=p:return {s€ S |pe L(s)}

5 elif f=-p:return {s€ S |pgL(s)}

6 elif f =gy A gy : return eval(gy) Neval(gz)

7 elif f =gV gy : return eval(g1) Ueval(g2)

8 elif f=[ag:return {sc S |VtcS:st=tceval(g)}
9 elif f=(a)g:return {sc S |3t cS:stA(tceval(g))}
10 elif ...:...

37/120

Naive Algorithm

1 def eval(f):

2 [1 S

3 elif f =X, : return A[i]
4 elif f =vX;.9(X;) :

5 Alil =S

6 while A[i] changes :
7 Ali] :=eval(g)

8 return Ali]

9 elif f= ,U,Xi.g<Xi) H

10 Ali]:==0

11 while A[i] changes :
12 Ali] :=eval(g)
13 return Ali]

38/120

Embedding CTL-formulae

Assume Act = {a}. There is a straightforward translation of CTL to the
p-calculus:

39/120

© Parity games

40 /120

Bird's Eye View

® Area: formal verification of systems
® Verify if a system implements the specification
® Synthesize a controller for an incomplete system that implements the
specification
® "Does X have property p” as a game (or compute X such that...)
® player 0 wants to prove this (or synthesize a controller)
® player 1 wants to refute this
® players make choices
* Interesting systems are often “reactive” (run forever)

® when a car arrives, eventually the traffic light turns green
® the reset button always works

e “Xis true until Y is true”

® “X may not happen before Y"

Hence: properties regarding infinite runs of a finite-state system

41/120

Why do we want to solve parity games?

e Capture the expressive power of nested least and greatest fixpoint
operators

* Equivalent (in polynomial time) to:
® modal u-calculus model-checking (CTL*, LTL...)
® solving Boolean Equation Systems

e Backend for LTL model checking and LTL synthesis
® important industrial applications (PSL, SVA)

42/120

Why do we want to solve parity games?

e Capture the expressive power of nested least and greatest fixpoint
operators
* Equivalent (in polynomial time) to:
® modal u-calculus model-checking (CTL*, LTL...)
® solving Boolean Equation Systems
e Backend for LTL model checking and LTL synthesis
® important industrial applications (PSL, SVA)

Open question: Is solving parity games in P?
® Itisin UP N co-UP and NP N co-NP
® |t is believed a polynomial solution exists

® Hot topic! Recently: quasi-polynomial solution sparked great
interest, several new algorithms that are all quasi-polynomial

42/120

(Incomplete list of) published algorithms
McNaughton/Zielonka O(e-n?), O(2") 1998
2

Small Progress Measures O(d-e-(n/d)¥?) 1998
Strategy Improvement O(n-e-2° 2000
Dominion Decomposition O(nV") 2006
Big Step O(e-n4/3) 2007
APT O(nd) 2016
Priority Promotion Q(2v™) 2016
Quasi-Polynomial (multiple) O(nbtloed) 2016 — 2018

Tangle Learning Q(Z\/ﬁ) 2018
Recursive Tangle Learning tbd 2018

43/120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

b c

d e

How do we determine who wins a play?

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

e Each vertex has a priority {0,1,2,...,d}
e Highest priority seen infinitely often determines winner
e Player Even wins if this number is even

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

How do we determine who wins a vertex?

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

d e

A player wins a vertex if it has a strategy
to win all plays from that vertex

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

Which vertices are won by which player?

44 /120

® A parity game is played on a directed graph
® Two players: Even & and Odd O
® The players move a token along the edges of the graph

® Each vertex is owned by one player who chooses a successor

Player Odd wins all vertices with strategy {d — e}

44 /120

Known facts of parity games

® Some vertices are won by Even, some vertices are won by Odd

® The winner has a memoryless strategy to win

—— Memoryless strategy

“If I always play from v to w, then | win all plays from v”

45/120

Known facts of parity games

® Some vertices are won by Even, some vertices are won by Odd

® The winner has a memoryless strategy to win

—— Memoryless strategy

“If I always play from v to w, then | win all plays from v”

Solving a parity game

® Determine the winner of each vertex

e Compute the strategy for each player

45/120

Games and automata for verification and synthesis

® Verification with automata
@ Construct an automaton of the specification (typically negation)
@ Cross-product with the Kripke Structure or LTS
© Solve resulting automaton (accept/reject)
(typically produces a counterexample)
® Verification with games
@ Construct a two-player game of the specification
® one player tries to prove the specification (‘existential’)
® one player tries to violate the specification (‘universal)
@ Cross-product with the Kripke Structure or LTS
©® Solve resulting game
(winner + strategy of winner.)

e Synthesis with games

® strategy is an implementation of a controller (or a counterexample)
® system + controller = guaranteed to implement the specification
® (Actually used in practice to synthesize controllers for LTL properties!)

46 /120

Model checking via parity games

‘s E? [al(p1 V (p2 A p3)) ‘

forallt:s 3¢

~_

tE? p1 V (p2 A ps3)

tE? D1
tE? D2 tE? D3

* Adam picks t from s 2 ¢ such that ¢t # (p; V (pa Ap3)
® Eve replies by showing that either ¢ = p; or that t F po and £ F ps.

47 /120

Model checking via parity games

sET vY uZlal(ZV (pAY))

|

sE" uZ[al(ZV (pAay))
‘ sE? [al(az Vv (p A ay}]l

forallt:s ¢

~—7

tE? Z[al(ZV (p A ay)

tE?p LE” vY.uZa)(ZV (pAY))

48 /120

Model checking via parity games

Create node (s,1)) for every state s of M and every formula % in the closure
of ¢. Eve's goal is to show that a formula holds.
(s,p) Eve wins if p holds in s, that is sFp
Thus assign (s,p) to Adam and we put no transitions from it

(s,mp) Same as (s,p) but reversing Adam and Eve's roles
(s,(a)) Connect to (t,/) for all t such that s 2t and
(s,[a]B) assign (s,[a]B) to Adam and (s,{a)f) to Eve

(5,1 X.5(X)) Connect to (s, B(1X.6(X))) and to (s, B(wX.5(X)))
(s,vX.5(X)) This corresponds to the intuition that a fixed-point

is equivalent to its unfolding.

[uX]! = [alunX .o/ X[
[vX.a{! = [alvX.a/ X3

® Parity winning condition based on dependent alternation depth.
® Priority 2- |[dAD(¢)/2] if ¢ is of the form vX.4)
® Priority 2- |dAD(¢)/2] +1 if ¢ is of the form pX.¢

® Priority 0 otherwise 49/120

® Modern implementation of parity game algorithms
® Zielonka's Algorithm (with optimizations; parallel)

Small progress measures (with optimizations)

Priority Promotion (different versions)

Strategy Improvement (parallel)

QPT progress measures

Succinct progress measures

Tangle learning

® The usual preprocessing algorithms

® |nflation and compression

® Remove self-loops

® Detect winner-controlled winning cycles
® SCC decomposition

® https://www.github.com/trolando/oink
® Simple to use/extend library in C++

50 /120

https://www.github.com/trolando/oink

Easy to use

#include "oink.hpp"

pg: :Game parity_game;
parity_game.parse_pgsolver(cin);
pg::0ink solver(parity_game);
solver.setSolver("zlk");

solver.run();

parity_game.write_sol(cout);

Easy to extend

¢ Implement Solver interface

® Add one line to solvers.cpp

51/120

Notation for parity games

® A parity game O is a tuple (Vo, Vg, E, pr)
Vertices V = Vi, U Vg controlled by players Even and Odd

® Transitions E: V x V such that E is left-total.
* We write u — v for (u,v) € E
E(u) denotes the successors of u: {v|u— v}
E(U) denotes all successors of vertices in {v|u—v|ueU}
Each vertex has at least one successor.
Priority function pr: V' —{0,1,2,...,d}

A path is a finite sequence vguive ... consistent with F

A play is an infinite sequence vgvivsy... consistent with E

A play 7 is won by player Even iff max(pr(inf)) is even

52/120

Notation for strategies

e A strategy for player « is a partial function o: V,; — V that assigns one
successor to each vertex of player a.

® A path or play is consistent with o if each v; for which o(v;) is defined,
Vi+1 = O'(Ui).

® Plays(v,0) is the set of plays consistent with o starting in v.

® o is a winning strategy from v for player « if all plays in Plays(v,o) are
winning for a

53/120

Notation for closed sets and dominions

® Aset W is closed w.r.t. a strategy o if for all v € W:

® if v is owned by «, then o(v) € W (strategy in W)
® if v is owned by @, then E(v) C W (all successors in W)

e A set D is a dominion of player « if a has a strategy o that is winning
for all ve D and D is closed w.r.t. o.

® The winning regions of either player are dominions.

54 /120

O Attractor based algorithms

55 /120

Attractor computation

Compute all vertices from which player o € {<,0} can ensure arrival in a
given target set

Start with the target set A, then iteratively add vertices to A:
e All vertices of o with an edge to A

e All vertices of @ with only edges to A

56 /120

Example of attractor computation

Computing the O-attractor to a

Initial set: {a}
Can attract: d but not b

57/120

Example of attractor computation

Computing the O-attractor to a

Current set: {a,d}
Can attract: b but not e

57/120

Example of attractor computation

Computing the O-attractor to a

Current set: {a,b,d}
Can attract: neither c nor e

57/120

Parity Game Algorithms

Roughly two types

® |ocal value iteration
Based on locally improving the value of individual vertices by looking at

their successors.

e Attractor-based
Based on properties over sets of vertices computed with attractors.

58 /120

Parity Game Algorithms

Attractor-based algorithms

® Partition the game into regions using attractors.
e Start with the highest priority (top-down).
® Each region is tentatively won by one player.

® Refine winning regions until dominion found.

Example: Zielonka's Recursive Algorithm (1998)

Attract higher regions downward after computing lower regions.
If your opponent attracts from your region, recompute your part.

Example: Priority Promotion (2016)

Merge regions upwards when the region is closed (in the subgame).
Then recompute lower regions.

59 /120

Zielonka's recursive algorithm

1 def zielonka(0):

2 ifo=0:

3 return 0,0 // empty game
4 o pr(D) mod 2 // winner of highest priority
5 Z pr_l(pr(a)) // vertices of highest priority
6 A+ Attl’g(Z) // attracted to highest priority
7 We, Wh Zielonka(a\A) // recursive solution
8 B + Attr%(Wa) // check if opponent attracts
9 if B=Wgx:

10 Wy < WoUA // A is won by «
11 else:

12 We,Wn zielonka(o\ B) // recompute remainder
13 Wg + WgUB // B is won by @

14 return We, Wp

60 /120

Zielonka's recursive algorithm

Computing strategy

e Strategy is computed by attractor

® Every attracted a-vertex u to some v in the set: strategy is u — v
® Special case: a-vertices of the original target set
® Pick any successor in winning region as strategy

¢ Implementation: use only a single strategy array, reset the strategy of
highest priority vertices before attracting

61/120

Zielonka's recursive algorithm

1 def zielonka(0):

2 ifo=0:

3 return 0,0 // empty game
4 o < pr(a) mod 2 // winner of highest priority
5 Z pr_l(pl’(a)) // vertices of highest priority
6 Ao Attrg(Z) // attracted to highest priority
7 Weo, Wa, 00,00 < Zielonka(a\A) // recursive solution
8 B,op + Attl%(Wa) // check if opponent attracts
9 op < opUog // add strategy of Wgx
10 if B=Wgz:

11 Wy +— WaUA // A is won by «
12 Oa ¢ 0aUoaU((z € Z) — pick(E(z) NWy))

13 else:

14 We, Wh, 00,00 < zielonka (0 \ B) // recompute remainder
15 Wg + WgUB // B is won by @
16 og < ogUop

17 return W, Wh, o0, 00

62/120

Zielonka's Algorithm

e We start by attracting to 8 for player Even.

63/120

Zielonka's Algorithm

* After region 8 (player Even).
¢ Continue (recursively) with region 7.

63/120

Zielonka's Algorithm

* After regions 8 (player Even) and 7 (player Odd).
¢ Continue (recursively) with region 6.

63/120

Zielonka's Algorithm

® After regions 8, 7 and 6.

¢ Continue (recursively) with region 5.

63/120

Zielonka's Algorithm

e After regions 8, 7, 6 and 5.

* Continue (recursively) with region 3.

63/120

Zielonka's Algorithm

e After regions 8, 7, 6, 5 and 3.

® Now remains just region 2.

63/120

Zielonka's Algorithm

e Game is partitioned fully, now go up in the recursion.
e Up in region 2, does the lower opponent’s winning region attract?

® Region 2: no (because the subgame is empty).

63/120

Zielonka's Algorithm

® Up in region 3: does the lower Even region attract from region 37

63/120

Zielonka's Algorithm

® Up in region 5: does the lower Even region attract from region 57

63/120

Zielonka's Algorithm

® Up in region 6: does the lower Odd region attract from 67

63/120

Zielonka's Algorithm

® Up in region 6: does the lower Odd region attract from 67

® Yes: the lower Odd region attracts vertex g.

63/120

Zielonka's Algorithm

® Vertex g is attracted to the Odd region.
® So now recompute the (remainder of the) lower regions of Even.
® Actually, nothing changes in the recursion.

® Up in region 7: does the lower Even region attract from 77

63/120

Zielonka's Algorithm

Vertex g is attracted to the Odd region.

® So now recompute the (remainder of the) lower regions of Even.
® Actually, nothing changes in the recursion.

® Up in region 7: does the lower Even region attract from 77

Yes, the lower Even region attracts vertex c.

63/120

Zielonka's Algorithm

® Vertex c is attracted to the Even region.

® Recompute the remainder of the lower regions of Odd.

63/120

Zielonka's Algorithm

® Partition the remainder into regions 6, 5 and 3.
e Up in region 3: no attraction from Even.
e Up in region 5: no attraction from Even.

e Up in region 6: the lower Odd regions attract g again!

63/120

Zielonka's Algorithm

® Region 6: now the Odd region attracts vertex g again.

63/120

Zielonka's Algorithm

® Vertex g is attracted to the Odd region.
® Recursive game of 6 is empty.

e Up in region 8, does Odd now attract 87

63/120

Zielonka's Algorithm

Vertex g is attracted to the Odd region.

Recursive game of 6 is empty.

Up in region 8, does Odd now attract 87

But vertex f is attracted to the Odd region.

Attracting at priority 8 attracts all vertices to player Odd.

63/120

Zielonka's Algorithm

® Final result, entire game won by player Odd.

63/120

Priority promotion

The main idea of priority promotion...

Region invariant

® In any region, the opponent either plays to a higher region of the player,
or via the highest priority vertices.

* (Invariant holds for the regions of the “a-maximal partition”)

Closed region

® A region of player « that is globally closed is a dominion of player a.

® A region of player « is locally closed iff the opponent can only escape to
a higher region of player «.

® So: the opponent must escape to the lowest higher region.
= Promote the region, i.e., merge the regions.

64 /120

Priority promotion

1 def prioprom(0):

2 r~Vme 1 // all vertices to L
3 p + pr(9) // highest priority
4 while True :

5 a <+ pmod 2 // current player
6 Z +{v|r(v) <p} // current subgame
7 A At ({ve Z | r(v) =pVpr(v) =p}) // attract
8 C«+ {’U €A, | E(v)NA= @} // open a-vertices
9 X E(Aa)\A // escapes
10 ifCAO0V(XNZ)#0:

11 r<— r[A — p] // set region
12 P pr(Z\A) // continue with next highest
13 elif X #£0:

14 P min{r(v) | v e X} // set p to lowest escape
15 r<— I’[A i—)p] [{1} | I’(’U) < p} — J_] // merge and reset
16 else:

17 return o, A // dominion!

65/120

Priority promotion

Notes

® The lowest region is always locally closed.

® Region resets only if at least 1 vertex promotes.

This is sufficient to prove termination.

Each call to prioprom computes a dominion of a player «.

Attract for player a to the computed dominion, repeat until game solved.
Computing strategy

e Strategy is computed by attractor

® Every attracted a-vertex u to some v in the set: strategy is u — v
® Special case: a-vertices of the original target set

® Pick any successor in result as strategy

® |Implementation: use only a single strategy array, reset the strategy of

highest priority vertices before attracting
66 /120

Priority promotion

e We start by attracting to 8 for player Even, 7 for player Odd, etc.

67 /120

Priority promotion

* After regions 8 (player Even) and 7 (player Odd).

67 /120

Priority promotion

Priority promotion

® After region 3, region 3 is now closed!

* Note: region 2 would also be closed.

67 /120

Priority promotion

After region 3, region 3 is now closed!

* Note: region 2 would also be closed.

The loser must escape to a higher region of the winner.
® So promote 3 to 5.

Meaning the set {h,i} is attracted as a whole to region 5.

67 /120

Priority promotion

® Region 3 is promoted to region 5.
* Now region 5 is closed. (region 2 would also be closed)

® So promote 5 to 7.

67 /120

Priority promotion

After promotion, vertex g is attracted to region 7.

Continue the partition with region 2...

Region 2 is locally closed.

So promote 2 to (the lowest escape) 8.

67 /120

Priority promotion

Region 2 is promoted to region 8.

Meaning the set {a,b} is attracted to region 8.
® Region 8 now also attracts vertex c!!

® Recompute the subgame...

Now { h,i} can be attracted to region 5 again.

67 /120

Priority promotion

Region 5 is closed in the entire game.
Meaning that it is a dominion won by player Odd.

67 /120

Priority promotion

Variations

® PP+: only reset regions of @.

® RP: only reset a region when the strategy of player « of the remaining
vertices of the stored region leaves the region

e DP: “delayed promotion” strategy

68 /120

Tangle Learning

Tangle

A tangle is:
® a (strongly connected) subgraph of a parity game,
® such that one player a has a strategy o,
® such that the tangle restricted by o is still strongly connected,

e and player o wins all plays (cycles) in the tangle.

Definition

A p-tangle is a nonempty set of vertices U C V' with p = pr(U), for which
player o = p has a strategy o: U, — U, such that the graph (U, E’), with
E':=EN(0cU(UgxU)), is strongly connected and player o wins all cycles
in (U,E).

69 /120

Tangle Learning

Tangle
A tangle is a strongly connected subgraph for which one player has a strategy
to win all cycles in the subgraph.

Properties

® Player « has a single strategy for every a-vertex.
® Player @ must escape (or lose).

® Player @ can reach all vertices of the tangle.

Tangles have subtangles when player @ can avoid vertices.

e Every dominion is naturally composed of subtangles.

70/120

Tangle Learning

Tangle
A tangle is a strongly connected subgraph for which one player has a strategy
to win all cycles in the subgraph.

A 5-dominion with a 5-tangle and a 3-tangle

71/120

Tangle learning

Tangle attractor

Because player @ must escape the tangle, we can use tangles to attract the
vertices of a tangles together, if player @ can only escape to the attracting

set.
* Add all v € V,,\ A for which E(v)NA # (.
* Add all v € Vz\ A for which E(v) C A.
° Add all {veVr(t)\A|teT,} for which Ep(t) C A.

Tangle learning

® Partition game into a-maximal regions with tangle attractor.
¢ Add bottom SCCs of closed regions to the set of tangles.

® Repeat until a dominion is found, i.e., Ep(t) = 0.

72/120

Tangle learning (1/2)

® search returns new tangles of O, given known tangles T.

® Note: store for each tangle its player a strategy.

1 def search(o, 7):

2 ifo=0:return ()

3 p+pr(@), a+ pr(0) mod 2

4 Z,0 + TAttroT (pr='(p))

5 O+ {veZ,EwNZ=0}U{veZz|E(v)ZL Z}
6 ifO=0:

7 return search(©\ Z,T) Ubottom-sccs(Z,0)
8 else:

9 return search(©\ Z,7T")

73/120

Tangle learning (1/2)

® search returns new tangles of O, given known tangles T.

® Note: store for each tangle its player a strategy.

1 def search(o, 7):

2 ifo=0:return ()

3 p+pr(@), a+ pr(0) mod 2

4 Z,0 + TAttroT (pr='(p))

5 O+ {veZ,EwNZ=0}U{veZz|E(v)ZL Z}
6 ifO=0:

7 return search(©\ Z,T) Ubottom-sccs(Z,0)
8 else:

9 return search(©\ Z,7) U search(©ON(Z\ TAttr%ﬁZ’T(O)),T)

The “recursive” variant of tangle learning

73/120

Tangle learning (2/2)

1 def tanglelearning(0):

2 Wo+ 0,000, Wa0,00+0, T« 0
3 whileo#0:

4 Y + search(®©,T)

5 T+ TU{teY |Ep(t)£0}

6 D+ {teY |Er(t)=0}

7 if D0 :

8 DZ,0 + TAttrY" (UDo)

9 W<><—W<>UD<">', oo — opUo
10 Do« TAttr2™ (U Dq)

11 WD(—WDUDS_, og < ogUo
12 0«0\ (DfuDy)

13 T+ TNo

14 return W, Wo, 00,00

74 /120

Tangle learning

Computing strategy

e Similar to priority promotion: compute strategy with the attractor, select
any successor in the region for the highest priority vertices of «

e Store the o of every tangle and use the stored o as the strategy for o
when attracting a tangle

75/120

Tangle learning

After first partition into a-maximal regions.

Regions 2 and 3 are closed (in their subgame).
Tangle {a,b} attracted to 8.
Tangle {h,i} attracted to 5.

76 /120

Tangle learning

® Tangles: {a,b} (2) and {h,i} (3).
e After tangle attractor to 8...

76 /120

Tangle learning

® Tangles: {a,b} (2) and {h,i} (3).
e After tangle attractor to 6...

76 /120

Tangle learning

® Tangles: {a,b} (2) and {h,i} (3).
e After tangle attractor to 5...

Tangle learning

® Only closed region: 5.

® One tangle, which is also a dominion.

76 /120

b a

00
G~

Vertex b is a distraction for player Even.

Learn opponent tangles to attract the distractions.

Tangle {c} is attracted to region 5.

® Now vertex a is not distracted by vertex b.

77/120

e First round: tangle {c} (attracts distraction b).
® Second round: tangle {a,e} (attracts distraction h).

® Third round: tangle {g} (dominion).

78/120

@ Fixed point based algorithms

79/120

Value iteration

Core idea of value iteration (12
® Measure p: V — M assign a value to every vertex from some domain IM,
containing a special symbol T.
® The measure represents how good is the “best” continuation?

® “best” for one of the players, e.g., Even
® symbol T means “winning for the player" (Even)
® Even wants high values, Odd wants low values

® A monotone* function Prog(m,p) that computes the value of playing
from a vertex with priority p to a vertex with measure m
® pis the least parity game progress measure, if smallest p such that:

max-{Prog(p(w),pr(v)) | w € E(v)} ve Vs

eV plv) = {minE{Prog(p(w),pr(U)) |we E(v)} ve Vo

*with respect to a special ordering (see later)
80/120

Value iteration

Core idea of value iteration (2/2)

e If pis the least parity game progress measure, then:

® [tis

Wo ={v|p(v) =T} Wo={v|p(v)# T}

if v € Wg, then p(v) = Prog(p(o(w)),pr(v))

meaning: the winning strategy for Odd is the best continuation
no* winning strategy for Even

a least fixed point: starting with 1, update p until fixed point

e This is called lifting the measures

® [dea: this is like playing an “optimal” game backwards

Player Even finds better paths
Player Odd then selects the least bad option

*except with some extra effort: Gazda and Willemse, 2014

81/120

Small progress measures

Even measures

® Measures are tuples (eg,e4,€2,6e0) (with highest even priority 6)
* Each e, = [0..np] with n;, the number of vertices with priority p
* Example: M = ({0} x{0,1,2} x {0} x {0,1}) U{T}
® A total order C which is lexicographic: mj T mo iff there is a highest
unequal priority z and m1(z) <ma(z) (and T =T)
(1,0,0,0) C (1,0,0,1)
(4,2,10,5) C (4,3,0,0)

Odd measures

® Same, but with the odd priorities

82/120

Small progress measures

Even measures

® Measures are tuples (eg,€4,€2,e9) (with highest even priority 6)

® A p-truncation keeps only elements > p:

(1,2,3,2))y = (1,2,3)
<1:2a372>|4 = <172>
<1,2,3,2>’7 = €

Notation: my T, ma = mq|p, Jmalp

An edge v — u is progressive if p(v) Jpe(r) p(u) if v is odd and
p(v) Jpr(v) p(u) if v is even
® pis a progress measure if:

® for every vertex of Even, some outgoing edge is progressive in p
® for every vertex of Odd, every outgoing edge is progressive in p

(remember: we are interested in the least progress measure)

83/120

Small progress measures

The Prog function

Playing from a vertex with priority p to a vertex with measure m yields:

{min{m’ eM|m'3J,m} piseven
Prog(m,p):=q .,) .
min{m' e M | m' J, m} p is odd
Example (with highest value 3 for all elements):
Prog((3,2,3,2),0) = (3,2,3,3)
Prog((3,2,3,2),1) = (3,2,3,0)
Prog((3,2,3,2),2) = (3,3,0,0)
Prog((3,2,3,2),3) = (3,2,0,0)
Prog((3,2,3,2),4) = (3,3,0,0)
Prog((3,2,3,2),5) = (3,0,0,0)
Prog((3,2,3,2),6) = T
Prog((3,2,3,2),7) = (0,0,0,0)

84 /120

Small progress measures

Operational interpretation [Gazda, Willemse, 2015]

® p-dominated stretches: how often priority p is encountered before a
higher priority
e Example: play 00102120232142656201 corresponds to (2,1,3,2)
® priority 0 is seen 2x before a higher priority
® priority 2 is seen 3x before a higher priority
® priority 4 is seen 1x before a higher priority
® priority 6 is seen 2x before a higher priority

* If priority p is seen more than n, times, there must be a cycle!

Operational interpretation [Van Dijk, 2018]

e Notice the “overflow mechanism”!
If priority p overflows, our optimal path contains a cycle of priority p.
Keep increasing the measure until the opponent “escapes”

(Compare to priority promotion / tangles!)
85,120

Small progress measures

a (0,0,0,0,0) to (0,0,0,0,1) 0
b (0,0,0,0,—) to <0001—> 2
c <Oa_7_a_1_> to <07 > 7
d (0,0,0,0,—) to (0, 0 0, O =) 1
e 0,0,—,—,—) to (0,0,—,—,—) 5
f 0,—,—,—,—) to (1,—,——,—) 8
g 0,0,—,—,—) to 0,1,—,—,—) 6
h (0,0,0,0,-) to (0,0,0,1,—) 2
i (0,0,0,—,—) to (0,0,0,—,—) 3

86 /120

Small progress measures

a (0,0,0,0,1) to (0,0,0,1,1) 02
b (0,0,0,1,=) to (0,0,0,1 —> 2
c <Oa_7_a_1_> to <07 > 7
d (0,0,0,0,—) to (0, 0 0, O =) 1
e 0,0,—,—,—) to (0,0,—,—,—) 5
f (1,-,—,—,—) to (1,—,——,—) 8
g 0,1,—,—,—) to 0,1,—,—,—) 6
h (0,0,0,1,-) to (0,0,0,1,—) 2
i (0,0,0,—,—) to (0,0,0,—,—) 3

86 /120

Small progress measures

a (0,0,0,1,1) to (0,0,0,1,1) 02
b (0,0,0,1,—) to (0,0,0,2 —) 202
c <Oa_7_a_1_> to <07 > 7

d (0,0,0,0,—) to (0, 0 0, O =) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8
g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i (0,0,0,—,—) to (0,0,0,—,—) 3

86 /120

Small progress measures

a (0,0,0,1,1) to (0,0,0,2,1) 0202
b (0,0,0,2,-) to (0,0,0,2,) 202
c <Oa_7_a_1_> to <07 > 7

d (0,0,0,0,—) to (0, 0 0, O) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a (0,0,0,2,1) to (0,0,0,2,1) 0202
b (0,0,0,2,-) to (0,1,0,0,) 20202
c <Oa_7_a_1_> to <07 > 7

d (0,0,0,0,—) to (0, 0 0, O) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a (0,0,0,2,1) to (0,1,0,0,1) 020202
b (0,1,0,0,—) to (0,1,0,0,—) 20202
c <Oa_7_a_1_> to <07_a_7_a_> 7

d (0,0,0,0,—) to (0,0,0,0,—) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a (0,1,0,0,1) to (0,1,0,0,1) 020202
b (0,1,0,0,—) to (0,1,0,1,—) 2020202
c <Oa_7_a_1_> to <07_a_7_a_> 7

d (0,0,0,0,—) to (0,0,0,0,—) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a (0,1,0,0,1) to (0,1,0,1,1) 02020202
b (0,1,0,1,—) to (0,1,0,1,—) 2020202
c <Oa_7_a_1_> to <07_a_7_a_> 7

d (0,0,0,0,—) to (0,0,0,0,—) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a (0,1,0,1,1) to (0,1,0,1,1) 02020202
b (0,1,0,1,—) to (0,1,0,2,—) 202020202
c <Oa_7_a_1_> to <07_a_7_a_> 7

d (0,0,0,0,—) to (0,0,0,0,—) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a 0,1,0,1,1) to (0,1,0,2,1) 0202020202
b (0,1,0,2,—) to (0,1,0,2,—) 202020202
c <Oa_7_a_1_> to <07_a_7_a_> 7

d (0,0,0,0,—) to (0,0,0,0,—) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a 0,1,0,2,1) to (0,1,0,2,1) 0202020202
b (0,1,0,2,-) to (1,0,0,0,) 20202020202
c <Oa_7_a_1_> to <07 > 7

d (0,0,0,0,—) to (0, 0 0, O) 1

e 0,0,—,—,—) to (0,0,—,—,—) 5

f (1,-,—,—,—) to (1,—,——,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,0,0,1,-) to (0,0,0,1,—) 2

i <O>O7O’_7_> to <O?050a_7_> 3

86 /120

Small progress measures

a 0,1,0,2,1) to (1,0,0,0,1) 020202020202
b (1,0,0,0,—) to (1,0,0,0,) 20202020202
¢ (0,——,——) to (l,— ~) 720202020202
d (0,0,0,0,0) to (0,0,0,0,- > 1

e (0,0,—,—,—) to (0,0,—,—,—) 5

f (1,—,—,—,—) to (1,—,—7—,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,001,-) to (0,00,1,-) 2

i (0,00,—,—) to (0,00——) 3

86 /120

Small progress measures

a (1,0,0,0,1) to (1,0,0,0,1) 020202020202
b (1,0,0,0,—) to (1,0, 0,1,—) 28

c 1,—,——,—) to {(1,— -y 728

d (0,0,0,0,0) to {0,0,0,0,0) 1

e (0,0,—,—,—) to (0,0,—,—,—) 5

f (1,—,—,—,—) to (1,—,—7—,—) 8

g 0,1,—,—,—) to 0,1,—,—,—) 6

h (0,001,-) to (0,00,1,-) 2

i (0,00,—,—) to (0,00——) 3

86 /120

Small progress measures

- J0@ =-~0 QN T O

(1,0,0,0,1)
<170a07 la _>

<070a0a 1a _>
<O>O7O’_7_>

to
to
to
to
to
to
to
to
to

(1,0,0,1,1)
(1,0,0,1,—)
<17_a_7 a_>
(0,0,0,0,—)
<070)_7 »_>
<1,_,_7_,_>
<0717_’_7_>
(0,0,0,1,—)
<O»050a_>_>

86 /120

Small progress measures

= S0 "0 QO T o

(1 b

(1,0,0,1,—) f

1,—,———) b ® All vertices are won by Odd
(0,0,0,0,—) e No vertices are lifted to T
E(l)’o’_7 ;=) d/i e Strategy for Odd

(07 1 L 7_> E ® from b to f

<0’070 71 ’_> d/i ® fromdtoe
(0,0,0,—,—) h/e

86 /120

Small progress measures

1 def spm(0):

2 p+Vi—=(0,...,0)

3 while p(v) C Lift(p,v) for some v : p < p[v — Lift(p,v)]

4 Wo<{v|p)=T}

5 Wo<{v|pv)#T}

6 og« (veWannlg)— pick({u € E(v) | p(v) = Prog(p(w),pr(v))})
7 return W, Wg

; N max{Prog(p(w),pr(v)) |w € E(v)} ve Ve
Hift(p.0) {min,:{Prog(p(w), or(w)) |we B(w)} veVq

min{m’ e M|m’ 3, m} pis even
min{m’ e M|m’ 3, m} pisodd

Prog(m,p) := {

87 /120

Small progress measures

1 def spm(0):

2 p+—Vi=(0,...,0)

3 Z+V // use a queue or a stack
4 while Z #£0 :

5 v 4 pick(Z)

6 Z + Z\{v}

7 if p(v) C Lift(p,v) :

8 p + plv — Lift(p,v)]

9 Z <+ ZUE Y(v)

10 Wo{v|pv)=T}

1 WoeA{v|pv)#T}

12 op< (veWnNnlo) = pick({u € E(v) [p(v) = Prog(p(w),pr(v))})
13 return W, Wg

88 /120

Small progress measures

Implementation notes

® Use a queue or stack to store “to do” vertices

e After lifting a vertex, add its predecessors to the queue (only oncel!)
® When lifting an even priority vertex to T, decrease n, by 1

¢ Also compute odd measures (strategy for Even)

¢ Advanced technique: occasionally, compute the attractor to vertices in
Z, any vertex not attracted and not T is won by the other player!

® Preprocessing: use compression and SCC-decomposition and
self-loop solving.

89/120

Measures as tree navigation paths

Core idea

* A tuple (4,2,3) can be a navigation path of a tree

¢ Follow branch 4, then branch 2, then branch 3
® Then:
® the set of measures form a tree with n leaves and [d/2] height
® the measures essentially encode the current order between vertices
® the exact numbers (4, 2, 3) are not important!
® what matters is the order

e Example: (1,2), (0,2), (1,1), (1,2), (2,1), (0,1), (1,0)
® Draw tree corresponding to this set of navigation paths
® Notice how the labels of the tree are irrelevant, only the order matters

90 /120

Measures as tree navigation paths

Universal trees (see explanation by Fijalkow 2018)
A (n,h)-universal tree is a tree that can embed all trees of height h and with

n leaves.

The naive (5,2)-universal tree of size 25 A (5,2)-universal tree of size 11

91/120

Measures as tree navigation paths

Universal trees

A (n,h)-universal tree is a tree that can embed all trees with height h and n
leaves.

The tree on the left is embedded into the universal tree

92/120

Measures as tree navigation paths

Universal trees

Tiniddle Tright

Simple algorithm:

e Split tree in three parts: Left, Middle, Right
® Such that |Left| <n/2 and |Right| <n/2
® Repeat left/right to obtain all branches, and repeat recursively...

93/120

Measures as tree navigation paths

Universal trees

Tniddle Tright

Tree encoding:

* Instead of (4,2,3), encode as a tuple of bitstrings
® For example (100,010,011)

94 /120

Measures as tree navigation paths

Universal trees

Tree encoding:

* Instead of (4,2,3), encode as a tuple of bitstrings
* For example (100,10,11)

95 /120

Measures as tree navigation paths

Universal trees

Succinct tree encoding:
® Encode as a tuple of bitstrings (empty allowed)
® Orderon bits: 0CeC 1

e Order on bitstrings: Os CsC 1s
Example: 000,001,110

® Order on tuples: lexicographic, and shorter prefix is lower
Example: (01,¢) C (01,¢,00), but (01,,000) C (1000,¢)

96 /120

Measures as tree navigation paths

Universal trees
Succinct tree encoding:

e Prefix Left with 0, Right with 1, Middle with €.
* For example (100,10,11)

® Maximum bitstring length: 2 bits

97 /120

Measures as tree navigation paths

Universal trees

Lifting in the succinct tree encoding
(notice: slightly different notation here)

! AN
= /NS
T 1

e A
(NEANF

Example of lifting vs: it is pushed to the left in order to satisfy v5 <3 vy and v5 <2 vy

--""')-H-H-'

98 /120

Succinct progress measures

Implementation notes

® |mplementation is complicated.

e Core idea is the same: keep lifting vertices to the smallest higher
measure, either the maximum (player Even) or the minimum (player
Odd)

99 /120

“Ordered” progress measures

Core idea

® Domain: _ <7<5<3<1<0<2<4<6
Tuples (is2,716,18,%4,%2,71) encode so-called i-witnesses

® An ig-witness encodes the existence of a path where Even (or Odd)
dominates k times

Example: 1213142321563212

® means “no such witness”

® 7 means a witness, but starting with odd 7

® 6 means a witness, startng with even 6

100/ 120

“Ordered” progress measures

Update rules

e (7,_,_,_)and weseeab: (7,_, ,6)

e (7,_,_,6) and wesee a 2: (7,_,2,)

e (7,_,2,_)and weseeal: (7,_,2,1)

e (7,_,2,1) and we see a 0: (7,_,2,0)

e (7,_,2,0) and we see a 6: (7,6,_,_)

® (7,6,_,_)and weseean8: (8 _, |)
Problem

® Not quite monotone.
e Solution: “antagonistic update”. Given measure m and priority p,

compute min{Prog(m/,p) | m' I m}

101/120

“Ordered” progress measures

Implementation notes

e See paper by Fearnley et al on arXiv
® See gpt.cpp in Oink
® |t's complicated...

102 /120

Winner-controller winning cycles

Simple algorithm to find trivial winning regions

Algorithm

¢ For every vertex v that is controlled by player o := pr(v) mod 2
® Z,o0 := attract vertices in {u € V4, | pr(u) < pr(v)} to v
® Just backward DFS from v via a-vertices with < priority
e If Z is closed (v is reached), then Z is an a-dominion with strategy o;
maximize Z by attracting from the entire game to Z and remove from
the game

There are more optimal algorithms, employing SCC reductions, etc. See also
Maks Verver's MSc Thesis “Practical Improvements to Parity Game Solving”
and fatal attractors of [Huth, Kwo, Piterman, 2014]

103 /120

Strategy iteration

Strategy improvement/iteration overview

e Originates from policy iteration algorithms for Markov decision processes
and similar algorithms for stochastic games.

e First parity game specific algorithm by Voge and Jurdzinski in 2000

® Later numerous modified versions
® better “best response” computation
® smarter strategy selection heuristics (hoping to find one requiring
polynomially many changes)
® learning snares (kind of tangles): Fearnley 2011
e Suitable for parallel computation (e.g. van de Pol and Weber; Kandziora
(2009) and Van de Berg (2010) on the Playstation 3; various GPU and
multi-core implementations)

104 /120

Strategy iteration

Core idea of strategy iteration

e Both players have a total strategy

® strategy o for allve Vg
® strategy 7 for all v € V4

® These induce a single play 7 for every v € V

® Every play 7 ends in a cycle

® Play profile p: V' — M assigns a value to v based on 7

® The value represents how optimal are current strategies o and 77

e Keep improving strategies until fixed point

® Odd computes the best response to o
® Even uses p to improve the strategy o once
® Repeat

® Why improve against the best response? Because then each time you
improve o, you know that Odd could not find a better response

105 /120

Strategy iteration

Algorithm

@ Start with some o for player 0
® Compute the best response 7 for player 1

® Traditional approach: Bellman-Ford shortest path algorithm
® [Fearnley 2017] proposes: use strategy iteration to compute 7:

@ Start with some 7 for player 1 (e.g. previous 7)
@ Compute play profiles and switchable edges

© Select switchable edges for the next T

@O Repeat until no more switchable edges

© Compute the play profiles and the switchable edges (that would locally
improve the valuation) for player 0
O Select switchable edges for the next o
¢ Different proposed switching rules (can we do it in P iterations)

@ Repeat from step 2 until no more switchable edges

106 / 120

Strategy iteration

Play profiles

® Relevance order < (value is priority):
°*u<v <& pr(u) <pr(v)
® max (V) = highest priority vertex
® Reward order < (value as seen from player 0):
® Vi ={v]|pr(v) is even} V_ ={v|pr(v) is odd}
*u=<v & (u<vAveVi)V(w<uAueV.)
* P<Q & P#QAmar(PAQ)e (QAV.)

® highest vertex in symmetric difference is in @ and even
® highest vertex in symmetric difference is in P and odd

® Reward order < (alternative formulation)
* rew(v) == pr(v) x (—1)P"®) (that is: negate if pr(v) is odd)
* u<v & rew(u) < rew(v)

107 /120

Strategy iteration

Play profiles [VJOO]

® Relevance order < and reward order <
e Original play profile of [Voge, Jurdzinski 2000]: tuple (u, P, e)

® wu, is most relevant vertex in the loop of m: u, = max (inf(r))

® P, is the set of vertices more relevant than u, in 7

(seen once in the prefix of ur)

® ¢ is the number of vertices in m before u,
u<v V
(u=vAP<Q) V
(u=vAP=QAveV_ANe<f) V
(u=vAP=QAveViNe> f)
® A strategy is optimal in vertex v if it selects the <-maximal successor in

E(v) for player 0 (or <-minimal for player 1)

° <u’P7e><<,U’Q7f> <:>

® A strategy is optimal if it is optimal for all vertices

108 / 120

Strategy iteration

Play profiles [F17]

Modify o: now player Even is also allowed to halt the play (if the
continuation is not favorable)

Initially o is L (halt) for all Even's vertices

Result: now every infinite play (cycle) is won by Even!

® because otherwise Even would halt to avoid the losing cycle
® except if Odd can win a cycle without any vertices of Even

Requires preprocessing: remove winner-controlled winning cycles of Odd
® or maybe: let Even force Odd vertices to halt instead...

Play profile: T if m is infinite; otherwise (eg4,e4_1,...,€1,€0) with

ep = |{ven|pr(v) =p}|, i.e., count how often each priority p is

encountered in the finite path 7

Profile X <Y if the highest different priority p is either even and

X(p) <Y(p) orodd and X(p) >Y (p); also X < T forall X #T

109 /120

Strategy iteration

Compute using a backward search from vertices where Even halts

1 def compute-valuations(o, o, 7):

2 0+ oUr // for easier notation
3 Z 9_1(J_) // where Even halts
4 p—(Ve=T) // initialize
5 while Z £ :
6 v < pop(Z) // pop any v from Z
{(0,...,0) O(v) = L .
7 m <— // get successor profile
p(0(v)) otherwise
m(pr(v)) < m(pr(v))+1 // update profile
p(v) —m // set profile of v
10 7 ZUefl(’U) // add predecessors to Z
11 return p

Implementation note

Two stages: first compute 61, then do the backward search
110/120

Strategy iteration

Switching rule Greedy All Switches

Extend p with a valuation of L ; define p over sets; define Best,, as the set of
successors of v with the optimal profile for player «; define GreedyAll, to
update the strategy with a switchable edge (if current strategy is not optimal)

pL = puU{l—(0,...,0)}
pL(X) = A{pi(@)|zeX}
Bestg(0,p,v) = {u€ E(v)|p(u)=minx p(E(v))}
Besto (0,p,v) = {u€ E(@)U{Ll}]|p(u)=max<p(E()U{L})}
. o(v) o(v) € Besta (0, p,v)
GreedyAllo (9,0,p) i= Vo {pick(Besta(D,p,v)) otherwise

111/120

Strategy iteration

1 def si(0):

2 0 « (Vo 1), 7 < random strategy for Odd

3 repeat

4 repeat

5 p < compute-valuations (0, o, 7)

6 T < GreedyAll(2,7,p)

7 until 7 is unchanged

8 o <+ GreedyAlls (0,0, p)

9 until o is unchanged

10 return W, Wo, 0,7 where W, < {v | p(v) =T}, W «+ V\Wo

Implementation note

After line 7, any vertex v with p(v) =T, can be added to W, already and does not
need to be improved anymore; any vertex remaining in the end is then won by Odd

112 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1

113 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1
best response 7: b—aand d —c

113 /120

Strategy iteration

cca—»l,c—wl el f>1, g—1, h—>1 i1
best response 7: b—aand d —c
oc:a—b c—ge—>1 fgg—hh—=>1 i1l

113 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1
best response 7: b—aand d —c

oc:a—b c—ge—>1 fgg—hh—=>1 i1l
best response 7: b— fand d — ¢

113 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1
best response 7: b—aand d —c

oc:a—b c—ge—>1 fgg—hh—=>1 i1l
best response 7: b— fand d — ¢
oc:a—b,c—be—1l,fogg—hh—>1i—>1

113 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1
best response 7: b—aand d —c

oc:a—b c—ge—>1 fgg—hh—=>1 i1l
best response 7: b— fand d — ¢
oc:a—b,c—be—1l,fogg—hh—>1i—>1
best response 7: b —fand d— e

113 /120

Strategy iteration

cca—»l,c—>l, el fo1l,g—>1,h—1i—>1
best response 7: b—aand d —c

oc:a—b c—ge—>1 fgg—hh—=>1 i1l
best response 7: b— fand d — ¢
oc:a—b,c—be—1l,fogg—hh—>1i—>1
best response 7: b —fand d— e

Odd wins entire game with strategy 7

113 /120

Fixed point iteration

Core idea

We can solve u-calculus model checking by solving the fixed points
explicitly

We can solve p-calculus model checking by solving a parity game
Here: we solve parity games by via a fixed point iteration

Via weak alternating automata [Kupfermann, Vardi, 1998]

APT implementation [Di Stasio, Murano, Perelli, Vardi, 2016]

Via p-calculus: [Bruse, Falk, Lange, 2014]

Quite fast for games with low number of priorities

114 /120

Fixed point iteration

Core idea

e “Using fixed points, update winning regions using a 1-step attractor”
Record “distraction sets” Z, C 'V, (Vo =A{v|pr(v) =p})
® A vertex is a distraction if:

® it has even priority and is won by Odd
® it has odd priority and is won by Even

® Monotonically update Zj, then Z1, etc.

When adding vertices to Z,, reset Z, to ()

115 /120

Fixed point iteration

Given some set of distracted vertices Z = ZygU Z1U---U Zy,

d?2 Z
winner(v,Z) = pr(v) mo ve
1—(pr(v)mod2) veZz
0 vEVoANTu € E(v) :winner(u, Z) =0
next(v,Z) = 1 veVoAVu e E(v): w.inner(u,Z) =1
1 veVaATue E(v) : winner(u,Z) =1
0 v e VaAYu € E(v) : winner(u,Z) =0

116 /120

Fixed point iteration

1 def £pi(D):

2 p<+0 // start with lowest priority
3 Z <+ 10 // start with no distractions
4 while p < d :

5 Y < {veV,\Z|next(v,Z) # pr(v) mod 2} // distractions
6 if Y #£0:

7 Z +— ZUY // update current fixed point Z)
8 Z Z\{'U | pr(v) <p} // reset all lower fixed points
9 p<+0 // continue with lowest priority
10 else:

11 p+—p+1 // fixed point, continue higher
12 return We,, W where We, <— {v | winner(v,Z) =0}, W < V\ We

Note: algorithm does not give a strategy (see [BFL14] for a method)!

117 /120

Fixed point iteration

1 def fpi(9):

/* assume vertices are sorted by priority, V(i) for ith vertex */

2 Z+—V=0 // start with no distractions

3 140 // start with lowest vertex

4 p <+ pr(V (i) // start with lowest priority

5 Chg < False // whether Z, is updated

6 while True :

7 if i=nvpr(V(i))#p

8 if Chg :

9 Z +— Z[{’U | pr(v) < p} — 0] // reset all lower vertices
10 goto 3 // restart with lowest vertex
11 elif i=n:

12 return {v | winner(v,Z) =0}, {v | winner(v,Z) =1}

13 else:

14 p < pr(V(z)) // Zp not updated; continue
15 else:

16 if =Z[i]Anext(V (i),Z) # pr(V(i)) mod 2 :

17 Zli]+1 // ith vertex is distraction
18 Chg < True // mark that Z, is updated
19 ti+1

118 /120

Fixed point iteration

Some notes...

® That was my own version of the fixed point algorithm

® To prove: that it is correct

® To show: that it is equivalent to [BFL14] and [KV98] and [dSMPV16]
® To study: whether [BFL14] also leads to a method of finding strategies

® Implementation can be a tight loop with Z implemented as a bit vector,
and all vertices sorted by priority... going from low to high, and resetting

all lower priority vertices plus restarting the loop whenever some Z[v] is
set

119/120

Fixed point iteration

reset h)
reset h, g)

N o~~~

reset h, g, c)
, a, g (reset b, h, a)
a

120/120

	Temporal logics CTL and LTL
	The modal -calculus
	Parity games
	Attractor based algorithms
	Fixed point based algorithms

