Multi-core On-the-fly Saturation
Tom van Dijk Jeroen Meijer Jaco van de Pol
TACAS 2019

B 9

Multi-core On-the-fly Saturation
Tom van Dijk Jeroen Meijer Jaco van de Pol
TACAS 2019

Overview

e TACAS 2001: Saturation
original paper
e TACAS 2003: Saturation Unbound

with on the fly transition learning

e QEST 2004: Saturation NOW

network of workstations

e CAV 2007: Parallelising symbolic state-space generators
multi-core, using work-stealing

1/22

Overview

e TACAS 2001: Saturation
original paper
e TACAS 2003: Saturation Unbound

with on the fly transition learning

e QEST 2004: Saturation NOW

network of workstations

e CAV 2007: Parallelising symbolic state-space generators
multi-core, using work-stealing

e PDMC 2009:

“Parallel symbolic state-space exploration is difficult,
but what is the alternative?”

1/22

Overview

e TACAS 2001: Saturation
original paper
e TACAS 2003: Saturation Unbound

with on the fly transition learning

e QEST 2004: Saturation NOW

network of workstations

e CAV 2007: Parallelising symbolic state-space generators
multi-core, using work-stealing

e PDMC 2009:

“Parallel symbolic state-space exploration is difficult,
but what is the alternative?”

® TACAS 2019: Multi-core On-the-fly Saturation (this work)

almost 8x faster with 16 cores

1/22

Background

¢ On-the-fly model checking
® Using decision diagrams
e Saturation algorithm for transition relations

® The parallel decision diagram package Sylvan

Contribution

® How we parallelize saturation
® The tools that are available

® Qur reproducible experiments

2/22

On-the-fly model checking

So what is on-the-fly model checking?

LTSMIN: a backend talks to a model via a NEXT-STATE(S) interface

e Start with some initial state and no transitions
® Ask the model for successors
® Update transition relation with every new transition

® Ask the model for more successors

Allows e.g. checking safety properties, LTL, etc, “on-the-fly”

3/22

On-the-fly model checking

PINS
intecFace

wi bigl stee (5) e~
3 gok Sueces=or

LTS
(kansibion rlation

> %of SJA V\U«) A~
skabes D 3&, sucleSse (S

%,\,—-

4/22

On-the-fly model checking

Partitioned transition relation

e Often transitions are local and independent
® Example: Petri nets, composed systems, etc
e Disjunctive partition into multiple transition relations
® “Short"” transitions only affect some variables
LTSMIN implements a “Partitioned Next-State Interface” and models

provide LTSMIN with a dependency matrix relating state variables and
transitions

Advantage: few NEXT-STATE calls to learn exponentially larger model

5/22

On-the-fly model checking

Example Petri net

5 3

\@b% HHE

® Each transition is local and independent

e ok
N =

~
=== O O O

C OO MM M
_H OO MRKO
[e R e R e W e R
O R MOO

® Few NEXT-STATE calls to learn all reachable transitions

6/22

On-the-fly model checking

LTSMIN

® On-the-fly compute product with automata of specifications

® On-the-fly check safety and reachability
e L TSMIN support various languages and backends via the interface
® Promela, Petri nets (PNML), DVE, mCRL2, ProB languages, etc

TACAS 2015: Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol,
Stefan Blom and Tom van Dijk, LTSMIN: High-Performance
Language-Independent Model Checking

7/22

Model checking and sets

States and transitions are sets of Boolean vectors B* and B2*
State z € B¥ is in the set if it is reachable

* Transition (x,y) € B is in the set if 2 — y is a transition

Set of reachable states S(x)

* Transition relations: Ti(ri,w)) Ta(re,wh) ... Ta(ra,why)

With z all state variables, and r; the “read” variables of transition 4, w] the
“write” variables

8/22

Binary decision diagrams

e A BDD is a directed acyclic graph encoding a B¥ — B function or a
S C B set

Every node has label x and two children then and else

e Semantics: if x then follow then else follow else

Paths represent valuations of B¥

For sets: path to , then valuation is in the set

TAY zVy Dy

9/22

Motivation

¢ Transitions are local, only affect a part of the BDD
¢ Changing a node affects all ancestors

® Possibly waste of effort to recompute these ancestors!

10/ 22

E"“Myll of 3 Lransition that only
afecks 5 part of the BDD

L BOD & be

reachable <tabes

mm } Affected l’fﬂ the local tramsibion

11/22

State space exploration strategies

e Breadth-first: apply all transition relations once to current states, add
all results to set of states

¢ Chaining: apply transition 1 and add to set of states, apply transition 2
and add to set of states, etc

® (and learn new transitions before applying each transition relation)

12/22

State space exploration strategies

e Breadth-first: apply all transition relations once to current states, add
all results to set of states

¢ Chaining: apply transition 1 and add to set of states, apply transition 2
and add to set of states, etc

® (and learn new transitions before applying each transition relation)

Saturation strategy [Gianfranco Ciardo et al, since 2001]

® Always apply “deepest” transition until “saturated”
® Whenever we find new states, saturate deeper transitions first
e Saturate BDD nodes in-situ

e Considered an “optimal strategy”

12/22

Our solution

How we parallelize saturation

e SIMPLIFY the saturation idea:

® no in-situ updates of BDD nodes
® no mutual recursion of “saturate” and “fire event”
® implement a single BDD operation “saturate”
e Leverage the multi-core BDD framework Sylvan
® Already parallelizes many BDD operations

® relational product
® other popular BDD operations required for model checking

® Already offers all the infrastructure for new BDD operations

¢ Implement for standard BDDs but also for LDDs (multi-way decision
diagrams implemented as linked list structures)

13/22

Parallel BDDs

Sylvan

https://www.github.com/trolando/sylvan
(google “github sylvan”, mirror at utwente-fmt repository)

BDD but also framework for MTBDD with any type of terminal
For example in probabilistic model checkers Storm, IscasMC, ePMC,
with floating points, rational numbers, parameterised functions, etc

Can also extend for other types of decision diagrams like LDDs

Implements all common MTBDD operations internally parallelized
Your program is sequential, automatically parallelized

Relies on the work-stealing framework Lace to do scalable fine-grained
load balancing (every suboperation is a task)

Main datastructures (nodes table, operation caches) lock-free scalable

With Sylvan, parallel saturation is easy!

14 /22

https://www.github.com/trolando/sylvan

Algorithm

Saturate set of states S given current transition i (of k sorted transitions)

® Leaf cases: return S if S=0, .S =1 or no more relations left (i = k)

Check if result is in the cache
Root BDD node of S: (x, Then, Else)

® |s x accessed by transition ¢
Yes?
® First saturate deeper: S < saturate(S,i+ 1)

® Then apply relation ¢ to S with multi-core operation relprod
® Repeat until no change

* No?
® Run in parallel: saturate(Then,i) and saturate(Else,)
® Compute new BDD node of the result

Store final result in the cache

15 /22

Algorithm

Saturate set of states S given current transition i (of k sorted transitions)

® Leaf cases: return S if S=0, .S =1 or no more relations left (i = k)

Check if result is in the cache
Root BDD node of S: (x, Then, Else)

® |s x accessed by transition ¢
Yes?
® First saturate deeper: S < saturate(S,i+ 1)

® Then apply relation ¢ to S with multi-core operation relprod
® Repeat until no change

* No?
® Run in parallel: saturate(Then,i) and saturate(Else,)
® Compute new BDD node of the result

Store final result in the cache

Learning: update transition just before running relprod

15 /22

Algorithm

Parallel is easy!

® Task parallelism in Sylvan: spawn 2 tasks, then wait until they are done!
¢ |Implemented with the work-stealing framework Lace

® Scalable parallel datastructures nodes tables and operation cache

16/22

Empirical evaluation

Evaluation based on Petri nets of the Model Checking Contest

¢ Compare with state-of-the-art MEDDLY (sequential)
(Algorithms are fundamentally different, but are we at least close?)

® Measure parallel speedup on 16 cores and 48 cores
¢ Compare with/without learning (on-the-fly or offline)

® (and compare with BDDs + compare to chaining and bfs)

Tools

e LTSMIN: on-the-fly transition learning; using LDDs
e LDDwMc: offline (pre-learned) using LDDs
® MEDMC+MEDDLY: offline non-parallel version of Babar, Miner

® (and BDDMC + implementations of LDD chaining and bfs)

17/22

Empirical evaluation

Procedure

Take Petri nets of MCC 2016 (491 input files)

Use two good variable orders Sloan and Force for BDD variable ordering
Use LTSMIN with generous timeout to generate transition system

413 out of 982 potential transition systems

All tools use precisely the same model and variable order

Compare runtimes only for inputs that all solvers can handle

301 inputs

Please reproduce our results: (Apache 2.0)
https://www.github.com/trolando/ParallelSaturationExperiments
Artifact Evaluation Accepted

Please download the tools: (Apache 2.0)
https://www.github.com/trolando/sylvan

https://www.github.com/utwente-fmt/ltsmin
18/22

https://www.github.com/trolando/ParallelSaturationExperiments
https://www.github.com/trolando/sylvan
https://www.github.com/utwente-fmt/ltsmin

Method Number of solved models with # workers

1 2 4 8 16 Any
LTSMIN otf, par 387 397 399 404 407 408
LDDwmc par 388 393 399 402 402 404
MEDDLY seq 375 - - - - 375

Table: Number of benchmarks (out of 413) solved within 20 minutes with each method with the
given number of workers.

19/22

Method Order Total time (sec) with # workers Total speedup

1 2 4 8 16 2 4 8 16
LTSMIN Sloan 1850 1546 698 398 313 1.2 2.7 4.6 5.9
LDDwmc Sloan 932 609 311 194 151 15 3.0 4.8 6.2
MEDDLY Sloan 572 - - - - - - - -
LTSMIN Force 2704 1162 712 401 343 2.3 3.8 6.8 7.9
LDDwmc Force 856 602 348 216 180 1.4 2.5 4.0 47
MEDDLY Force 1738 - - - - - - - -

Table: Cumulative time and parallel speedups for each method-#workers combination on the models
where all methods solved the model in time. These are 301 models in total: 151 models with Force,
150 models with Sloan.

20/22

Model (with Idd-sat) Order Time (sec) Speedup
1 24 48 24 48
Dekker-PT-015 Sloan 77.3 4.7 2.4 16.3 325
PhilosophersDyn-PT-10 Force 273.8 16.8 12.4 16.3 22.1
Angiogenesis-PT-10 Sloan 333.2 28.5 16.5 11.7 20.2
SwimmingPool-PT-02 Force 25.0 21 1.4 11.6 17.8
BridgeAndVehicles-PT-V20P10N20 Force 1035.8 101.8 60.7 10.2 17.1
Model (with otf-ldd-sat)
Dekker-PT-015 Sloan 174.5 7.4 33 236 522
SwimmingPool-PT-07 Sloan 1008.0 69.2 420 146 240
SmallOperatingSystem-PT-MT0256DC0064 Sloan 9573 529 400 18.1 23.9
Kanban-PT-0050 Sloan 9406 787 489 119 192
TCPcondis-PT-10 Force 68.4 5.7 3.8 11.9 17.8

Table: Parallel speedup for a selection of benchmarks on the 48-core machine (only top 5 shown)

21/22

Conclusions

e Saturation is parallelized in LTSMIN and SYLVAN

® Parallel saturation now available for many modeling languages
® Promela, Petri nets (PNML), DVE, mCRL2, ProB languages, etc

® Online available under Apache 2.0 License

® github.com/utwente-fmt/ltsmin
® github.com/trolando/sylvan
® github.com/trolando/ParallelSaturationExperiments

e Competitive: often as good as or better than Meddly, especially with 2
or more cores

e Scalable: up to 7.9 on-the-fly on a 16-core machine (with the FORCE
variable ordering); even some superlinear speedups

e Similar scalability with BDDs, with on-the-fly learning

e Parallel saturation is easy with Sylvan!

22/22

github.com/utwente-fmt/ltsmin
github.com/trolando/sylvan
github.com/trolando/ParallelSaturationExperiments

