
Multi-core On-the-fly Saturation
Tom van Dijk Jeroen Meijer Jaco van de Pol
TACAS 2019



Multi-core On-the-fly Saturation
Tom van Dijk Jeroen Meijer Jaco van de Pol
TACAS 2019



Overview

• TACAS 2001: Saturation
original paper
• TACAS 2003: Saturation Unbound

with on the fly transition learning
• QEST 2004: Saturation NOW

network of workstations
• CAV 2007: Parallelising symbolic state-space generators

multi-core, using work-stealing

• PDMC 2009:
“Parallel symbolic state-space exploration is difficult,

but what is the alternative?”
• TACAS 2019: Multi-core On-the-fly Saturation (this work)

almost 8× faster with 16 cores

1 / 22



Overview

• TACAS 2001: Saturation
original paper
• TACAS 2003: Saturation Unbound

with on the fly transition learning
• QEST 2004: Saturation NOW

network of workstations
• CAV 2007: Parallelising symbolic state-space generators

multi-core, using work-stealing
• PDMC 2009:

“Parallel symbolic state-space exploration is difficult,
but what is the alternative?”

• TACAS 2019: Multi-core On-the-fly Saturation (this work)
almost 8× faster with 16 cores

1 / 22



Overview

• TACAS 2001: Saturation
original paper
• TACAS 2003: Saturation Unbound

with on the fly transition learning
• QEST 2004: Saturation NOW

network of workstations
• CAV 2007: Parallelising symbolic state-space generators

multi-core, using work-stealing
• PDMC 2009:

“Parallel symbolic state-space exploration is difficult,
but what is the alternative?”

• TACAS 2019: Multi-core On-the-fly Saturation (this work)
almost 8× faster with 16 cores

1 / 22



Outline

Background

• On-the-fly model checking
• Using decision diagrams
• Saturation algorithm for transition relations
• The parallel decision diagram package Sylvan

Contribution
• How we parallelize saturation
• The tools that are available
• Our reproducible experiments

2 / 22



On-the-fly model checking

So what is on-the-fly model checking?
LTSmin: a backend talks to a model via a Next-State(s) interface

• Start with some initial state and no transitions
• Ask the model for successors
• Update transition relation with every new transition
• Ask the model for more successors

• Allows e.g. checking safety properties, LTL, etc, “on-the-fly”

3 / 22



On-the-fly model checking

u
n

g
f

w

u
w

u
o

8
8

u
s

f
w

u
8

d
os

os

h
T
EEso

f
u

v
s

n
.
-

s
n

O

e
o

'

E
o

if
I

so
8

in
n

g
I
-1¥

88
a

odor
I

③
it

s

E
s

8
I

e
n

u

4 / 22



On-the-fly model checking

Partitioned transition relation
• Often transitions are local and independent
• Example: Petri nets, composed systems, etc
• Disjunctive partition into multiple transition relations
• “Short” transitions only affect some variables

LTSmin implements a “Partitioned Next-State Interface” and models
provide LTSmin with a dependency matrix relating state variables and
transitions

Advantage: few Next-State calls to learn exponentially larger model

5 / 22



On-the-fly model checking

Example Petri net

p4

p2 p5

p3 p1

t1

t3t2 t4 t5

t6



p1 p2 p3 p4 p5

t1 0 1 0 1 1
t2 0 1 1 0 0
t3 0 1 1 0 0
t4 1 0 0 0 1
t5 1 0 0 0 1
t6 1 0 1 1 0



• Each transition is local and independent
• Few next-state calls to learn all reachable transitions

6 / 22



On-the-fly model checking

LTSmin
• On-the-fly compute product with automata of specifications
• On-the-fly check safety and reachability
• LTSmin support various languages and backends via the interface

• Promela, Petri nets (PNML), DVE, mCRL2, ProB languages, etc

TACAS 2015: Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol,
Stefan Blom and Tom van Dijk, LTSmin: High-Performance
Language-Independent Model Checking

7 / 22



Model checking and sets

• States and transitions are sets of Boolean vectors Bk and B2k

• State x ∈ Bk is in the set if it is reachable
• Transition (x,y) ∈ B2k is in the set if x→ y is a transition

• Set of reachable states S(x)
• Transition relations: T1(r1,w′

1) T2(r2,w′
2) ... TM (rM ,w′

M )

With x all state variables, and ri the “read” variables of transition i, w′
i the

“write” variables

8 / 22



Binary decision diagrams
• A BDD is a directed acyclic graph encoding a Bk→ B function or a

S ⊆ Bk set
• Every node has label x and two children then and else
• Semantics: if x then follow then else follow else
• Paths represent valuations of Bk

• For sets: path to 1 , then valuation is in the set

x∧y x∨y x⊕y

x

y

0 1

x

y

0 1

x

y

0

y

1

9 / 22



Saturation

Motivation
• Transitions are local, only affect a part of the BDD
• Changing a node affects all ancestors
• Possibly waste of effort to recompute these ancestors!

10 / 22



Q
d
8

E
E

Iii
⇒

→
8

I
5,8

⇒
8

of

:
:

÷
.

•

E
F

ro

Jo
¥÷¥
!

±:
11 / 22



Saturation

State space exploration strategies

• Breadth-first: apply all transition relations once to current states, add
all results to set of states
• Chaining: apply transition 1 and add to set of states, apply transition 2

and add to set of states, etc
• (and learn new transitions before applying each transition relation)

Saturation strategy [Gianfranco Ciardo et al, since 2001]

• Always apply “deepest” transition until “saturated”
• Whenever we find new states, saturate deeper transitions first
• Saturate BDD nodes in-situ
• Considered an “optimal strategy”

12 / 22



Saturation

State space exploration strategies

• Breadth-first: apply all transition relations once to current states, add
all results to set of states
• Chaining: apply transition 1 and add to set of states, apply transition 2

and add to set of states, etc
• (and learn new transitions before applying each transition relation)

Saturation strategy [Gianfranco Ciardo et al, since 2001]

• Always apply “deepest” transition until “saturated”
• Whenever we find new states, saturate deeper transitions first
• Saturate BDD nodes in-situ
• Considered an “optimal strategy”

12 / 22



Our solution

How we parallelize saturation
• SIMPLIFY the saturation idea:

• no in-situ updates of BDD nodes
• no mutual recursion of “saturate” and “fire event”
• implement a single BDD operation “saturate”

• Leverage the multi-core BDD framework Sylvan
• Already parallelizes many BDD operations

• relational product
• other popular BDD operations required for model checking

• Already offers all the infrastructure for new BDD operations
• Implement for standard BDDs but also for LDDs (multi-way decision

diagrams implemented as linked list structures)

13 / 22



Parallel BDDs

Sylvan

• https://www.github.com/trolando/sylvan
(google “github sylvan”, mirror at utwente-fmt repository)
• BDD but also framework for MTBDD with any type of terminal

For example in probabilistic model checkers Storm, IscasMC, ePMC,
with floating points, rational numbers, parameterised functions, etc
• Can also extend for other types of decision diagrams like LDDs
• Implements all common MTBDD operations internally parallelized

Your program is sequential, automatically parallelized
• Relies on the work-stealing framework Lace to do scalable fine-grained

load balancing (every suboperation is a task)
• Main datastructures (nodes table, operation caches) lock-free scalable
• With Sylvan, parallel saturation is easy!

14 / 22

https://www.github.com/trolando/sylvan


Algorithm

Saturate set of states S given current transition i (of k sorted transitions)
• Leaf cases: return S if S = 0, S = 1 or no more relations left (i = k)
• Check if result is in the cache
• Root BDD node of S: ⟨x,Then,Else⟩
• Is x accessed by transition i

• Yes?
• First saturate deeper: S← saturate(S,i+1)
• Then apply relation i to S with multi-core operation relprod
• Repeat until no change

• No?
• Run in parallel: saturate(Then, i) and saturate(Else, i)
• Compute new BDD node of the result

• Store final result in the cache

Learning: update transition just before running relprod

15 / 22



Algorithm

Saturate set of states S given current transition i (of k sorted transitions)
• Leaf cases: return S if S = 0, S = 1 or no more relations left (i = k)
• Check if result is in the cache
• Root BDD node of S: ⟨x,Then,Else⟩
• Is x accessed by transition i

• Yes?
• First saturate deeper: S← saturate(S,i+1)
• Then apply relation i to S with multi-core operation relprod
• Repeat until no change

• No?
• Run in parallel: saturate(Then, i) and saturate(Else, i)
• Compute new BDD node of the result

• Store final result in the cache

Learning: update transition just before running relprod

15 / 22



Algorithm

Parallel is easy!

• Task parallelism in Sylvan: spawn 2 tasks, then wait until they are done!
• Implemented with the work-stealing framework Lace
• Scalable parallel datastructures nodes tables and operation cache

16 / 22



Empirical evaluation

Evaluation based on Petri nets of the Model Checking Contest
• Compare with state-of-the-art Meddly (sequential)

(Algorithms are fundamentally different, but are we at least close?)
• Measure parallel speedup on 16 cores and 48 cores
• Compare with/without learning (on-the-fly or offline)
• (and compare with BDDs + compare to chaining and bfs)

Tools
• LTSmin: on-the-fly transition learning; using LDDs
• LDDmc: offline (pre-learned) using LDDs
• Medmc+Meddly: offline non-parallel version of Babar, Miner
• (and BDDmc + implementations of LDD chaining and bfs)

17 / 22



Empirical evaluation
Procedure
• Take Petri nets of MCC 2016 (491 input files)
• Use two good variable orders Sloan and Force for BDD variable ordering
• Use LTSmin with generous timeout to generate transition system

413 out of 982 potential transition systems
• All tools use precisely the same model and variable order
• Compare runtimes only for inputs that all solvers can handle

301 inputs

• Please reproduce our results: (Apache 2.0)
https://www.github.com/trolando/ParallelSaturationExperiments
Artifact Evaluation Accepted

• Please download the tools: (Apache 2.0)
https://www.github.com/trolando/sylvan
https://www.github.com/utwente-fmt/ltsmin

18 / 22

https://www.github.com/trolando/ParallelSaturationExperiments
https://www.github.com/trolando/sylvan
https://www.github.com/utwente-fmt/ltsmin


Results

Method Number of solved models with # workers
1 2 4 8 16 Any

LTSmin otf, par 387 397 399 404 407 408
LDDmc par 388 393 399 402 402 404
Meddly seq 375 – – – – 375

Table: Number of benchmarks (out of 413) solved within 20 minutes with each method with the
given number of workers.

19 / 22



Results

Method Order Total time (sec) with # workers Total speedup
1 2 4 8 16 2 4 8 16

LTSmin Sloan 1850 1546 698 398 313 1.2 2.7 4.6 5.9
LDDmc Sloan 932 609 311 194 151 1.5 3.0 4.8 6.2
Meddly Sloan 572 – – – – – – – –

LTSmin Force 2704 1162 712 401 343 2.3 3.8 6.8 7.9
LDDmc Force 856 602 348 216 180 1.4 2.5 4.0 4.7
Meddly Force 1738 – – – – – – – –

Table: Cumulative time and parallel speedups for each method-#workers combination on the models
where all methods solved the model in time. These are 301 models in total: 151 models with Force,
150 models with Sloan.

20 / 22



Results

Model (with ldd-sat) Order Time (sec) Speedup
1 24 48 24 48

Dekker-PT-015 Sloan 77.3 4.7 2.4 16.3 32.5
PhilosophersDyn-PT-10 Force 273.8 16.8 12.4 16.3 22.1
Angiogenesis-PT-10 Sloan 333.2 28.5 16.5 11.7 20.2
SwimmingPool-PT-02 Force 25.0 2.1 1.4 11.6 17.8
BridgeAndVehicles-PT-V20P10N20 Force 1035.8 101.8 60.7 10.2 17.1

Model (with otf-ldd-sat)

Dekker-PT-015 Sloan 174.5 7.4 3.3 23.6 52.2
SwimmingPool-PT-07 Sloan 1008.0 69.2 42.0 14.6 24.0
SmallOperatingSystem-PT-MT0256DC0064 Sloan 957.3 52.9 40.0 18.1 23.9
Kanban-PT-0050 Sloan 940.6 78.7 48.9 11.9 19.2
TCPcondis-PT-10 Force 68.4 5.7 3.8 11.9 17.8

Table: Parallel speedup for a selection of benchmarks on the 48-core machine (only top 5 shown)

21 / 22



Conclusions

• Saturation is parallelized in LTSmin and Sylvan
• Parallel saturation now available for many modeling languages
• Promela, Petri nets (PNML), DVE, mCRL2, ProB languages, etc

• Online available under Apache 2.0 License
• github.com/utwente-fmt/ltsmin
• github.com/trolando/sylvan
• github.com/trolando/ParallelSaturationExperiments

• Competitive: often as good as or better than Meddly, especially with 2
or more cores
• Scalable: up to 7.9× on-the-fly on a 16-core machine (with the FORCE

variable ordering); even some superlinear speedups
• Similar scalability with BDDs, with on-the-fly learning
• Parallel saturation is easy with Sylvan!

22 / 22

github.com/utwente-fmt/ltsmin
github.com/trolando/sylvan
github.com/trolando/ParallelSaturationExperiments

