
Solving Parity Games with Oink
Tom van Dijk (JKU Linz)
TACAS, Thessaloniki, 17 April 2018



Solving Parity Games with Oink

TL; DR

I Parity games
Solve model checking and synthesis by playing a game.
They are simple and quite addictive.

I Goal 1: Solving algorithms
Many algorithms exist, roughly either based on attractor
computation or on local value iteration.

I Goal 2: The tool Oink
Modern & fast implementation of parity games solvers.
Easy to use, easy to extend.

I Goal 3: Compare algorithms
The attractor-based solvers are fastest in practice.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

Definition

I A parity game is a directed graph
I Each vertex has a priority {0,1,2, . . . ,d }
I Each vertex is owned by player Even or player Odd

5

b

6

a

1

d

3

e

2

c

Rules of the game

I They play an infinite game along the graph.
I Owner of each vertex determines the next move.
I Winning condition:

The parity of the highest priority seen infinitely often.
I Player Even wins if this priority is even.
I Player Odd wins if this priority is odd.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

Definition

I A parity game is a directed graph
I Each vertex has a priority {0,1,2, . . . ,d }
I Each vertex is owned by player Even or player Odd

Rules of the game

I They play an infinite game along the graph.
I Owner of each vertex determines the next move.
I Winning condition:

The parity of the highest priority seen infinitely often.
I Player Even wins if this priority is even.
I Player Odd wins if this priority is odd.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

5

b

6

a

1

d

3

e

2

c

Example parity game

I Even controls a, b, c, e. Odd controls d.
I They play an infinite game along the edges of the game.
I Who wins each vertex?

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

5

b

6

a

1

d

3

e

2

c

Example parity game

I Even controls a, b, c, e. Odd controls d.
I They play an infinite game along the edges of the game.
I Player Odd wins from all vertices with strategy {d→ e}.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

Why are parity games practically relevant?

I Quite expressive: parity games capture the expressive power of
nested least and greatest fixpoint operators.

I Polynomial-time equivalent to:
I modal µ-calculus model-checking (CTL, LTL...)
I checking emptiness of non-deterministic parity tree automata
I solving boolean equation systems

I Backend for synthesis, e.g. LTL synthesis.
I Also equivalence checking, propositional proof complexity, etc.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

Why are parity games theoretically interesting and addictive?

I There is probably a (polynomial) solution in P!

Why?

I The problem is in NP ∩ co-NP.
I If NP-complete, then NP = co-NP.
I Therefore very unlikely to be NP-complete.

I The problem is even in UP ∩ co-UP.
I A (weak) subclass of NP ∩ co-NP; also integer factorization.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Games

(Incomplete list of) published algorithms
McNaughton/Zielonka O(e ·nd) and O(2n) 1998
Small Progress Measures O(d · e · (n/d)d/2) 1998
Strategy Improvement O(n · e ·2e) 2000
Dominion Decomposition O(n

√
n) 2006

Big Step O(e ·nd/3) 2007
APT O(nd) 2016
Priority Promotion Exponential 2016
Quasi-Polynomial O(n6+logd) 2016
Tangle Learning (at CAV) ? 2018

Tom van Dijk (JKU Linz) Parity Game Solving



Outline

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Game Algorithms

Descriptions in the paper

I Aim of contribution: describe 5 algorithms intuitively.
I Improved operational description of small progress measures
I Complementing description of priority promotion

Roughly two types

I Local value iteration
Based on locally improving the value of individual vertices by
looking at their successors.

I Attractor-based
Based on properties over sets of vertices computed with
attractors.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Game Algorithms

Local value iteration

I Every vertex has some value.
I Locally improve each vertex based on the successors.

Example: Strategy Improvement (2000)
Players take turns improving their strategy until a fixed point.

Example: Progress Measures (1998, 2016, 2017)
Players play the game backwards w.r.t. how good the optimal
game so far is for one of the players.

Tom van Dijk (JKU Linz) Parity Game Solving



Parity Game Algorithms

Attraction-based algorithms

I Partition the game into regions using attractors.
I Start with the highest priority (top-down).
I Each region is tentatively won by one player.
I Refine winning regions until dominion found.

Example: Zielonka’s Recursive Algorithm (1998)
Attract higher regions downward after computing lower regions.
If your opponent attracts from your region, recompute your part.

Example: Priority Promotion (2016)
Merge regions upwards when the region is closed (in the subgame).
Then recompute lower regions.

Tom van Dijk (JKU Linz) Parity Game Solving



Outline

Tom van Dijk (JKU Linz) Parity Game Solving



Oink

I Modern implementation of parity game algorithms
I Zielonka’s Algorithm (with optimizations; parallel)
I Small progress measures (with optimizations)
I Priority Promotion (different versions)
I Strategy Improvement (parallel)
I QPT progress measures

I The usual preprocessing algorithms
I Inflation and compression
I Remove self-loops
I Detect winner-controlled winning cycles
I SCC decomposition

I https://www.github.com/trolando/oink
I Simple to use/extend library in C++

Tom van Dijk (JKU Linz) Parity Game Solving

https://www.github.com/trolando/oink


Oink

Easy to use

#include "oink.hpp"

pg::Game parity_game;
parity_game.parse_pgsolver(cin);

pg::Oink solver(parity_game);
solver.setSolver("zlk");
solver.run();

parity_game.write_sol(cout);

Easy to extend

I Implement Solver interface
I Add one line to solvers.cpp

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Benchmarks

I Benchmarks by Jeroen Keiren.
I 313 model checking and 216 equivalence checking games.
I Furthermore 420 random games of up to 20000 vertices.

Solvers

I Oink *
I PGSolver (Friedmann et al)
I pbespgsolve (Willemse et al)
I parallel-si (Fearnley) *
I SPGSolver (di Stasio, Arcucci et al) *
I * = Both sequential and multi-core versions

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Model checking Equiv checking Random games Total

zlk-1 113 0 560 0 5 0 679 0
zlk-8 111 0 781 0 26 0 918 0
pbeszlk 67 0 533 0 340 0 941 0
zlk 87 0 903 0 5 0 995 0
spg-seq 1262 1 2639 2 728 0 4629 3
spg-mc 474 0 4304 2 51885 39 56663 41
pgzlk 42881 32 44469 35 36859 19 124210 86

Runtimes in sec. (PAR2) and number of timeouts (10 minutes) of
the four solvers PGSolver (pgzlk), SPGSolver (spg), pbespgsolve
(pbeszlk) and Oink (zlk).

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Model checking Equiv checking Random games Total

psi-8 956 0 1474 0 551 0 2981 0
psi 889 0 4085 1 565 0 5540 1
psi-1 1771 1 6640 4 613 0 9024 5
parsi-seq 1897 1 6596 4 1697 0 10190 5
parsi-mc8 1939 1 4885 2 47217 39 54041 42
parsi-mc1 3908 2 10508 7 47633 39 62049 48
pgsi 101137 78 69492 55 39020 27 209649 160

Runtimes in sec. (PAR2) and number of timeouts (10 minutes) of
the three solver PGSolver (pgsi), the solver by Fearnley with
sequential (parsi-seq) and multi-core variants, and Oink with
sequential (psi) and multi-core variants.

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Model checking Equiv checking Random games Total

spm 3328 1 9668 3 112556 93 125552 97
qpt 86000 67 50617 36 45926 36 182542 139
pbesspm 27375 21 36510 27 123200 101 187085 149
pgspm 67832 51 40185 30 214409 169 322426 250

Runtimes in sec. (PAR2) and number of timeouts (10 minutes) of
PGSolver (pgspm), pbespgsolve (pbesspm) and spm and qpt in
Oink.

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Model checking Equiv checking Random games Total

pp 149 0 543 0 10 0 702 0
ppp 158 0 592 0 10 0 759 0
rr 185 0 596 0 10 0 791 0
dp 214 0 596 0 12 0 822 0
rrdp 197 0 644 0 11 0 852 0

Runtimes in sec. (PAR2) and number of timeouts (10 minutes) of
the five priority promotion solvers in Oink.

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

Model checking Equiv checking Random games Total

zlk 152 0 474 0 8 0 634 0
pp 149 0 543 0 10 0 702 0
psi 308 0 2559 0 830 0 3697 0
spm 1228 0 3648 0 104689 87 109565 87
qpt 42284 33 44796 34 42480 33 129560 100

Runtimes in sec. (PAR2) and number of timeouts (10 minutes) of
the five sequential solvers in Oink

Tom van Dijk (JKU Linz) Parity Game Solving



Empirical evaluation

0

25

50

75

100

750 800 850 900 950
Model count

Ti
m
e
(s
ec
) Solver

pp
psi
qpt
spm
zlk

A cactus plot of five sequential solvers implemented in Oink. The
plot shows how many games are (individually) solved within a
certain amount of time.

Tom van Dijk (JKU Linz) Parity Game Solving



Conclusions

I Parity games are relevant and addictive.
I Fast moving field with great progress in the last few years.
I Oink is a competitive implementation.
I Attractor-based algorithms perform best.
I https://www.github.com/trolando/oink

Model checking Equiv checking Random games Total

zlk 152 0 474 0 8 0 634 0
pp 149 0 543 0 10 0 702 0
psi 308 0 2559 0 830 0 3697 0
spm 1228 0 3648 0 104689 87 109565 87
qpt 42284 33 44796 34 42480 33 129560 100

Tom van Dijk (JKU Linz) Parity Game Solving

https://www.github.com/trolando/oink

