
sylvan
MULTI-CORE DECISION DIAGRAMS

tom van dijk

Sylvan: Multi-core Decision Diagrams

Tom van Dijk

Graduation committee:

Chairman: prof.dr. P.M.G. Apers
Promotor: prof.dr. J.C. van de Pol

Members:
prof.dr.ir. J.P. Katoen University of Twente
prof.dr.ir. B.R.H.M. Haverkort University of Twente
prof.dr. G. Ciardo Iowa State University, USA
prof.dr.ir. J.F. Groote Eindhoven University of Technology

Referee:
dr. Y. Thierry-Mieg Laboratoire d’Informatique de Paris 6, France

CTIT
CTIT Ph.D. Thesis Series No. 16–398
Centre for Telematics and Information Technology
University of Twente, The Netherlands
P.O. Box 217 – 7500 AE Enschede

IPA Dissertation Series No. 2016–09
The work in this thesis has been carried out under
the auspices of the research school IPA (Institute for
Programming research and Algorithmics).

ISBN: 978–90–365–4160–2

ISSN: 1381–3617 (CTIT Ph.D. Thesis Series No. 16–398)
Available online at http://dx.doi.org/10.3990/1.9789036541602

Typeset with LATEX
Printed by Ipskamp Printers Enschede
Cover design by Annelien Dam
Copyright © 2016 Tom van Dijk

http://dx.doi.org/10.3990/1.9789036541602

SYLVAN: MULTI-CORE DECISION DIAGRAMS

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof.dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday, July 13th, 2016 at 16:45 hrs.

by

Tom van Dijk

born on September 10th, 1985

in Emmen, The Netherlands

This dissertation has been approved by:

Prof.dr. J.C. van de Pol (promotor)

Contents

Contents v

Acknowledgements ix

1 Introduction 1
1.1 Symbolic model checking . 2

1.2 Binary decision diagrams . 4

1.3 Parallelism . 5

1.4 Earlier work in parallel BDDs . 9

1.5 Contributions . 10

1.5.1 Scalable hash tables with garbage collection 11

1.5.2 Work-stealing framework Lace 12

1.5.3 Multi-core decision diagram library Sylvan 12

1.5.4 Multi-core on-the-fly reachability 13

1.5.5 Multi-core symbolic bisimulation minimisation 14

1.6 Publications . 14

1.7 Overview . 17

2 Decision diagrams 19
2.1 Preliminaries . 19

2.1.1 Boolean logic and notation 19

2.1.2 Binary decision diagrams 20

2.1.3 Multi-terminal binary decision diagrams 22

2.1.4 Multi-valued decision diagrams 23

2.1.5 List decision diagrams . 24

2.2 Parallelizing decision diagrams . 26

2.2.1 Parallel operations . 26

2.2.2 Representation of nodes . 28

2.2.3 Unique table . 29

2.2.4 Computed table . 30

v

vi s c Contents

2.2.5 Garbage collection framework 31

2.3 BDD algorithms . 34

2.3.1 Creating and reading BDD nodes 34

2.3.2 Basic operations . 35

2.3.3 Relational products . 38

2.4 MTBDD algorithms . 40

2.5 LDD algorithms . 42

3 Load-balancing tasks with Lace 45
3.1 Task-based parallelism and work-stealing 46

3.2 Existing work-stealing deques . 50

3.3 Design of the shared split deque 52

3.4 Deque algorithms . 56

3.5 Correctness . 59

3.6 Implementation of the framework Lace 62

3.6.1 Standard work-stealing functionality 62

3.6.2 Interrupting tasks to run a new task tree 63

3.7 Experimental evaluation . 64

3.7.1 Benchmarks . 65

3.7.2 Results . 66

3.7.3 Extending leapfrogging . 67

3.8 Conclusion and Discussion . 69

4 Concurrent nodes table and operation cache 73
4.1 Scalable data structures . 73

4.2 Unique table . 75

4.2.1 Original hash table . 77

4.2.2 Variant 1: Reference counter and tombstones 81

4.2.3 Variant 2: Independent locations 83

4.2.4 Variant 3: Using bit arrays to manage the data array . . . 87

4.2.5 Comparing the three variants 90

4.3 Operation cache . 92

4.4 Conclusion and Discussion . 94

5 Application: State space exploration 97
5.1 On-the-fly state space exploration in LTSmin 98

5.2 Parallel operations in a sequential algorithm 101

5.3 Parallel learning . 101

5.4 Fully parallel on-the-fly symbolic reachability 103

5.5 Experimental evaluation . 104

5.5.1 Experimental setup . 104

5.5.2 Experiment 1: Only parallel LDD operations 105

Contents c s vii

5.5.3 Experiment 2: Parallel learning 107

5.5.4 Experiment 3: Fully parallel reachability 108

5.5.5 Experiment 4: Comparing nodes table variants 2 and 3 . . 110

5.5.6 Experiment 5: Comparing BDDs and LDDs 112

5.6 Conclusion and Discussion . 113

6 Application: Bisimulation minimisation 117
6.1 Definitions . 119

6.2 Signature-based bisimulation minimisation 121

6.2.1 Partition refinement . 122

6.3 Symbolic signature refinement . 123

6.3.1 Encoding of signature refinement 123

6.3.2 The refine algorithm . 125

6.3.3 Computing inert transitions 128

6.4 Implementation . 129

6.5 Experimental evaluation . 130

6.5.1 Experiments . 130

6.5.2 Results . 131

6.6 Conclusion and Discussion . 131

7 Conclusions 135
7.1 The multi-core decision diagram package Sylvan 135

7.2 The work-stealing framework Lace 136

7.3 The symbolic bisimulation minimisation tool SigrefMC 136

7.4 Future directions . 137

7.4.1 Scalable data structures . 137

7.4.2 Other decision diagrams and operations 137

7.4.3 Applications . 138

7.4.4 Formal verification of the algorithms 139

7.5 Multi-core and beyond . 139

Bibliography 141

Summary 151

Samenvatting 153

Acknowledgements

More or less five years ago, during a lecture on model checking, the lecturer
prof.dr. Jaco van de Pol casually mentioned that parallelizing the “apply”
operation for binary decision diagrams was still an open problem. Since I
entertained the opinion that in principle it should be possible to execute every
sufficiently large problem in parallel, this seemed an interesting challenge to
tackle. Several weeks later I had to admit that there was a tiny little detail to
which I didn’t see an obvious solution. Jaco pointed out some earlier research by
Alfons Laarman, related to a scalable shared hash table, which could be adapted
for the implementation of operations on binary decision diagrams. Combined
with a work-stealing library that I found on the Internet, the result several
months later was a prototype parallel library for binary decision diagrams
called Sylvan, sufficient for a Master’s thesis and a publication.

Four years have passed since. Jaco offered me a position at the University of
Twente as a PhD student, to continue the research on parallelizing operations
on decision diagrams, experimenting with other types of decision diagrams and
exciting applications of the technology. Research has been done, programs have
been written, papers have been published, some of the typical “rollercoaster”
highs and lows of PhD research have been explored, such as the year in which
no paper was published, and some unexpected yet very rewarding experimental
results. It turns out that there are always new research directions to explore
and ideas to investigate, even when you expect that obvious ideas have already
been explored and investigated by others. For being my patient supervisor and
supportive promotor, I most certainly owe Jaco my gratitude.

In general, I am quite happy to have spent so much of my time in the
last few years with the Formal Methods & Tools research group, in particular
with Mark, whose excessively loud presence inspired me greatly, and whose
productivity and self discipline I can never hope to match; Enno, who was
always ready to offer a bright smile regardless of whether or not my attempt at
humor was actually successful; Tri, who was (and probably still is) deadly afraid
that the photos of our time together would somehow go viral and embarrass

ix

x s c Acknowledgements

him in his home country; Marcus, who endured (and seemed to enjoy) many
an offensive remark, hurled at him with, as I like to imagine, great speed
and frightening accuracy; and finally Alfons, who is always ready to offer
advice and criticism, political discussion and commentary and dozens of daily
Facebook notifications.

I am also quite happy to have Gijs and Roald as my paranymphs. I have
known Gijs for a very long time now. We have lived in the same house, we
have both been a member of the VGST and of Phi, we worked in the same
office, doing research with the same supervisor, and we shared several interests
like philosophy and politics. Roald I met when checking out the local branch
of the political youth organisation the Jonge Democraten. He welcomed me
in the local branch and made sure that I was their chairman the next week
with the motivation to engage in many discussions in local politics and to
organize lectures and various visits. I fondly remember our friendship and
regular exchange of opinions.

During my PhD research, I visited research groups in Aachen and Beijing.
Both times, Sebastian Junges was present. I would like to thank him for
interesting conversations in Aachen, and in particular for the fun we had
traveling in China for just over two weeks, visiting a research group in Beijing,
a conference in Nanjing, and various touristic locations in both places.

I thank the members of my committee for approving my thesis and provid-
ing helpful comments.

Finally, I would like to thank my family and friends for their support over
the years, in particular my parents for giving me my first C compiler when I was
about 11 years old, saying that it was time I used a real programming language
instead of writing DOS batch files and hand-written assembly programs. They
tolerated my addiction to programming and using the computer in general,
and stimulated my finger dexterity via piano lessons, without which writing
all that code would have taken much longer.

1Chapter 1

Introduction

The research of this thesis is about parallelizing algorithms for decision
diagrams. As fundamental data structures in computer science, decision
diagrams find applications in many areas, in particular in symbolic

model checking [Bur+92; Bur+94]. Symbolic model checking studies the formal
verification of properties of complex systems, such as communication protocols,
controller software and risk models. Most computation time for symbolic
model checking is spent in operations on decision diagrams. Hence, improving
the performance of decision diagram operations improves the performance of
symbolic model checking.

As a fundamental data structure in computer science, decision diagrams
are not only extensively used in symbolic model checking, but also in logic
synthesis [Mal+88; MF89; Soe+16], fault tree analysis [RA02; BCT07], test gen-
eration [BAA95; AR86], and even to represent access control lists [Fis+05]. A
recent survey paper by Minato [Min13] provides an accessible history of re-
search activity into decision diagrams, listing applications to data mining [LB06],
Bayesian network and probabilistic inference models [MSS07; ISM11], and game
theory [Sak+11].

In the past, the processing power of computers increased mostly by im-
provements in the clock speeds and the efficiency of processors, which often do
not require adaptations to algorithms. However, as physical constraints seem
to limit such improvements, further increases in processing power of modern
machines inevitably come from using multiple cores. To make optimal use of
the processing power of multi-core machines, algorithms must be adapted.

One of the primary goals when adapting algorithms for multiple cores
(parallelization), is to obtain good parallel scalability. The ideal linear scalability
would obtain a speedup of N times when using N cores. This ideal is often
not possible in practice, in particular we see three things: 1) the parallel
version may be slower than the original non-parallel version, this is called the

1

1

2
s c

1. Introduction

sequential overhead; 2) adding cores often does not result in corresponding
speedups: if we get a speedup of 3x with 5 cores, and a speedup of 6x with
10 cores, then the parallel efficiency is only 60%; 3) often the performance
plateaus or even degrades after a certain number of cores due to insufficient
parallel work, bottlenecks and communication costs. Good parallel scalability
is obtained when the sequential overhead is low, the parallel efficiency is high,
and bottlenecks and costs that limit the maximum number of cores can be
avoided.

This thesis studies the following main questions:
1. Is a scalable implementation of decision diagram operations possible, and

if so, how?

2. Does the scalability of decision diagram operations extend to sequential
algorithms that use them, such as symbolic model checking?

3. What is the additional effect of further parallelizing algorithms that use
parallel decision diagram operations?

We study these questions by implementing a prototype parallel decision
diagram library called Sylvan, which is described in Chapter 2. Sylvan is based
on two main ingredients. The first ingredient is a work-stealing framework
called Lace, which is built around a novel concurrent task queue in Chapter 3.
This framework enables us to implement decision diagram operations as tasks
that are executed in parallel. The second ingredient consists of concurrent
data structures: a single shared concurrent hash table that stores all nodes of
the decision diagrams, and a single concurrent operation cache that stores the
intermediate results of operations for reuse. These data structures are described
in Chapter 4. We study the performance and parallel scalability of Sylvan
for two applications: symbolic model checking in Chapter 5, and symbolic
bisimulation minimisation in Chapter 6.

The current chapter provides an introduction to the subjects discussed in
this thesis. We first introduce symbolic model checking (Section 1.1), binary
decision diagrams (Section 1.2), and parallelism (Section 1.3). We look at some
earlier work in parallel decision diagrams in Section 1.4. In Section 1.5 we
discuss the contributions in this thesis and Section 1.6 lists the publications that
they are based on. Finally, Section 1.7 gives an outline of the rest of the thesis.

1.1 Symbolic model checking

As the modern society increasingly depends on automated and complex sys-
tems, the safety demands on such systems increase as well. We depend on
automated systems for basic infrastructure, to clean our water, to supply energy,
to control our cars and trains, to monitor and process our financial transactions

1

1.1. Symbolic model checking c s
3

and for the internet. We use systems for entertainment when watching TV or
using the phone, or for cooking with modern stoves, microwaves and fridges.
Failure or unexpected behavior in these ubiquitous systems can have many
consequences, from mild annoyances to fatal accidents. This motivates research
into the formal verification of such systems, as well as computing properties
such as failure rates and time to recovery.

In model checking, systems are modeled as sets of possible states of the
system and transitions between these states. System states are typically rep-
resented by Boolean vectors. Fixed point algorithms, which are procedures
that repeatedly apply some operation until a fixed point is reached, play a
central role in many model checking algorithms. An example of a fixed point
algorithm is state space exploration (“reachability”), which computes all states
reachable from the initial state of the system. Many model checking algorithms
depend on state space exploration to determine the number of states, to check
if an invariant is always true, to find cycles and deadlocks, and so forth.

A major challenge in model checking is that the space and time require-
ments of these algorithms increase exponentially with the size of the models.
One technique to alleviate this problem is symbolic model checking [Bur+92;
Bur+94]. In symbolic model checking, sets of states and transitions are rep-
resented by their characteristic (Boolean) functions, which are stored using
binary decision diagrams (BDDs), whereas in traditional explicit-state model
checking, states and transitions are typically stored and treated individually.
One advantage of using BDDs for fixed point computations is that equivalence
testing is a trivial check, since BDDs uniquely represent Boolean functions.
As small Boolean formulas could describe very large state spaces, symbolic
model checking has been very successful to push the limits of model checking
in the past [Bur+92]. Symbolic representations are also quite natural for the
composition of multiple transition systems, e.g., when composing systems from
subsystems.

Bisimulation minimisation Another technique to reduce the state space ex-
plosion problem is bisimulation minimisation. Bisimulation minimisation
computes a minimal system equivalent to the original system with respect to
some notion of equivalence, for example when applying some abstraction to
the state space, ignoring irrelevant variables or actions, or abstracting from
internal transitions. Symbolic bisimulation minimisation combines the bisimu-
lation minimisation technique with decision diagrams. This can speed up this
process considerably, especially for suitable models [WHB06; Wim+06; Der07b;
Wim+07]. Symbolic bisimulation minimisation also acts as a bridge between
symbolically defined models and explicit-state analysis techniques, especially
for models that have a very large state space and only few distinguishable

1

4
s c

1. Introduction

reachable states. This typically happens when abstracting from internal details.

1.2 Binary decision diagrams

One of the most fundamental concepts in computer science is Boolean logic,
with Boolean variables, which are either true or false. Boolean logic and
variables are particularly fundamental, as all digital data can be expressed in
binary form. Boolean formulas are defined on Boolean variables and contain
operations such as conjunction (x ∧ y), disjunction (x ∨ y), negation (¬x) and
quantification (∃ and ∀). Boolean functions are functions BN → B (on N
inputs), with a Boolean formula representing the relation between the inputs
and the output of the Boolean function. Binary decision diagrams (BDDs) are a
canonical and often concise representation of Boolean functions [Ake78; Bry86].

A (reduced, ordered) BDD is a rooted directed acyclic graph with leaves
0 and 1. Each internal node has a variable label xi and two outgoing edges
labeled 0 and 1, called the “low” and the “high” edge. Furthermore, variables
are encountered along each directed path according to a fixed variable ordering.
Duplicate nodes and nodes with identical outgoing edges (redundant nodes)
are forbidden. It is well known that every Boolean function is represented by a
unique BDD [Bry86]. See Figure 1.1 for examples of simple BDDs.

x x1 ∧ x2 x1 ∨ x2 x1 ⊕ x2

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

Figure 1.1 Binary decision diagrams for several Boolean functions. Internal nodes
are drawn as circles with variables, and leaves as boxes. High edges are drawn solid,
and low edges are drawn dashed. BDDs are evaluated by following the high edge when
a variable x is true, or the low edge when it is false.

There are various equivalent ways to interpret a binary decision diagram,
leading to the same Boolean function:

1. Consider every distinct path from the root of the BDD to the terminal 1.
Every such path assigns true or false to the variables encountered along
that path, by following either the high edge or the low edge. In this way,
every path corresponds to a conjunction of literals, also called a cube. For

1

1.3. Parallelism c s
5

example, the cube x0x1x3x4x5x7 corresponds to a path that follows the
high edges of nodes labeled x0, x3 and x4, and the low edges of nodes
labeled x1, x5 and x7. If the cubes c1, . . . , ck correspond to the k distinct
paths in a BDD, then this BDD encodes the Boolean function c1 ∨ · · · ∨ ck.

2. Alternatively, after computing fx=1 and fx=0 by interpreting the BDDs
obtained by following the high and the low edges, a BDD node with
variable label x represents the Boolean function x fx=1 ∨ x fx=0.

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision
diagrams (MTBDDs) have been proposed [Bah+93; Cla+93] with arbitrary
leaves, representing functions from the Boolean space BN to other sets, for
example integers (BN → N) and real numbers (BN → R). Complementary,
multi-valued decision diagrams (MDDs) [Kam+98] generalize BDDs to the
integer domain (NN → B).

1.3 Parallelism

A major goal in computing is to perform ever larger calculations and to improve
their performance and efficiency. This can be accomplished using various
techniques that are often orthogonal to each other, such as better algorithms,
faster processors, and parallel computing using multiple processors. Faster
hardware increases the performance of most computations, often regardless of
the algorithm, although some algorithms benefit more from processor speed
while others benefit more from faster memory access. For suitable algorithms,
parallel processing can considerably improve the performance, on top of what
is possible just by increased processor speeds. See e.g. the PhD thesis of
Laarman [Laa14] for extensive work in multi-core explicit-state model checking.

A famous statement in computer science is Moore’s Law [Moo65], which
states that the number of transistors on chips doubles every 18 months. For
a long time, one of the main consequences of a higher number of transistors,
as well as their decreasing size, was that processors became faster and more
efficient. However, physical constraints limit the opportunities for higher clock
speeds, shifting attention from clock speeds to parallel processing. As a result,
the processing power of modern chips continues to increase as Moore’s Law
predicts, but now efficient parallel algorithms are required to make use of
multi-core computers.

For some algorithms, efficient parallelism is almost trivial. It is no coinci-
dence that graphics cards contain thousands of small processors, resulting in
massive speedups for very particular applications. Other algorithms are more
difficult to parallelize. For example, some algorithms are inherently sequential,
with few opportunities for the parallel execution of independent calculation
paths. Other algorithms have enough independent paths for parallelization

1

6
s c

1. Introduction

in theory, but are difficult to parallelize in practice, for example because they
are irregular and continuously require load balancing, moving work between
processors. Some algorithms are memory intensive, i.e., they spend most of
their time manipulating data in memory, which can result in bottlenecks due
to the limited bandwidth between processors and the memory, as well as time
spent waiting in locks.

The research in this thesis is about the parallelization of algorithms for
decision diagrams, which are large directed acyclic graphs. They are typically
irregular and mainly consist of unpredictable memory accesses with high
demands on memory bandwidth. Decision diagrams are often used as the
underlying operations of other algorithms. If the underlying decision diagram
operations are parallelized, then sequential algorithms that use them may also
benefit from the parallelization, although the effect may be small for algorithms
that mostly consist of small decision diagram operations. We show this effect
when applying parallel decision diagram operations to the (sequential) breadth-
first-search symbolic state space exploration algorithm in Chapter 5. This
already results in a good parallel speedup. We further show that even higher
parallel speedups are obtained by also parallelizing the state space exploration
itself (by exploiting a disjunctive partitioning of the transition relation) in
addition to using parallel decision diagram operations.

Cache hierarchy and coherency In order to improve the performance of
modern computer systems, most processors have several levels of caching. On
contemporary multi-core systems, processors typically have a very fast but
small L1 cache for each core, a slower but larger L2 cache that is sometimes
shared between cores, and an even larger and slower L3 cache that is often
shared with all cores on one processor.

The caches are connected with each other and with processor cores and
with the memory via interconnect channels. On this interconnect network,
data is transferred in blocks called cachelines, which are usually 64 bytes long.
In addition, the “cache coherency protocol” ensures that all processors have
a coherent view of the memory. When processors write or read cachelines,
their caches at various levels communicate based on an internal state machine
for each cacheline. Especially writing to memory often results in a lot of
communication. For example, writing a cacheline results in an invalidation
message to the other caches, which then have to refresh their view on the
memory when they access that cacheline again. Because data is managed and
transferred in blocks of 64 bytes, one issue in parallel computing is false sharing:
if independent variables are stored on the same cacheline, then writing to one
variable also causes the invalidation of the other variables, even if those other
variables were not modified.

1

1.3. Parallelism c s
7

processor 1

12 cores
processor 2

12 cores

processor 3

12 cores
processor 4

12 cores

mem 1

16 GB

mem 2

16 GB
mem 3

16 GB

mem 4

16 GB

mem 5

16 GB

mem 6

16 GB
mem 7

16 GB

mem 8

16 GB

Figure 1.2 Example of a non-uniform memory access architecture, with in total 48
cores and 128 GB memory.

System architecture In this thesis, we work with non-uniform memory access
(NUMA) architectures: systems that have multiple multi-core processors and
multiple memories, connected via an interconnect network. For example, see
Figure 1.2. The processors in NUMA machines view memory as a single
uniform shared block of memory, but the underlying architecture is more like
a message passing system. When reasoning about concurrency and bottlenecks
in modern machines, one should consider the messages that are sent on the
lower level due to the cache coherency protocol.

One consequence of having multiple memories is that typically memory
access times depend on the distance between each processor and the accessed
part of memory. The operating system offers some control over the location
of certain memory blocks and to force threads to run on specific processors
or processor cores. Although we do not discuss this in-depth in this thesis,
trying to minimize the distance between accessed memory and the processors
is something that we take into account when implementing the load balancing
framework (Chapter 3) and the concurrent hash tables (Chapter 4).

Weak memory models In order to significantly improve the performance of
many programs, processors typically have a so-called weak memory model.
In a strong memory model, memory reads and memory writes are sequen-
tially consistent, i.e., as if the operations of all the processors are executed in

1

8
s c

1. Introduction

some sequential order. If one processor performs a memory write, then other
processors immediately see the updated value.

The x86 TSO memory model [Sew+10] that is used in many modern com-
modity processors, including the processors that we use for our experiments, is
not sequentially consistent, but allows reordering reads before writes. Memory
writes are buffered before reaching the caches and the memory, hence reads
can occur before preceding memory writes are visible to other processors. The
memory writes of each processor are not reordered, which is called “total store
ordering”. Special instructions called memory fences flush the write buffer be-
fore reading from memory. In reasoning about the behavior and correctness of
algorithms on weak memory models, it is important to consider this reordering,
as we see in Chapter 3.

Locking and lock-free programming Furthermore, for communication be-
tween processors, atomic operations are often used to avoid race conditions. A
race condition exists when multiple threads access the same bytes in memory.
Typically, such places in memory are then protected using “locks”, but locks
are notoriously bad for parallel performance, because other threads have to
wait until the lock is released, and locks are often a bottleneck when many
threads try to acquire the same lock.

A standard technique that avoids locks uses the compare_and_swap (cas)
operation, which is an operation that is supported by many modern processors.
This operation atomically compares the contents of a given address in shared
memory to some given value and, if the contents match with the given value,
changes the contents to a given new value. If multiple processors try to change
the same bytes in memory using cas at the same time, then only one succeeds.

Datastructures that avoid locks are called non-blocking or lock-free. Such
data structures often use the cas operation to make progress in an algorithm,
rather than protecting a part that makes progress. For example, when modi-
fying a shared variable, an approach using locks would first acquire the lock,
then modify the variable, and finally release the lock. A lock-free approach
would use cas to modify the variable directly. This requires only one memory
operation rather than three, but lock-free approaches are typically more com-
plicated to reason about, and prone to bugs that are more difficult to reproduce
and debug.

In this thesis, we implement several non-blocking data structures, e.g., for
the work-stealing framework in Chapter 3 and for the hash tables in Chapter 4.

1

1.4. Earlier work in parallel BDDs c s
9

1.4 Earlier work in parallel BDDs

This section is largely based on earlier literature reviews we presented in [DLP13;
DP15].

Massively parallel computing (early ’90s). In the early ’90s, researchers tried
to speed up BDD manipulation by parallel processing. The first paper [KC90]
views BDDs as automata, and combines them by computing a product automa-
ton followed by minimization. Parallelism arises by handling independent
subformulae in parallel: the expansion and reduction algorithms themselves
are not parallelized. They use locks to protect the global hash table, but this still
results in a speedup that is almost linear with the number of processors. Most
other work in this era implemented BFS algorithms for vector machines [OIY91]
or massively parallel SIMD machines [CGS92; GRS95] with up to 64K proces-
sors. Experiments were run on supercomputers, like the Connection Machine.
Given the large number of processors, the speedup (around 10 to 20) was
disappointing.

Parallel operations and constructions An interesting contribution in this
period is the paper by Kimura et al. [KIH92]. Although they focus on the con-
struction of BDDs, their approach relies on the observation that suboperations
from a logic operation can be executed in parallel and the results can be merged
to obtain the result of the original operation. Our solution to parallelizing
BDD operations follows the same line of thought, although the work-stealing
method for efficient load balancing that we use was first published two years
later [Blu94]. Similar to [KIH92], Parasuram et al. implement parallel BDD op-
erations for distributed systems, using a “distributed stack” for load balancing,
with speedups from 20–32 on a CM-5 machine [PSC94]. Chen and Banerjee
implement the parallel construction of BDDs for logic circuits using lock-based
distributed hash tables, parallelizing on the structure of the circuits [CB99].
Yang and O’Hallaron [YO97] parallelize breadth-first BDD construction on
multi-processor systems, resulting in reasonable speedups of up to 4x with
8 processors, although there is a significant synchronization cost due to their
lock-protected unique table.

Distributed memory solutions (late ’90s). Attention shifted towards Net-
works of Workstations, based on message passing libraries. The motivation was
to combine the collective memory of computers connected via a fast network.
Both depth-first [ACM96; SB96; Bia+97] and breadth-first [San+96] traversal
have been proposed. In the latter, BDDs are distributed according to variable
levels. A worker can only proceed when its level has a turn, so these algorithms

1

10
s c

1. Introduction

are inherently sequential. The advantage of distributed memory is not that mul-
tiple machines can perform operations faster than a single machines, but that
their memory can be combined in order to handle larger BDDs. For example,
even though [SB96] reports a nice parallel speedup, the performance with 32

machines is still 2x slower than the non-parallel version. BDDNOW [MH98] is
the first BDD package that reports some speedup compared to the non-parallel
version, but it is still very limited.

Parallel symbolic reachability (after 2000). After 2000, research attention
shifted from parallel implementations of BDD operations towards the use
of BDDs for symbolic reachability in distributed [GHS06; CC04] or shared
memory [ELC07; CZJ09]. Here, BDD partitioning strategies such as horizontal
slicing [CC04] and vertical slicing [Hey+00] were used to distribute the BDDs
over the different computers. Also the saturation algorithm [CLS01], an optimal
iteration strategy in symbolic reachability, was parallelized using horizontal
slicing [CC04] and using the work-stealer Cilk [ELC07], although it is still
difficult to obtain good parallel speedup [CZJ09].

Multi-core BDD algorithms. There is some recent research on multi-core
BDD algorithms. There are several implementations that are thread-safe, i.e.,
they allow multiple threads to use BDD operations in parallel, but they do
not offer parallelized operations. In a thesis on the BDD library JINC [Oss10],
Chapter 6 describes a multi-threaded extension. JINC’s parallelism relies on
concurrent tables and delayed evaluation. It does not parallelize the basic BDD
operations, although this is mentioned as possible future research. Also, a
recent BDD implementation in Java called BeeDeeDee [LMS14] allows execu-
tion of BDD operations from multiple threads, but does not parallelize single
BDD operations. Similarly, the well-known sequential BDD implementation
CUDD [Som15] supports multi-threaded applications, but only if each thread
uses a different “manager”, i.e., unique table to store the nodes in. Except for
our contributions [DLP12; DLP13; DP15] related to Sylvan, there is no recent
published research on modern multi-core shared-memory architectures that
parallelizes the actual operations on BDDs. Recently, Oortwijn et al. [Oor15]
continued our work by parallelizing BDD operations on shared memory ab-
stractions of distributed systems using remote direct memory access.

1.5 Contributions

This thesis contains several contributions related to the multi-core implementa-
tion of decision diagrams. This section summarizes these contributions.

1

1.5. Contributions c s
11

1.5.1 Scalable hash tables with garbage collection

The two main data structures used for decision diagrams are the hash table
used to store the nodes of the decision diagrams, and the operation cache that
stores results of intermediate operations. This operation cache is required for
decision diagram operations, as we discuss in Chapter 2. The parallel scalability
of algorithms for decision diagrams depends for a large part on these two main
data structures. Chapter 4 presents these data structures based on the work
that we did in [DLP13; DP15; DP16b].

An essential part of manipulating decision diagrams is garbage collection.
Most operations on decision diagrams continuously create new nodes in the
nodes table, and to free up space for these nodes, unused nodes must often
be deleted. Our concurrent hash table is based on the efficient scalable hash
table by Laarman et al. [LPW10]. This hash table uses a short-lived local
lock that only blocks concurrent operations that are very likely to insert the
same data, and uses a novel variation on linear probing based on cachelines
(“walk the line”). This table only supports the find-or-insert operation.
In [DLP13], we extend the hash table to support garbage collection. Our initial
implementation reserves space in each bucket to count the number of internal
and external references to each node. We modify this hash table [DP15] to
remove the reference count and replace the implementation by a mark-and-
sweep approach, with the external references stored outside the hash table.
Finally, in [DP16b], we improve the hash table with bitmaps for bookkeeping
(as described in Chapter 4), further simplifying the design of the hash table,
as well as removing the short-lived lock and reducing the number of atomic
operations per call.

The operation cache stores intermediate results of BDD operations. It is
well known that an operation cache is required to reduce the worst-case time
complexity of BDD operations from exponential time to polynomial time. In
practice, we do not guarantee this property, but find that we obtain a better
performance by allowing the cache to overwrite earlier results when there is a
hash collision. We also implement a feature called “caching granularity” which
controls how often computation results are cached. We see in practice that the
cost of occasionally recomputing suboperations is less than the cost of always
consulting the operation cache.

We implement the operation cache as a simplified hash table, which deals
with hash collisions by overwriting existing cached results and prefers aborting
operations when there are conflicts (such as race conditions). This avoids
having to use locks and improves the performance in practice.

1

12
s c

1. Introduction

1.5.2 Work-stealing framework Lace

Since one of the important parts of a scalable multi-core implementation of
decision diagram operations is load balancing, we investigate task-based par-
allelism using work-stealing in Chapter 3. Here, we present a novel data
structure called a non-blocking split deque for work-stealing, which forms the
basis of the work-stealing framework Lace. This framework is similar to the
existing fine-grained work-stealing framework Wool [Fax08; Fax10]. In our
initial implementation, we used Wool for load balancing as it is relatively easy
to use and performs well compared to other libraries, especially compared to
the well-known framework Cilk [PBF10]. We implemented our own frame-
work Lace as a research vehicle and for features that are particularly useful for
parallel decision diagrams, such as a feature where all workers cooperatively
suspend their current tasks and start a new task tree. This is used to implement
stop-the-world garbage collection in Sylvan.

1.5.3 Multi-core decision diagram library Sylvan

One of the main contributions of this thesis is the reusable multi-core decision
diagram library Sylvan. Sylvan implements parallelized operations on deci-
sion diagrams for multi-core machines, and can replace existing non-parallel
implementations to bring the processing power of multi-core machines to non-
parallel applications. Sylvan implements binary decision diagrams (BDDs), list
decision diagrams (LDDs), which are a kind of multi-valued decision diagrams
used in the model checking toolset LTSmin [Kan+15], and multi-terminal binary
decision diagrams (MTBDDs) [Bah+93; Cla+93]. We present these contributions
in Chapter 2.

Parallel BDD and LDD operations For BDDs, Sylvan parallelizes many stan-
dard operations that are also implemented by sequential BDD libraries, such
as the binary operators, existential and universal quantification, variable sub-
stitution and functional composition. Sylvan also implements parallelized
versions of the minimization algorithms restrict and constrain (also called
generalized cofactor), based on sibling-substitution [CM90]. In model checking,
a specific variable ordering is popular for transition relations and relnext
and relprev are specialized implementations to compute the successors and
predecessors of sets of states for this particular variable ordering.

While these functions are not new, their parallel implementation in Sylvan
is a novel contribution which provides good parallel scalability in real-world
applications such as symbolic model checking and bisimulation minimisation.

In the application of model checking with the toolset LTSmin (Section 1.5.4
and Chapter 5), LDDs are an efficient representation of state spaces where state

1

1.5. Contributions c s
13

variables are integers. Sylvan implements various set operations using LDDs,
such as union (f ∨ g), intersect (f ∧ g), minus (f ∧¬g), project (projection by
abstracting from variables), and a number of specialized operations for LTSmin,
also resulting in good parallel scalability.

Extensible parallel MTBDD framework Applications like bisimulation mini-
misation of probabilistic models require the representation of functions to other
domains, such as real numbers or rational numbers, e.g., for representing the
rates of Markovian transitions. MTBDDs can be used to store such functions.
The well-known BDD package CUDD [Som15] implements MTBDDs (also
called “algebraic decision diagrams” [Bah+93]) with floating-point (double)
leaves. Several modified versions of CUDD exist that use different leaf types,
such as in the sigref tool for bisimulation minimisation [WB10], which uses
the GMP library for rational numbers.

Our approach offers a framework for various leaf node types. By default,
Sylvan supports integers (int64_t), floating-point numbers (double), rational
numbers with 32-bit numerators and 32-bit denominators, and rational numbers
from the GMP library (mpq_t). The framework implements a number of multi-
core operations on MTBDDs, such as plus, minus, max, min and times, as well
as the algorithms for variable abstraction, abstract_plus (which is similar
to existential quantification for Boolean functions), abstract_times (which is
similar to universal quantification for Boolean functions), abstract_max and
abstract_min. This framework is designed for adding custom operations and
custom types, providing an example with the support for the GMP library.

1.5.4 Multi-core on-the-fly reachability

The main application for which we developed Sylvan is symbolic model check-
ing. As discussed above, a fundamental algorithm in symbolic model checking
is state space exploration. Chapter 5 discusses the application of parallel deci-
sion diagrams in the model checking toolset LTSmin, based on the work that
we did in [DLP12; DLP13; DP15; Kan+15].

The model checking toolset LTSmin provides a language independent Par-
titioned Next-State Interface (Pins), which connects various input languages
to model checking algorithms [BPW10; LPW11; DLP12; Kan+15]. In Pins,
states are vectors of N integers. Transitions are distinguished in K disjunctive
transition groups. The symbolic model checker in LTSmin is based around state
space exploration to learn the model and check properties on-the-fly.

Initially, we simply use Sylvan for the BDD operations in LTSmin. We
keep the algorithms in LTSmin sequential and only use the multi-core BDD
operations. This already results in a good parallel speedup, of up to 30x on

1

14
s c

1. Introduction

48 cores, as discussed in Chapter 5. Subsequently, we exploit the disjunctive
partitioning of the transitions and parallelize state space exploration in LTSmin

using the Lace framework. We also parallelize the on-the-fly transition learning
that LTSmin offers using specialized BDD operations. This results in a speedup
of up to 40x on 48 cores. Besides BDDs, LTSmin also uses LDDs for model
checking. We implement multi-core LDD operations in Sylvan and demonstrate
that our parallel implementation of LDDs results in a faster implementation
compared to BDDs, while the same high parallel scalability.

1.5.5 Multi-core symbolic bisimulation minimisation

Bisimulation minimisation alleviates the exponential growth of transition sys-
tems in model checking by computing the smallest system that has the same
behavior as the original system according to some notion of equivalence. One
popular strategy to compute a bisimulation minimisation is signature-based
partition refinement [BO03]. This can be performed symbolically using bi-
nary decision diagrams to allow models with larger state spaces to be mini-
mised [WHB07; Wim+06].

In [DP16a], on which Chapter 6 is based, we use the MTBDD framework in
Sylvan for symbolic bisimulation minimisation. We study strong and branching
symbolic bisimulation for labeled transition systems, continuous-time Markov
chains, and interactive Markov chains. We introduce the notion of partition
refinement with partial signatures. We extend Sylvan to parallelize the signature
refinement algorithm, and develop a new parallel BDD algorithm to refine a
partition, which conserves previous block numbers and uses a parallel data
structure to store block number assignments. We also present a specialized BDD
algorithm for the computation of inert transitions. The experimental evaluation,
based on benchmarks from the literature, demonstrates a speedup of up to
95x sequentially. In addition, we find parallel speedups of up to 17x due to
parallelisation with 48 cores. Finally, we present the implementation of these
algorithms as a versatile framework that can be customized for state-based
bisimulation minimisation in various contexts.

1.6 Publications

Parts of this thesis have been published in the following publications:

[DLP13] Tom van Dijk, Alfons Laarman, and Jaco van de Pol. “Multi-Core BDD
Operations for Symbolic Reachability.” In: ENTCS 296 (2013), pp. 127–143

This paper, presented at PDMC 2012, lays the foundations of multi-core BDD
operations for symbolic model checking, using the work-stealing framework

http://dx.doi.org/10.1016/j.entcs.2013.07.009
http://dx.doi.org/10.1016/j.entcs.2013.07.009

1

1.6. Publications c s
15

Wool and our initial implementation of the concurrent hash table. This version
of the hash table uses reference counting for the garbage collection. We demon-
strate the viability of our approach to multi-core BDD operations by evaluating
its performance on benchmarks of symbolic reachability.

[DP14] Tom van Dijk and Jaco van de Pol. “Lace: Non-blocking Split Deque for
Work-Stealing.” In: MuCoCoS. vol. 8806. LNCS. Springer, 2014, pp. 206–217

This paper, presented at the MuCoCoS workshop in 2014, presents our work-
stealing framework Lace, based on a novel non-blocking queue for work-
stealing, and demonstrates its performance using a standard set of benchmarks.
Chapter 3 is mostly based on this paper.

[DP15] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-Core Decision
Diagrams.” In: TACAS. vol. 9035. LNCS. Springer, 2015, pp. 677–691

This paper, presented at TACAS 2015, presents an extension of Sylvan with
operations on list decision diagrams (LDDs) for symbolic model checking. We
also investigate additional parallelism on top of the parallel BDD/LDD opera-
tions, by exploiting the disjunctive partitioning of the transition relation in the
model checking toolset LTSmin. Applying these transition relations in parallel
results in improved parallel speedups. In addition, we extend Sylvan with
support for parallel transition learning, which is required for scalable on-the-fly
reachability. We replace the concurrent hash table with a modified version,
that uses a mark-and-sweep approach for garbage collection, eliminating some
bookkeeping and complexity in the hash table implementation.

[DP16a] Tom van Dijk and Jaco van de Pol. “Multi-Core Symbolic Bisimulation
Minimisation.” In: TACAS. vol. 9636. LNCS. Springer, 2016, pp. 332–348

This paper, presented at TACAS 2016, is about the application of Sylvan to
symbolic bisimulation minimisation. This technique creates the smallest model
that is equivalent to the original model according to some notion of bisimulation
equivalence. We treated strong and branching bisimulation. We show how
custom BDD operations result in a large speedup compared to the original, and
that using multi-core BDD operations results in good parallel scalability. This
paper has been selected to be extended for a journal paper in a special issue of
STTT. Chapter 6 is mostly based on this paper.

[DP16b] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-core Framework for
Decision Diagrams.” In: STTT (2016). Accepted.

This journal paper is an extended version of [DP15], which was selected for
a special issue of STTT, and presents the extension of Sylvan with a versatile

http://dx.doi.org/10.1007/978-3-319-14313-2_18
http://dx.doi.org/10.1007/978-3-319-14313-2_18
http://dx.doi.org/10.1007/978-3-662-46681-0_60
http://dx.doi.org/10.1007/978-3-662-46681-0_60
http://dx.doi.org/10.1007/978-3-662-49674-9_19
http://dx.doi.org/10.1007/978-3-662-49674-9_19

1

16
s c

1. Introduction

implementation of MTBDDs, allowing symbolic computations on integers,
floating-points, rational numbers and other types. Furthermore, we modify
the nodes table with a version that requires fewer cas operations per created
node. This paper also elaborates in more detail on the operation cache, parallel
garbage collection and details on memory management in Sylvan.

The author of this thesis has also contributed to the following publications:

[DLP12] Tom van Dijk, Alfons W. Laarman, and Jaco van de Pol. “Multi-core
and/or Symbolic Model Checking.” In: ECEASST 53 (2012)

This invited paper at AVOCS reviews the progress in high-performance model
checking using the model checking toolset LTSmin and mentions Sylvan as a
basis for scalable parallel symbolic model checking.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan
Blom, and Tom van Dijk. “LTSmin: High-Performance Language-Independent
Model Checking.” In: TACAS 2015. Vol. 9035. LNCS. Springer, 2015, pp. 692–
707

This paper presents a number of extensions to the LTSmin model checking
toolset, with support for new modelling languages, additional analysis algo-
rithms, and multi-core symbolic model checking using Sylvan. The paper
presents an overview of the toolset and its recent changes, and we demonstrate
its performance and versatility in two case studies.

[Dij+15] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li, Thomas
Neele, Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. “A Comparative
Study of BDD Packages for Probabilistic Symbolic Model Checking.” In: SETTA.
vol. 9409. LNCS. Springer, 2015, pp. 35–51

This paper compares the performance of various BDD/MTBDD packages
for the analysis of large systems using symbolic (probabilistic) methods. We
provide experimental results for several well-known probabilistic benchmarks
and study the effect of several optimisations. Our experiments show that no
BDD package dominates on a single core, but that parallelisation with Sylvan
yields significant speedups.

[ODP15] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. “A Distributed
Hash Table for Shared Memory.” In: Parallel Processing and Applied Mathematics.
Vol. 9574. LNCS. Springer, 2015, pp. 15–24

This paper, presented at PPAM 2015, studies the performance of a distributed
hash table design, which uses a shared memory abstraction with Infiniband and

http://dx.doi.org/10.14279/tuj.eceasst.53.773.776
http://dx.doi.org/10.14279/tuj.eceasst.53.773.776
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-319-25942-0_3
http://dx.doi.org/10.1007/978-3-319-25942-0_3
http://dx.doi.org/10.1007/978-3-319-32152-3_2
http://dx.doi.org/10.1007/978-3-319-32152-3_2

1

1.7. Overview c s
17

remote direct memory access. This paper is part of the research by Oortwijn into
parallelizing BDD operations on distributed systems, similar to our approach
on multi-core systems.

1.7 Overview

The remainder of this thesis is organized in the following way:

Chapter 2 gives a high-level overview of decision diagrams and decision di-
agram operations. We discuss the design of the parallel decision diagram
package Sylvan and the various parallelized algorithms, as well as the MTBDD
framework.

Chapter 3 presents the work-stealing framework Lace and our non-blocking
work-stealing deque.

Chapter 4 discusses the main concurrent data structures: the hash table that
contains the nodes of the decision diagrams, and the operation cache that stores
the intermediate results of the operations.

Chapter 5 demonstrates the application of multi-core decision diagram op-
erations in LTSmin. We show that just using the multi-core operations in a
sequential state space exploration results in a speedup of up to 30x with 48

cores, which is further improved to up to 40x by also parallelizing the state
space exploration algorithm.

Chapter 6 applies the multi-core decision diagram operations of Sylvan to
symbolic bisimulation minimisation. We also implement custom (MT)BDD
operations for bisimulation minimisation, resulting in speedups of 95x sequen-
tially, and additionally in parallel up to 17x with up to 48 cores.

Chapter 7 concludes the thesis with a reflection of what has been achieved, and
some promising directions for future work.

1

2

Chapter 2

Decision diagrams

The current chapter provides a more detailed overview of decision di-
agrams and the parallel decision diagram operations in Sylvan. We
first review Boolean logic (Section 2.1.1), binary decision diagrams (Sec-

tion 2.1.2), multi-terminal decision diagrams (Section 2.1.3), multi-valued deci-
sion diagrams (Section 2.1.4), and list decision diagrams (Section 2.1.5). Sec-
tion 2.2 discusses the main challenges for parallelism and our strategy to
parallelize the decision diagram operations in Sylvan. Here, we also discuss
garbage collection and memory management in Sylvan. Section 2.3 gives an
overview of the BDD algorithms that we parallelized in Sylvan. Section 2.4
presents the MTBDD framework in Sylvan and describes the main operations
that we implemented. Finally, section 2.5 briefly describes the LDD algorithms
that we parallelized for set operations in symbolic model checking.

2.1 Preliminaries

2.1.1 Boolean logic and notation

One of the most fundamental concepts in computer science is Boolean logic,
with Boolean variables, which are either true or false. Boolean logic and
variables are particularly fundamental, as all digital data can be expressed in
binary form. Boolean formulas are defined on Boolean variables and contain
operations such as conjunction (x ∧ y), disjunction (x ∨ y), negation (¬x) and
quantification (∃ and ∀). Boolean functions are functions BN → B (on N
inputs), with a Boolean formula representing the relation between the inputs
and the output of the Boolean function.

In this thesis, we often use 0 to denote false and 1 to denote true. In
addition, we use the notation fx=v to denote a Boolean function f where the
variable x is given value v. For example, given a function f defined on N

19

2

20
s c

2. Decision diagrams

variables:

f (x1, . . . , xi, . . . , xN)xi=0 ≡ f (x1, . . . , 0, . . . , xN)

f (x1, . . . , xi, . . . , xN)xi=1 ≡ f (x1, . . . , 1, . . . , xN)

This notation is especially relevant for decision diagrams, as they are recursively
defined on the value of a variable.

2.1.2 Binary decision diagrams

Binary decision diagrams (BDDs) are a concise and canonical representation
of Boolean functions BN → B [Ake78; Bry86], and are one of the most basic
structures in discrete mathematics and computer science.

A (reduced, ordered) BDD is a rooted directed acyclic graph with leaves
0 and 1. Each internal node has a variable label xi and two outgoing edges
labeled 0 and 1, called the “low” and the “high” edge. Furthermore, variables
are encountered along each directed path according to a fixed variable ordering.
Duplicate nodes (two nodes with the same variable label and outgoing edges)
and nodes with two identical outgoing edges (redundant nodes) are forbidden.
It is well known that, given a fixed order, every Boolean function is represented
by a unique BDD [Bry86].

The following figure shows the BDDs for several Boolean functions. Internal
nodes are drawn as circles with variables, and leaves as boxes. High edges
are drawn solid, and low edges are drawn dashed. Given a valuation of the
variables, BDDs are evaluated by following the high edge when the variable x
is true, or the low edge when it is false.

x x1 ∧ x2 x1 ∨ x2 x1 ⊕ x2

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

There are various equivalent ways to interpret a binary decision diagram,
leading to the same Boolean function:

1. Consider every distinct path from the root of the BDD to the terminal 1.
Every such path assigns true or false to the variables encountered along

2

2.1. Preliminaries c s
21

that path, by following either the high edge or the low edge. In this
way, every path corresponds to a conjunction of literals, sometimes called
a cube. For example, the cube x0x1x3x4x5 corresponds to a path that
follows the high edges of nodes labeled x0, x3 and x4, and the low edges
of nodes labeled x1 and x5. If the cubes c1, . . . , ck correspond to the k
distinct paths in a BDD, then this BDD encodes the function c1 ∨ · · · ∨ ck.

2. Alternatively, after computing fx=1 and fx=0 by interpreting the BDDs
obtained by following the high and the low edges, a BDD node with
variable label x represents the Boolean function x fx=1 ∨ x fx=0.

In addition, we use complement edges [BRB90] as a property of an edge to
denote the negation of a BDD, i.e., the leaf 1 in the BDD will be interpreted as
0 and vice versa, or in general, each terminal node will be interpreted as its
negation. This is a well-known technique. We write ¬ to denote toggling this
property on an edge. The following figure shows the BDDs for the same simple
examples as above, but with complement edges:

x x1 ∧ x2 x1 ∨ x2 x1 ⊕ x2

0

x

0

x2

x1

0

x2

x1

0

x2

x1

As this example demonstrates, always strictly fewer nodes are required, and
there is only one (“false”) terminal node. The terminal “true” is simply a
complement edge to “false”. We only allow complement marks on the high
edges to maintain the property that BDDs uniquely represent Boolean functions
(see also below).

The interpretation of a BDD with complement edges is as follows:
1. Count the complement edges on each path to the terminal 0. Since

negation is an involution (¬¬x = x), each path with an odd number
of complement edges is a path to “true”, and with cubes c1, . . . , ck cor-
responding to all such paths, the BDD encodes the Boolean function
c1 ∨ · · · ∨ ck.

2. If the high edge has a complement mark, then the BDD node represents
the Boolean function x¬ fx=1 ∨ x fx=0, otherwise x fx=1 ∨ x fx=0.

With complement edges, the following BDDs are identical:

2

22
s c

2. Decision diagrams

xi xi

Complement edges thus introduce a second representation of a Boolean
function: if we toggle the complement mark on the two outgoing edges and
on all incoming edges, we find that it encodes the same Boolean function. By
forbidding a complement on one of the outgoing edges, for example the low
edge, BDDs remain canonical representations of Boolean functions, since then
the representation without a complement mark on the low edge is always
used [BRB90].

2.1.3 Multi-terminal binary decision diagrams

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision dia-
grams (MTBDDs) have been proposed [Bah+93; Cla+93] with arbitrary leaves,
representing functions from the Boolean space BN onto any set. For example,
MTBDDs can have leaves representing integers (encoding BN →N), floating-
point numbers (encoding BN → R) and rational numbers (encoding BN → Q).
In our implementation of MTBDDs, we also allow for partially defined func-
tions, using a leaf ⊥. See Figure 2.1 for a simple example of such an MTBDD.

Similar to the interpretation of BDDs, MTBDDs are interpreted as follows:
1. An MTBDD encodes functions from a domain D ⊆ BN onto some

codomain C, such that for each path to a leaf V ∈ C, all inputs matching

x1

x2 x2

⊥ 1 0.5 0.33333

Figure 2.1 A simple MTBDD for a function which maps x1x2 to 1, x1x2 to 0.5, and
x1x2 to 0.33333. The function is undefined for the input x1x2.

2

2.1. Preliminaries c s
23

the corresponding cube c map to V. Also, given all such cubes c1, . . . , ck,
the domain D equals c1 ∨ · · · ∨ ck. All paths corresponding to cubes not
in D, i.e., for which the function is not defined, lead to the leaf ⊥.

2. If an MTBDD is a leaf with the label V, then it represents the function
f (x1, . . . , xN) ≡ V. Otherwise, it is an internal node with label x. After re-
cursively computing fx=1 and fx=0 by interpreting the MTBDDs obtained
by following the high and the low edges, the node represents a function
f (x1, . . . , xN) ≡ if x then fx=1 else fx=0.

Similar to BDDs, MTBDDs can have complement edges. This works only for
leaf types for which negation is properly defined, i.e., each leaf x has a unique
negated counterpart ¬x, such that ¬¬x = x and ¬x 6= x. In general, this does
not work for numbers as 0 = −0 in ordinary arithemetic. In addition, this
also does not work for partially defined functions, as the negation of ⊥ is not
properly defined. In practice this means that we do not use complement edges
on MTBDDs, except for total functions that are Boolean (Boolean MTBDDs are
identical to BDDs, see also Section 2.2.2).

2.1.4 Multi-valued decision diagrams

Multi-valued decision diagrams (MDDs, sometimes also called multi-way de-
cision diagrams) are a generalization of BDDs to the other domains, such as
integers [Kam+98]. Whereas BDDs represent functions BN → B, MDDs repre-
sent functions D1 × · · · ×DN → B, for finite domains D1, . . . , DN . They are
typically used to represent functions on integer domains like (N<v)N .

Instead of 2 outgoing edges, each internal MDD node with variable xi has
ni labeled outgoing edges. For example for integers, these edges could be
labeled 0 to ni − 1. Like BDDs, MDDs can be used to represent sets by their

x1

x2x2 x2 x2

1

0 1 3 5 6

0 2
4 2 4 0 1 1

Figure 2.2 Edge-labeled MDD (hiding the paths to 0) representing the set {〈0, 0〉,
〈0, 2〉, 〈0, 4〉, 〈1, 0〉, 〈1, 2〉, 〈1, 4〉, 〈3, 2〉, 〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}.

2

24
s c

2. Decision diagrams

x1 : 0 1 3 5 6

x2 : 0 2 4 0 1

0

0 0

1 1 1 1 1

Figure 2.3 LDD representing the set {〈0, 0〉, 〈0, 2〉, 〈0, 4〉, 〈1, 0〉, 〈1, 2〉, 〈1, 4〉, 〈3, 2〉,
〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}. We draw the same leaf multiple times for aesthetic reasons.

characteristic function. See Figure 2.2 for an example of an MDD representing
a set of integer pairs, where we hide the edges to terminal 0 to improve the
readability. In this thesis, we study list decision diagrams (see below) as an
alternative to multi-valued decision diagrams.

2.1.5 List decision diagrams

List decision diagrams (LDDs) are an alternative to multi-valued decision
diagrams. They represent sets of integer vectors, such as sets of states in model
checking. List decision diagrams encode functions (N<v)N → B. LDDs were
initially described in [BP08, Sect. 5].

A list decision diagram is a rooted directed acyclic graph with leaves 0 and
1. Each internal node has a value v and two outgoing edges labeled > and =,
also called the “right” and the “down” edge. Along the “right” edges, values v
are encountered in ascending order. The “down” edge never points to leaf 0
and the “right” edge never points to leaf 1. Duplicate nodes are forbidden.

LDD nodes have a property called a level (and its dual, depth), which is
defined as follows: the root node is at the first level, nodes along “right” edges
stay in the same level, while “down” edges lead to the next level. The depth
of an LDD node is the number of “down” edges to leaf 1. All maximal paths
from an LDD node have the same depth.

See Figure 2.3 for an example of an LDD that represents the same set of
integer pairs as the MDD in Figure 2.2.

There are various equivalent ways to interpret a list decision diagram,
leading to the same set of integer vectors:

1. Consider the paths from the root of an LDD of depth k to the terminal 1.
Every such path follows a “down” edge exactly k times, and assigns the
value vi of the node at the level i (with 1 ≤ i ≤ k), where the “down” edge
is followed. In this way, every path corresponds to a k-tuple (v1, . . . , vk).

2

2.1. Preliminaries c s
25

Then the LDD represents the set of all the k-tuples that correspond to
these paths.

2. An LDD with value v represents the set {v w | w ∈ Sdown} ∪ Sright, where
Sdown and Sright are the interpretations of the LDDs obtained by following
the “down” and the “right” edge, and the leaves 0 and 1 are represented
by ∅ and {ε}, respectively.

LDDs compared to MDDs. A typical method to store MDDs in memory is
to store the variable label xi plus an array holding all ni edges (pointers to
nodes), e.g., in [MD02]: struct node { int lvl; node* edges[]; }. New
nodes are dynamically allocated using malloc and a hash table ensures that
no duplicate MDD nodes are created. Alternatively, one could use a large
int[] array to store all MDDs (each MDD is represented by ni + 1 consecutive
integers) and represent edges to an MDD as the index of the first integer. In
[CMS03], the edges are stored in a separate int[] array to allow the number
of edges ni to vary. Implementations of MDDs that use arrays to implement
MDD nodes have two disadvantages. (1) For sparse sets (where only a fraction
of the possible values are used, and outgoing edges to 0 are not stored) using
arrays is a waste of memory. (2) MDD nodes typically have a variable size,
complicating memory management. List decision diagrams can be understood
as a linked-list representation of “quasi-reduced” MDDs. LDDs were initially
described in [BP08, Sect. 5]. Like MDDs for integer domains, they encode
functions (N<v)N → B.

Quasi-reduced (MT)BDDs and MDDs are a variation of normal (fully-
reduced) (MT)BDDs and MDDs. Instead of forbidding redundant nodes (with
two identical outgoing edges), quasi-reduced (MT)BDDs and MDDs forbid
skipping levels. Quasi-reduced (MT)BDDs and MDDs are also canonical rep-
resentations of (MT)BDDs and MDDs. In [CMS03], Ciardo et al. mention
advantages of quasi-reduced MDDs: edges that skip levels are more difficult
to manage and quasi-reduced MDDs are cheaper than alternatives to keep
saturation operations correct. Also, the variables labels do not need to be stored
as they follow implicitly from the depth of the MDD.

LDDs have several advantages compared to MDDs [BP08]. LDD nodes are
binary, so they have a fixed node size which is easier for memory allocation.
They are better for sparse sets: valuations that lead to 0 simply do not appear
in the LDD. LDDs also have more opportunities for the sharing of nodes,
as demonstrated in the example of Figure 2.2, where the LDD encoding the
set {2, 4} is used for the set {0, 2, 4} and reused for the set {〈3, 2〉 , 〈3, 4〉},
and similarly, the LDD encoding {1} is used for {0, 1} and for {〈6, 1〉}. A
disadvantage of LDDs is that their linked-list style introduces edges “inside”

2

26
s c

2. Decision diagrams

the MDD nodes, requiring more memory pointers, similar to linked lists
compared with arrays.

2.2 Parallelizing decision diagrams

The requirements for the efficient parallel implementation of decision diagrams
are not the same as for a sequential decision diagram library. We refer to the
paper by Somenzi [Som01] for a detailed discussion on the implementation
of decision diagrams. Somenzi already established several aspects of a BDD
package. The two central data structures of a BDD package are the unique table
(or nodes table) and the computed table (or operation cache). Furthermore, garbage
collection is essential for a BDD package, as most BDD operations continuously
create and discard BDD nodes. This section discusses these topics in the context
of a multi-core implementation.

Section 2.2.1 describes the core ingredients of parallel decision diagram
operations using a generic example of a BDD operation. Section 2.2.2 describes
how we represent decision diagram nodes in memory. In Section 2.2.3 and
Section 2.2.4 we discuss the unique table and the computed table in the parallel
context. Finally, in Section 2.2.5 we discuss garbage collection.

2.2.1 Parallel operations

In this subsection we look at Algorithm 2.1, a generic example of a BDD
operation. This algorithm takes two inputs, the BDDs x and y, to which a
binary operation F is applied.

1 def apply(x, y, F):
2 if x and y are leaves or trivial : return F(x, y)
3 Normalize/simplify parameters
4 if result← cache[(x, y, F)] : return result
5 v = topvar(x,y)
6 do in parallel:
7 low← apply(xv=0, yv=0, F)
8 high← apply(xv=1, yv=1, F)
9 result← lookupBDDnode(v, low, high)

10 cache[(x, y, F)] ← result
11 return result

Algorithm 2.1 Example of a parallelized BDD algorithm: apply a binary operator F
to BDDs x and y.

2

2.2. Parallelizing decision diagrams c s
27

Most decision diagram operations first check if the operation can be applied
immediately to x and y (line 2). This is typically the case when x and y are
leaves. Often there are also other trivial cases that can be checked first.

We assume that F is a function that, given the same parameters, always
returns the same result. Therefore we can use a cache to store these results. In
fact, the use of such a cache is required to reduce the complexity class of many
BDD operations from exponential time to polynomial time. In the example,
this cache is consulted at line 4 and the result is written at line 10. In cases
where computing the result for leaves or other cases takes a significant amount
of time, the cache should be consulted first. Often, the parameters can be
normalized in some way to increase the cache efficiency. For example, a ∧ b
and b ∧ a are the same operation. In that case, normalization rules can rewrite
the parameters to some standard form in order to increase cache utilization,
at line 3. A well-known example is the if-then-else algorithm, which rewrites
using rewrite rules called “standard triples” as described in [BRB90].

If x and y are not leaves and the operation is not trivial or in the cache,
we use a function topvar (line 5) to determine the first variable of the root
nodes of x and y. If x and y have a different variable in their root node, topvar
returns the first one in the variable ordering of x and y. We then compute the
recursive application of F to the cofactors of x and y with respect to variable v
in lines 7–8. We write xv=i to denote the cofactor of x where variable v takes
value i. Since x and y are ordered according to the same fixed variable ordering,
we can easily obtain xv=i. If the root node of x is on the variable v, then xv=i
is obtained by following the low (i = 0) or high (i = 1) edge of x. Otherwise,
xv=i equals x. After computing the suboperations, we compute the result by
either reusing an existing or creating a new BDD node (line 9). This is done by
a function lookupBDDnode which, given a variable v and the BDDs of resultv=0
and resultv=1, returns the BDD for result. See also Section 2.3.1.

Operations on decision diagrams are typically recursively defined on the
structure of the inputs. To parallelize the operation in Algorithm 2.1, the two
independent suboperations at lines 7–8 are executed in parallel. This type
of parallelism is called task-based parallelism. A popular method to efficiently
execute a task-based program in parallel and distribute the tasks among the
available processors is called work-stealing, which we discuss in Chapter 3.
In most BDD algorithms, a significant amount of time is spent in memory
operations: accessing the cache and performing lookups in the unique table.
To obtain a good speedup, it is vital that these two data structures are scalable.
We discuss them in Section 2.2.3, Section 2.2.4 and Chapter 4.

2

28
s c

2. Decision diagrams

2.2.2 Representation of nodes

This subsection discusses how BDD nodes, LDD nodes and MTBDD nodes
are represented in memory. We use 16 bytes for all types of nodes, so we can
use the same unique table for all nodes and have a fixed node size. As we see
below, not all bits are needed; unused bits are set to 0. Also, with 16 bytes
per node, this means that 4 nodes fit exactly in a cacheline of 64 bytes (the
size of the cacheline for many current computer architectures, in particular
the x86 family that we use), which is very important for performance. If the
unique table is properly aligned in memory, then only one cacheline needs to
be accessed when accessing a node.

We use 40 bits to store the index of a node in the unique table. This is
sufficient to store up to 240 nodes, i.e. 16 terabytes of nodes, excluding overhead
in the hash table (to store all the hashes) and other data structures. As we
see below, there is sufficient space in the nodes to increase this to 48 bits per
node (up to 4096 terabytes), although that would have implications for the
performance (more difficult bit operations) and for the design of the operation
cache.

Edges to nodes Sylvan defines the type BDD as a 64-bit integer, representing
an edge to a BDD node. The lowest 40 bits represent the location of the BDD
node in the nodes table, and the highest-significant bit stores the complement
mark [BRB90]. The BDD 0 is reserved for the leaf false, with the complemented
edge to 0 (i.e. 0x8000000000000000) meaning true. We use the same method
for MTBDDs and LDDs, although most MTBDDs do not have complemented
edges. LDDs do not have complemented edges at all. The LDD leaf false is
represented as 0, and the LDD leaf true is represented as 1. For the MTBDD
leaf ⊥ we use the leaf 0 that represents Boolean false as well. This has
the advantage that Boolean MTBDDs can act as filters for MTBDDs with the
MTBDD operation times. The disadvantage is that partial Boolean MTBDDs
are not supported by default, but can easily be implemented using a custom
MTBDD leaf.

Internal BDD nodes Internal BDD nodes store the variable label (24 bits), the
low edge (40 bits), the high edge (40 bits), and the complement bit of the high
edge (1 bit, the first bit below).

high edge variable low edge

2

2.2. Parallelizing decision diagrams c s
29

MTBDD leaves For MTBDDs we use a bit to indicate whether a node is a
leaf or not. MTBDD leaves store the leaf type (32 bits), the leaf contents (64 bits)
and the fact that they are a leaf (1 bit, set to 1):

leaf type leaf value

Internal MTBDD nodes Internal MTBDD nodes store the variable label (24

bits), the low edge (40 bits), the high edge (40 bits), the complement bit of the
high edge (1 bit, the first bit below) and the fact they are not a leaf (1 bit, the
second bit below, set to 0).

high edge variable low edge

Internal BDD nodes are identical to internal MTBDD nodes, as unused bits
are set to 0. Hence, the BDD 0 can be used as a terminal for Boolean MTBDDs,
and the resulting Boolean MTBDD is identical to a BDD of the same function.

Internal LDD nodes Internal LDD nodes store the value (32 bits), the down
edge (40 bits) and the right edge (40 bits):

right edge value down edge

2.2.3 Unique table

The unique table stores all decision diagram nodes and is essential to avoid
duplicate nodes. This table is typically implemented as a hash table, in par-
ticular because the find-or-insert operations is performed in time O(1) on
average (amortized) by a hash table. In general, the unique table can be ei-
ther one shared table, or be split in multiple parts somehow. For example,
Somenzi [Som01] argues for a subtable for each variable level, as this makes the
implementation of variable reordering easier. The disadvantage of subtables
is that their sizes must be adjusted dynamically, thus requiring the different
parallel processes to cooperate on performing garbage collection and resizing
when subtables are full. In addition, there is some overhead to compute the
correct sizes for each table, which can be avoided by using a single table. Finally,
subtables require the additional complexity of decreasing subtable sizes and
compressing decision diagrams, which we avoid using a single table that only
increases in size when this is needed.

2

30
s c

2. Decision diagrams

In the past, there have been various proposals to split the unique table
in several parts for parallel applications, for example to assign parts of the
decision diagrams to certain processors or workstations. This is a consideration
that can be orthogonal to parallelism. As we use work-stealing to perform
the load balancing of the decision diagram operations, we have no control
over which processor performs specific operations. Therefore, we use a single
continuous block of memory, and we let the operating system take care of
allocating memory blocks on all available memories in the system.

Manipulating BDDs with a hash table typically results in random access
patterns in the memory. We somewhat improve on random access in Chapter 4

by letting each worker add new nodes in the “data” part of the hash table in
a consecutive order, so that nodes that are related can often be found close to
each other.

The unique table essentially requires two operations:
• a find-or-insert method that, given a 16-byte node, either finds the

existing node in the table, or creates a new node.

• a method to delete nodes for garbage collection. Our implementation
has a separate “data array” containing the nodes and a “hash array”
containing the metadata. We require three operations:

– clear removes all entries from the hash array;
– mark marks a given node for reinsertion in the hash array; and
– rehash reinserts a given node in the hash array.

These operations need to be highly scalable. The unique table and the
implementation of find-or-insert are further described in Chapter 4, while
parallel garbage collection is discussed in Section 2.2.5 below.

2.2.4 Computed table

Similar to the unique table, we use only one shared operation cache for all
operations, because we want to minimize interaction between workers, such as
synchronization when shared parts of memory are resized.

In [Som01], Somenzi writes that a lossless computed table guarantees
polynomial cost for the basic synthesis operations, but that lossless tables (that
do not throw away results) are not feasible when manipulating many large
BDDs and in practice lossy computed tables (that may throw away results) are
implemented. If the cost of recomputing subresults is sufficiently small, it can
pay off to regularly delete results or even prefer to sometimes skip the cache to
avoid data races. As we discuss in Chapter 4, we design the operation cache to
abort operations as fast as possible when there may be a data race or the data
may already be in the cache.

2

2.2. Parallelizing decision diagrams c s
31

On top of this, our BDD implementation implements caching granularity,
which controls when results are cached. Most BDD operations compute a result
on a variable xi, which is the top variable of the inputs. For granularity G, a
variable xi is in the cache block i mod G. Then each BDD suboperation only
uses the cache once for each cache block, by comparing the cache block of the
parent operation and of the current operation.

This is a deterministic method to use the operation cache only sometimes
rather than always. In practice, we see that this technique improves the per-
formance of BDD operations. If the granularity G is too large, the cost of
recomputing results becomes too high, though, so care must be taken to keep
G at a reasonable value.

2.2.5 Garbage collection framework

Operations on decision diagrams typically create many new nodes and discard
old nodes. Nodes that are no longer referenced are typically called “dead
nodes”. Garbage collection, which removes dead nodes from the unique table,
is essential for the implementation of decision diagrams. Since dead nodes are
often reused in later operations, garbage collection should be delayed as long
as possible [Som01].

There are various approaches to garbage collection. For example, a reference
count could be added to each node, which records how often a node is refer-
enced. Nodes with a reference count of zero are either immediately removed
when the count decreases to zero, or during a separate garbage collection phase.
Another approach is mark-and-sweep, which marks all nodes that should be kept
and removes all unmarked nodes. We refer to [Som01] for a more in-depth
discussion of garbage collection.

For a parallel implementation, reference counts can incur a significant
cost, as accessing nodes implies continuously updating the reference count,
increasing the amount of communication between processors, as writing to a
location in memory requires all other processors to refresh their view on that
location. This is not a severe issue when there is only one processor, but with
many processors this results in excessive communication, especially for nodes
that are commonly used.

When parallelizing decision diagram operations, we can choose to perform
garbage collection “on-the-fly”, allowing other workers to continue inserting
nodes, or we can “stop-the-world” and have all workers cooperate on garbage
collection. We use a separate garbage collection phase, during which no new
nodes are inserted. This greatly simplifies the design of the hash table, and
we see no major advantage to allow some workers to continue inserting nodes
during garbage collection.

2

32
s c

2. Decision diagrams

Some decision diagram implementations maintain a counter that counts
how many buckets in the nodes table are in use and triggers garbage collection
when a certain percentage of the table is in use. We want to avoid global
counters like this and instead use a bounded “probe sequence” (see Chapter 4)
for the nodes table: when the algorithm cannot find an empty bucket in the
first K buckets, garbage collection is triggered. In simulations and experiments,
we find that this occurs when the hash table is between 80% and 95% full.

As described in Chapter 4, decision diagram nodes are stored in a “data
array”, separated from the metadata of the unique table, which is stored in the
“hash array”. Nodes can be removed from the hash table without deleting them
from the data array, simply by clearing the hash array. The nodes can then be
reinserted during garbage collection, without changing their location in the
data array, thus preserving the identity of the nodes.

We use a mark-and-sweep approach, where we keep track of all nodes
that must be kept during garbage collection. Our implementation of parallel
garbage collection consists of the following steps:

1. Initiate the operation using the Lace framework (Chapter 3) to arrange
the “stop-the-world” interruption of all ongoing tasks.

2. Clear the hash array of the unique table, and clear the operation cache.
The operation cache is cleared instead of checking each entry individually
after garbage collection, although that is also possible.

3. Mark all nodes that we want to keep, using various mechanisms that keep
track of the decision diagram nodes that we want to keep (see below).

4. Count the number of kept nodes and optionally increase the size of the
unique table. Also optionally change the size of the operation cache.

5. Rehash all marked nodes in the hash array of the unique table.
To mark all used nodes, Sylvan has a framework that allows custom mecha-

nisms for keeping track of used nodes. During the “marking” step of garbage
collection, the marking callback of each mechanism is called and all used deci-
sion diagram nodes are recursively marked. Sylvan itself implements four such
mechanisms (also for MTBDDs and LDDs):

• The sylvan_protect and sylvan_unprotect methods maintain a set of
BDD pointers in a separate hash table. During garbage collection, each
pointer is inspected and the BDD nodes are recursively marked.

• Each thread has a thread-local BDD stack, where BDD operations store
intermediate results, with macros bdd_refs_push and bdd_refs_pop.

• Each thread has a thread-local stack of created suboperations (tasks of
the Lace framework, see Chapter 3). Suboperations that return BDDs
are stored in this stack (method bdd_refs_spawn), and during garbage

2

2.2. Parallelizing decision diagrams c s
33

collection the results of finished suboperations are marked. The method
bdd_refs_sync removes the suboperation from the stack.

• The sylvan_ref and sylvan_deref methods add and remove specific
BDD nodes from a collection stored in a separate hash table. These
methods exist because other BDD packages also implement them, but in
practice, sylvan_protect and sylvan_unprotect are more useful.

To initiate garbage collection, we use a feature in the Lace framework (in-
troduced in Chapter 3) that suspends all current work and starts a new task
tree. This task suspension is a cooperative mechanism. Workers regularly check
whether the current task tree is being suspended, either explicitly by calling a
method from the parallel framework, or implicitly when creating or synchro-
nizing on tasks. Implementations of BDD operations make sure that all used
BDDs are accounted for, typically with bdd_refs_push and bdd_refs_spawn,
before such checks.

The garbage collection process itself is also executed in parallel. Removing
all nodes from the hash table and clearing the operation cache is an instant
operation that is amortized over time by the operating system by reallocating
the memory (see below). Marking nodes that must be kept occurs in parallel,
mainly by implementing the marking operation as a recursive task using the
Lace framework for parallelism descibed in Chapter 3. Counting the number
of used nodes and rehashing all nodes (steps 4–5) is also parallelized using a
standard binary divide-and-conquer approach, which distributes the memory
pages over all workers.

Memory management Memory in modern computers is divided into regions
called pages that are typically (but not always) 4096 bytes in size. Furthermore,
computers have a distinction between “virtual” memory and “real” memory.
It is possible to allocate much more virtual memory than we really use. The
operating system is responsible for assigning real pages to virtual pages and
clearing memory pages (to zero) when they are first used.

We use this feature to implement resizing of our unique table and operation
cache. We preallocate memory according to a maximum number of buckets.
Via global variables table_size and max_size we control which part of the
allocated memory is actually used. When the table is resized, we simply change
the value of table_size. To free pages, the kernel can be advised to free real
pages using a madvise call (in Linux), but Sylvan only implements increasing
the size of the tables, not decreasing their size.

Furthermore, when performing garbage collection, we clear the operation
cache and the hash array of the unique table by reallocating the memory. Then,
the actual clearing of the used pages only occurs on demand by the operating
system, when new information is written to the tables.

2

34
s c

2. Decision diagrams

1 def lookupBDDnode(v, low, high):
2 if low = high : return low
3 if comp(low) : return ¬lookupBDDnode(v, ¬low, ¬high)
4 try:
5 return find-or-insert ({v, idx(low), comp(high), idx(high)})
6 catch TableFull :
7 garbage-collect()
8 return find-or-insert ({v, idx(low), comp(high), idx(high)})

Algorithm 2.2 The lookupBDDnode method is given a variable v and two BDDs
low and high and assumes that all variables in the BDDs low and high are ordered
after the given variable v. lookupBDDnode returns the unique BDD representing the
Boolean function “if v then high else low”.

2.3 BDD algorithms

This section describes the BDD algorithms that we implemented in Sylvan.

2.3.1 Creating and reading BDD nodes

To create a BDD node, we use the lookupBDDnode method given in Algo-
rithm 2.2. This method returns the BDD (edge to a BDD node) for the Boolean
function “if v then high else low”. The method ensures that the results of BDD
operations are canonical reduced BDDs. An important assumption for this
method is that the given BDDs low and high only contain variables that are af-
ter the given variable v in the variable ordering; the ite operation (Section 2.3.2)
does not have this restriction.

The lookup algorithm first handles redundant nodes (line 2) and checks
the complement edge rule (line 3), ensuring that there is never a complement
on the low edge. We use ¬ to denote toggling the complement edge bit of a
BDD. The nodes table method find-or-insert is called, which ensures that
there are no duplicate nodes (lines 5 and 8). We use comp(bdd) and idx(bdd)
to denote the complement bit and the index of the given BDD, as described
in Section 2.2.2. If the nodes table is full (line 6), then garbage collection is
performed (line 7) and the method find-or-insert is called again. If this
second invocation of find-or-insert also raises the TableFull exception, then
the exception is passed to the caller.

To directly read BDD nodes, methods var, low and high are available. The
low and high methods also check if the complement bit of the input BDD is
set, and if so, toggle the complement bit of the result. A method topvar, given
a list of BDDs, returns the first variable in the BDDs according to the variable
ordering, by inspecting the root node of the BDDs. For sets of variables, which

2

2.3. BDD algorithms c s
35

Operation Implementation

x ∧ y and(x, y)
x ∨ y not(and(not(x), not(y)))
¬(x ∧ y) not(and(x, y))
¬(x ∨ y) and(not(x), not(y))
x⊕ y xor(x, y)
x ↔ y not(xor(x, y))
x → y not(and(x, not(y)))
x ← y not(and(not(x), y))
if x then y else z ite(x, y, z)
∃v : x exists(x, v)
∀v : x not(exists(not(x), v))

Table 2.1 Basic BDD operations on the input BDDs x, y, z.

1 def and(x, y):
2 if x = 1 : return y
3 if y = 1∨ x = y : return x
4 if x = 0∨ y = 0∨ x = ¬y : return 0
5 if result← cache[(x, y)] : return result
6 v = topvar(x,y)
7 do in parallel:
8 low← and(xv=0, yv=0)
9 high← and(xv=1, yv=1)

10 result← lookupBDDnode(v, low, high)
11 cache[(x, y)] ← result
12 return result

Algorithm 2.3 Parallelized BDD algorithm and, with as parameters the BDDs x and
y. The result is a BDD representing x ∧ y.

are represented as conjunctions like x ∧ y ∧ z, we use next for high, which
obtains y ∧ z in this example if x is the first in the variable ordering.

2.3.2 Basic operations

For binary decision diagrams, Sylvan implements the basic BDD operations
(Table 2.1) and, not and xor, the if-then-else (ite) operation, and exists.
Implementing the basic operations in this way is common for BDD packages.
Negation ¬ is performed using complement edges, see Section 2.1.2, and is
basically free.

The parallelization of these functions is straightforward. See Algorithm 2.3

2

36
s c

2. Decision diagrams

1 def exists(x, V):
2 if x = 0∨ x = 1∨V = ∅ : return x
3 v = var(x)
4 while V 6= ∅ ∧ var(V) < v : V ← next(V)
5 if V = ∅ : return x
6 if result← cache[(x, V)] : return result
7 if v = var(V) :
8 if xv=0 = 1∨ xv=1 = 1∨ xv=0 = ¬xv=1 : result← 1
9 else:

10 low← exists(xv=0, next(V))
11 if low = 1 : result← 1
12 else:
13 high← exists(xv=1, next(V))
14 result← or(low, high)
15 else:
16 do in parallel:
17 low← exists(xv=0, V)
18 high← exists(xv=1, V)
19 result← lookupBDDnode(v, low, high)
20 cache[(x, V)] ← result
21 return result

Algorithm 2.4 Parallelized BDD algorithm exists, with the BDD x and V the cube
of variables that are abstracted via existential quantification.

for the parallel implementation of and. This algorithm checks the trivial cases
(lines 2–4) before the operation cache (line 5), and then runs the two indepen-
dent suboperations (lines 8–9) in parallel.

A more involved example is the parallelized algorithm exists (Algo-
rithm 2.4) which computes existential quantification. This algorithm receives
the input parameters x and V, where x is the BDD representing the function to
which quantification is applied, and V is the BDD representing the conjunction
of the variables that are abstracted away from x. After the trivial cases (line 2),
we check if V actually contains variables that are in the BDD (lines 3–5), ex-
ploiting the fact that V is also an ordered BDD. This is also a normalization
step for the cache, which is checked at line 6. Now, there are two cases: either
the current root variable v is in V (lines 7–14) or it is not in V (lines 15–19).
In the second case, we simply perform the two suboperations in parallel and
compute the result. In the first case, after checking some trivial cases, we
can either 1) perform the two suboperations in parallel; 2) perform the “low”
suboperation first; or 3) perform the “high” suboperation first. If either of these
suboperations returns 1, then the other does not need to be computed. The

2

2.3. BDD algorithms c s
37

x1

x2

x3

0

F1

F2

F3

Figure 2.4 An example of a BDDMap encoding [x1 := F1, x2 := F2, x3 := F3]. The
triangles F1, F2 and F3 represent BDDs.

1 def compose(x, M):
2 if x = 0∨ x = 1∨M = 0 : return x
3 v = var(x)
4 while M 6= 0∧ var(M) < v : M ← low(M)
5 if M = 0 : return x
6 if result← cache[(x, M)] : return result
7 do in parallel:
8 low← compose(low(x), M)
9 high← compose(high(x), M)

10 if v = var(M) : result← ite(high(M), high, low)
11 else: result← lookupBDDnode(v, low, high)
12 cache[(x, M)] ← result
13 return result

Algorithm 2.5 Apply functional composition x[M], where M is a mapping from
variables to Boolean functions.

advantage of option 1 is that there is more opportunity for parallelization, at
the cost of possible extra work. However, this extra independent work might
not be necessary, since there is already a lot of independent work from the
parallelization at lines 17–18 and inside the or operation. In Algorithm 2.4, we
compute the “low” suboperation first.

Another operation that is parallelized similarly is the compose operation,
which performs functional composition, i.e., substitute occurrences of variables
in a Boolean formula by Boolean functions. For example, the substitution

2

38
s c

2. Decision diagrams

1 def and_exists(x, y, V):
2 if x = 0∨ y = 0∨ x = ¬y : return 0
3 if x = 1∧ y = 1 : return 1
4 if x = 1 : return exists (y,V)
5 if y = 1∨ x = y : return exists (x,V)
6 v = topvar(x,y)
7 while V 6= ∅ ∧ var(V) < v : V ← next(V)
8 if V = ∅ : return and (x,y)
9 if result← cache[(x, y, V)] : return result

10 do in parallel:
11 low← and_exists(xv=0, yv=0, V)
12 high← and_exists(xv=1, yv=1, V)
13 if v = var(V) : result← or(low, high)
14 else: result← lookupBDDnode(v, low, high)
15 cache[(x, y, V)] ← result
16 return result

Algorithm 2.6 The parallel BDD algorithm and_exists, which given BDDs x and
y, and V a cube of variables, computes ∃V : (x ∧ y).

[x1 := x2 ∨ x3, x2 := x4 ∨ x5] applied to the function x1 ∧ x2 results in the
function (x2 ∨ x3) ∧ (x4 ∨ x5). Sylvan offers a functional composition algorithm
based on a “BDDMap”. This structure is not a BDD itself, but uses BDD nodes to
encode a mapping from variables to BDDs. A BDDMap is based on a disjunction
of variables, but with the “high” edges going to BDDs instead of the terminal
1. See Figure 2.4 for an example. This method also implements substution of
variables, e.g. [x1 := x2, x2 := x3]. See Algorithm 2.5 for the algorithm compose.
This parallel algorithm is similar to the algorithms described above, with the
composition functionality at lines 10–11. If the variable is in the mapping M,
then we use the if-then-else method to compute the substitution. If the
variable is not in the mapping M, then we simply compute the result using
lookupBDDnode.

Sylvan also implements parallelized versions of the BDD minimization
algorithms restrict and constrain (also called generalized cofactor), based on
sibling-substitution, which are described in [CM90] and parallelized similarly
as the and algorithm above.

2.3.3 Relational products

In model checking using decision diagrams, relational products play a central
role. Relational products compute the successors or the predecessors of (sets of)
states. Typically, states are encoded using Boolean variables ~x = x1, x2, . . . , xN .

2

2.3. BDD algorithms c s
39

1 def relnext(S, R, V):
2 if S = 0∨ R = 0 : return 0
3 if S = 1∧ R = 1 : return 1
4 v = topvar(S,R)
5 while var(V) < v : V ← next(V)

// if V = ∅, we assume R is irrelevant
6 if V = ∅ : return S
7 if result← cache[(S, R, V)] : return result
8 if v = var(V) :
9 x, x’← unprimed v, primed v

10 V’← V without x and x’
11 do in parallel:
12 a← relnext(Sx=0, Rx=0,x′=0, V′)
13 b← relnext(Sx=1, Rx=1,x′=0, V′)
14 c← relnext(Sx=0, Rx=0,x′=1, V′)
15 d← relnext(Sx=1, Rx=1,x′=1, V′)
16 do in parallel:
17 low← or(a, b)
18 high← or(c, d)
19 result← lookupBDDnode(x, low, high)
20 else:

// v is not in R, by assumption
21 do in parallel:
22 low← relnext(Sv=0, R, V)
23 high← relnext(Sv=1, R, V)
24 result← lookupBDDnode(v, low, high)
25 cache[(S, R, V)] ← result
26 return result

Algorithm 2.7 The parallel algorithm relnext, which given the BDDs S (repre-
senting a set of states), R (representing a transition relation) and V (the cube of
interleaved variables ~x ∪~x′) computes the set of successor states defined on ~x, i.e.,(
∃~x : (S ∧ R)

)
[~x′ := ~x]. We assume that all variables in R are also in V.

Transitions between these states are represented using Boolean variables ~x for
the source states and variables ~x′ = x′1, x′2, . . . , x′N for the target states. Given
a set of states Si encoded as a BDD on variables ~x, and a transition relation R
encoded as a BDD on variables ~x∪~x′, the set of states S′i+1 encoded on variables
~x′ is obtained by computing S′i+1 = ∃~x : (Si ∧ R). BDD packages typically
implement an operation and_exists that combines ∃ and ∧ to compute S′i+1.
See Algorithm 2.6 for the parallel version of and_exists in Sylvan.

Typically we want the BDD of the successors states defined on the unprimed

2

40
s c

2. Decision diagrams

variables ~x instead of the primed variables ~x′, so the and_exists call is then
followed by a variable substitution that replaces all occurrences of variables
from ~x′ by the corresponding variables from ~x. Furthermore, the variables are
typically interleaved in the variable ordering, like x1, x′1, x2, x′2, . . . , xN , x′N , as
this often results in smaller BDDs. Sylvan implements specialized operations
relnext and relprev that compute the successors and the predecessors of sets
of states, where the transition relation is encoded with the interleaved variable
ordering. See Algorithm 2.7 for the implementation of relnext. This function
takes as input a set S, a transition relation R, and the set of variables V, which is
the union of the interleaved sets ~x and ~x′ (the variables on which the transition
relation is defined). We first check for terminal cases (lines 2–3). These are the
same cases as for the ∧ operation. Then we process the set of variables V to
skip variables that are not in S and R (lines 5–6). After consulting the cache
(line 7), either the current variable is in the transition relation, or it is not. If it is
not, we perform the usual recursive calls and compute the result (lines 21–24).
If the current variable is in the transition relation, then we let x and x′ be the
two relevant variables (either of these equals v) and compute four subresults,
namely for the transition (a) from 0 to 0, (b) from 1 to 0, (c) from 0 to 1, and
(d) from 1 to 1 in parallel (lines 11–15). We then abstract from x′ by computing
the existential quantifications in parallel (lines 16–18), and finally compute the
result (line 19). This result is stored in the cache (line 25) and returned (line 26).
We implement relprev similarly.

2.4 MTBDD algorithms

Although multi-terminal binary decision diagrams are often used to represent
functions to integers or real numbers, they could be used to represent functions
to any domain. In practice, the well-known BDD package CUDD [Som15] im-
plements MTBDDs with double (floating-point) leaves. For some applications,
other types of leaves are required, for example to represent rational numbers
or integers. To allow different types of MTBDDs, we designed a generic cus-
tomizable framework. The idea is that anyone can use the given functionality
or extend it with other leaf types or other operations.

By default, Sylvan implements five types of leaves:

Leaf type Function type

BDDs false and true (¬false) total functions BN → B (BDDs)
64-bit integer (uint64) partial functions BN →N

floating-point (double) partial functions BN → R

rational leaves (int32 + uint32) partial functions BN → Q

GMP library leaves (mpq) partial functions BN → Q

2

2.4. MTBDD algorithms c s
41

1 def abstract(x, V, F):
2 if x = 0∨ x = 1∨V = ∅ : return x
3 if result← cache[(x, V, F)] : return result
4 if x is a leaf or var(V) < topvar(x) :
5 sub← abstract(x, next(V), F)
6 result← F(sub, sub)
7 elif var(V) = topvar(x) :
8 do in parallel:
9 low← abstract(xv=0, next(V), F)

10 high← abstract(xv=1, next(V), F)
11 result← F(low, high)
12 else:
13 do in parallel:
14 low← abstract(xv=0, V, F)
15 high← abstract(xv=1, V, F)
16 result← lookupMTBDDnode(v, low, high)
17 cache[(x, V, F)] ← result
18 return result

Algorithm 2.8 Parallel MTBDD algorithm that applies the abstraction F for the
variables in V.

The BDDs false and true (complemented false) are not encoded as
MTBDD leaves as in Section 2.2.2, but we reuse the BDD 0 that is reserved for
the leaf false. For the rational leaves we use 32 bits for the numerator and 32

bits for the denominator. Sylvan also implements the leaf type mpq which uses
the GMP library for arbitrary precision arithmetic, i.e., an arbitrary number of
bits for the numerator and the denominator. The framework supports partially
defined functions, reusing the BDD false to mean ⊥ for non-Boolean functions.

Sylvan implements a generic binary apply function, a generic monadic apply
function, and a generic abstraction algorithm. The implementation of binary
apply is similar to Algorithm 2.1. See Algorithm 2.8 for the implementation of
abstraction.

On top of these generic algorithms, we implemented basic operators plus,
times, min and max for the default leaf types. For all valuations of MTBDDs
x and y that end in leaves a and b, they compute a + b, a× b, min(a, b) and
max(a, b). For Boolean MTBDDs, the plus and times operators are similar to
∨ and ∧. In fact, when using times with a Boolean MTBDD (or a BDD) and an
MTBDD of some other type, it acts as a filter, removing the subgraphs where
the BDD is false and keeping the subgraphs where the BDD is true.

Sylvan supports custom leaves with 64-bit values. These 64-bit values can
also be pointers. In that case, for the canonical representation of leaves it is

2

42
s c

2. Decision diagrams

not sufficient to compare the 64-bit values, which is the default behavior. Also,
the pointers typically point to dynamically allocated memory that must be
freed when the leaf is deleted. To support custom leaves, Sylvan implements
a framework where custom callbacks are registered for each leaf type. These
custom callbacks are:

• hash(value, seed) computes a 64-bit hash for the leaf value and the
given 64-bit seed.

• equals(value1, value2) returns 1 if the two values encode the same
leaf, and 0 otherwise. The default implementation simply compares the
two values.

• create(pointer) is called when a new leaf is created with the 64-bit
value references by the pointer; this allows implementations to allocate
memory and replace the referenced value with the final value.

• destroy(value) is called when the leaf is garbage collected so the imple-
mentation can free memory allocated by create.

We use this functionality to implement the GMP leaf type. The GMP leaf
type is essentially a pointer to a different data structure to support arbitrary
precision arithmetic. The above functions are implemented as follows:

• hash follows the pointer and hashes the contents of the mpq data structure.
• equals follows the two pointers and compares their contents.
• create clones the mpq data structure and writes the address of the clone

to the given new leaf.
• destroy frees the memory of the cloned data structure.

2.5 LDD algorithms

We implemented various LDD operations that are required for model checking
in LTSmin (see Chapter 5). As LDDs are primarily used to represent sets
of state vectors (consisting of integers) and transitions, we do not provide
the pseudocode of these operations, but specify their functionality on sets of
state vectors and transitions. In LTSmin, the notion of a projection of a set
onto certain variables means abstracting away from variables that we are not
interested in, to obtain states on only the given variables. This is similar to
existential quantification. Many operations work with these projections, also
called “short vectors”. We often use “helper LDDs” typically named meta,
which describe (encoded as a tuple in an LDD) how a set of states or transitions
are related to the “long vector”. There are several operations that combine other
operations. This is good for performance, as potentially expensive intermediate
results do not need to be computed.

2

2.5. LDD algorithms c s
43

Operation Informal semantics

union(A,B) compute A ∪ B
minus(A,B) compute A \ B

zip(A,B) compute X, Y such that X = A ∪ B, Y = B \ A
project(A,p) compute the projection of the set A according to

the projection vector p
project_minus(A,p,B) compute minus(project(A,p),B)

intersect(A,B) compute A ∩ B
match(A,B,meta) compute A ∩ B, but B is defined on subset of the

variables of A according to meta
join(A,B,pA,pB) compute A ∩ B, but A and B are projections of

the state vector, described by pA and pB
cube(v,k) compute the LDD representing the singleton set

containing the k-tuple with the values in v
member_cube(A,v,k) check if cube(v,k) is in the set A
union_cube(A,v,k) compute union(A,cube(v,k))
relprod(A,B,meta) compute the successors of the states in A

according to the transition relation B which is
described by meta

relprod_union(A,B,m) compute union(A,relprod(A,B,m))
relprev(A,B,meta,U) compute the predecessors of the states in A

according to the transition relation B which is
described by meta, restricted to states in U.

satcount(A) compute the size of the set A
sat_one(A) return one vector from the set A

sat_all(A,cb) call the callback cb for each vector in A
sat_all_par(A,cb) sat_all, but parallelized

collect(A,cb) sat_all_par, but the callback returns some set
encoded as an LDD, and all returned LDDs are
combined using union

match_sat(A,B,m,cb) compute sat_all_par(match(A,B,m),cb)

An example of a parallelized LDD operation is the implementation union
in Algorithm 2.9. After the trivial cases, there are three cases left. Only the
case where A and B both point to an LDD node with the same value gives
opportunity for parallelization. Computing the new down and right LDDs are
independent tasks and can be performed in parallel.

2

44
s c

2. Decision diagrams

1 def union(A, B):
2 if (A = 1∧ B = 1) ∨ A = B : return A
3 if A = 0 : return B
4 if B = 0 : return A
5 if result← cache[(A, B)] : return result
6 if value(A) < value(B) :
7 right← union(right(A), B)
8 result← lookupLDDnode(value(A),down(A),right)
9 elif value(A) > value(B) :

10 right← union(A, right(B))
11 result← lookupLDDnode(value(B),down(B),right)
12 else:
13 do in parallel:
14 right← union(right(A), right(B))
15 down← union(down(A), down(B))
16 result← lookupLDDnode(value(A),down,right)
17 cache[(A, B)] ← result
18 return result

Algorithm 2.9 Parallel LDD algorithm union that computes A ∪ B.

3

Chapter 3

Load-balancing tasks with Lace

A s outlined in Chapter 2, to efficiently parallelize decision diagram
operations, we need to execute recursive subtasks in parallel. The
tasks in decision diagram operations are extremely small, so the load

balancing of these tasks is not only important for parallelism, but may result
in a relatively heavy overhead if not efficient. Additionally, depending on the
structure of the decision diagrams, the computations can be quite irregular,
making load balancing challenging. The operations are also memory-intensive,
as they perform few computations and rely mainly on accessing the operation
cache and the nodes table. Thus communication for load balancing is even
more costly with memory-intensive tasks than with computation-heavy tasks.

Fortunately, a well-known algorithm to effectively execute task-based algo-
rithms like decision diagram operations in parallel is work-stealing [Blu94]. In
work-stealing, there are as many workers as there are available processor cores,
and each worker owns a local queue in which it stores new tasks. Workers
without tasks (idle workers) steal and execute tasks from other workers. In par-
ticular, the implementation of work-stealing in the framework Wool [Fax10] has
been shown to have good performance for fine-grained (small) tasks [PBF10].

The performance of work-stealing strongly depends on the implementa-
tion of the task queues. In the first published version of Sylvan [DLP13] we
relied on the work-stealing framework Wool to parallelize BDD operations. We
substituted this framework by Lace [DP14], in which we developed a novel
work-stealing queue, aimed at minimizing interactions between different work-
ers and the shared memory. In addition, we also developed features in Lace
that are useful to implement stop-the-world garbage collection in Sylvan, where
we halt the current set of tasks, and initiate a new task tree, suspending the old
tasks until the new task tree is finished.

The novel work-stealing deque described in this chapter is a non-blocking
work-stealing deque, based on a split task deque. The deque is split in two

45

3

46
s c

3. Load-balancing tasks with Lace

parts, one of which is shared and one of which is private. Our design uses a
dynamic split point between the shared and the private portions of the deque,
and only requires memory fences when shrinking the shared portion. This
circumvents the disadvantage of many concurrent deques, that they require
expensive memory fences for local deque operations.

We evaluate the performance of Lace using several benchmarks, including
standard Cilk benchmarks and the UTS benchmark [Oli+06]. We also compare
our algorithm with Wool and with an implementation of the receiver-initiated
private deque algorithm [ACR13] in the Lace framework.

This chapter is outlined as follows. We first discuss task-based parallelism
and the work-stealing algorithm in Section 3.1. Section 3.2 gives an overview of
existing implementations of work-stealing deques in the literature. We present a
novel work-stealing deque in Section 3.3. Section 3.4 describes the algorithms of
this deque, and in Section 3.5, we give an informal proof to show its correctness.
We discuss details of the implementation of our work-stealing framework in
Section 3.6, including a special feature to suspend current tasks and start a
new task tree, which is very useful in Sylvan to perform garbage collection.
Section 3.7 presents some empirical results on typical benchmarks from the
literature. Finally, Section 3.8 concludes this chapter.

This chapter is based on the following publication:
[DP14] Tom van Dijk and Jaco van de Pol. “Lace: Non-blocking Split Deque for
Work-Stealing.” In: MuCoCoS. vol. 8806. LNCS. Springer, 2014, pp. 206–217

3.1 Task-based parallelism and work-stealing

The importance of parallel processing to improve the performance of software
has become self-evident in recent years, especially given the availability of multi-
core shared-memory systems and the physical limits that constrain processor
speeds. Efficient parallel algorithms are now required to make effective use of
the processing power of modern chips with multiple processors.

Task-based parallelism or nested control parallelism is a concept in parallel
processing, where a computation is seen as a tree of tasks and dependencies
that need to be scheduled on multiple processors. Tasks that are independent
of each other can be executed in parallel.

For task parallelism that fits a “strict” fork-join model, i.e., each task creates
the subtasks that it depends on, work-stealing is a well known framework for
parallelism [Blu94], with implementations such as Cilk [Blu+96; FLR98] and
Wool [Fax08; Fax10] that allow writing parallel programs in a style similar to
sequential programs [ACR13]. It is well known that work-stealing is an effec-
tive task-based load balancing method. Work-stealing has been proven to be

http://dx.doi.org/10.1007/978-3-319-14313-2_18
http://dx.doi.org/10.1007/978-3-319-14313-2_18

3

3.1. Task-based parallelism and work-stealing c s
47

1 def TASK_1(int, fib, int, k):
2 if k < 2 : return k
3 SPAWN(fib, k− 2)
4 SPAWN(fib, k− 1)
5 n ← SYNC
6 m ← SYNC
7 return n + m

8 fib10← CALL(fib, 10)

Algorithm 3.1 The Fibonacci algorithm as a simple example of task-based parallel-
ism using SPAWN and SYNC statements.

1 do in parallel:
2 K← F1(x, y, z)
3 L← F2(a, b, c)
4 M← F3(g, h)

1 SPAWN(F1, x, y, z)
2 SPAWN(F2, a, b, c)
3 M← CALL(F3, g, h)
4 L← SYNC
5 K← SYNC

Figure 3.1 Running three tasks in parallel using SPAWN+SYNC and CALL.

optimal for a large class of problems and has tight memory and communication
bounds [Blu94].

See Algorithm 3.1 for an example of a parallel program in the Cilk/Wool
style. These and similar task-based parallel frameworks, such as the framework
Lace that is the topic of this chapter, use keywords SPAWN and SYNC to expose
parallelism. The SPAWN keyword creates a new task. Every SPAWN during the
execution of the program must have a matching SYNC. The SYNC keyword
matches with the last unmatched SPAWN, i.e., operating as if spawned tasks are
stored on a stack. It waits until that task is completed and retrieves the result.
In this chapter, we follow the semantics of Wool. In the original work-stealing
papers and in Cilk, SYNC waits for all locally spawned subtasks, rather than the
last unmatched subtask. Tasks are defined using a TASK_1 macro for tasks with
1 parameter, TASK_2 for tasks with 2 parameters, etc. Furthermore, there is also
a CALL keyword that skips the task stack and immediately executes a task.

See also Figure 3.1 for an example of how tasks are typically executed in
parallel. In this thesis, we use do in parallel to denote that tasks are executed
in parallel, like in Figure 3.1.

In work-stealing, tasks are executed by a fixed number of workers, typically
equal to the number of processor cores. Each worker owns a task pool into
which it inserts new subtasks created by the task it currently executes. Idle
workers steal tasks from the task pools of other workers. Worker are idle

3

48
s c

3. Load-balancing tasks with Lace

Work-stealing operations Task pool operations

spawn(task) push(task)
sync peek, pop
steal-and-run(victim) steal

Table 3.1 Operations of the work-stealing algorithm and matching operations of the
task pool of each worker.

either because they do not have any tasks to perform (e.g., at the start of a
computation), or because all their tasks have been stolen and they have to wait
for the result of the stolen tasks to continue the current task. Typically, one
worker starts executing a root task and the other workers perform work-stealing
to acquire subtasks.

One important aspect of the work-stealing algorithm is victim selection.
For example in systems with hierarchy, e.g., a network of workstations, it
might be useful to steal from local workers first before trying to steal from a
remote worker. Another strategy would be to remember how much work other
workers have after a steal attempt, and use this to select smart targets. In our
implementation, workers with an empty task pool steal from random victims.

When synchronizing with a stolen task, a possible strategy for the victim
is to steal from the thief until the stolen task is completed. By stealing back
from the thief, a worker executes subtasks of the stolen task. This technique
is called leapfrogging [WC93]. When stealing from random workers instead,
the size of the task pool of each worker could grow beyond the size needed for
complete sequential execution [Fax10], since stealing will build a new stack on
top of the blocked join. Using leapfrogging rather than stealing from random
workers thus limits the space requirement of the task pools to that of sequential
execution, although in practice it is expensive to guarantee that the tasks that
are stolen from the thief are really subtasks of the original task. It might be
possible that the thief finished the original task and stole a different branch
of the task tree after the victim checked the status of the stolen task. Our
implementation also uses the leapfrogging strategy.

Another concern is which task(s) to steal. A simple algorithm is to steal
the first unstolen task from the bottom of the stack. A variation could be to
steal multiple tasks, or to steal a random task from anywhere in the stack. In
our implementation, thieves steal the first unstolen task from the bottom of the
stack.

See Table 3.1 for an overview of the work-stealing operations and how
they match with operations on the task pool. The methods spawn and sync
implement the keywords SPAWN and SYNC. The method steal-and-run tries

3

3.1. Task-based parallelism and work-stealing c s
49

to steal a task from the given victim and, if successful, executes the task and
communicates the result back to the owner of the task. The methods push,
peek, pop and steal are implemented by the task pool:

• The push, peek and pop operations are only used by the owner of the
stack, and the steal operation only by the thieves.

• The push operation puts a task on the stack.

• The peek operation fixes the status of the task at the top of the stack:
either stolen or available as work. After peek, the top task, if not stolen,
cannot be stolen until the next push (or if peek is called again).

• The pop operation removes the top-most task from the stack. Furthermore
we assume that the task data remains in the task pool until overwritten
by a push operation.

• The steal operation steals a task from the bottom of the stack, changing
its status from available work to stolen work. Stolen tasks are kept on
the stack so the results of tasks can be communicated back to the original
owner of the task.

See Algorithm 3.2 for the implementation of the work-stealing operations.
This implementation is fairly straight-forward in terms of task pool operations,
as the difficult problems are solved by the implementation of the task pool.
The spawn operation simply calls the push method of the task pool. The sync
operation first determines whether the task at the top of the stack is stolen or
not by calling peek (line 4). If it is not stolen, then we pop the task from the
stack (which does not modify the task contents) and execute the task (lines 5–6).
If the task is stolen, then we first wait until the thief field of the task is set (line 9).
This field is set by the thief at line 15. Then, we steal tasks with the leapfrogging
strategy (steal from the thief) until the original task is done (line 10), remove
the task from the stack (line 11), which leaves the task contents and the result
intact, and return the result (line 12). We use a special pop-stolen method at
line 11 for optimization reasons discussed in Section 3.3. The steal-and-run
method tries to steal a task from the chosen victim (line 14). If successful, the
thief communicates its identity (line 15), executes the task (line 16), stores the
result (line 17) and communicates that it is done (line 18). The worker thread is
defined at lines 19–24: one worker executes the first task and the other workers
try to steal and execute tasks from random victims. Once the root task is done,
the flag done is set and all other workers can quit their loop.

In this implementation of work-stealing, we keep tasks on the stack and
communicate the result via the task object on the stack. An alternative would
be to store pointers to tasks instead of tasks on the stack, using only the
operations push and pop to add and remove the pointers. In this case, task
pools implement three operations push, pop and steal. This introduces an

3

50
s c

3. Load-balancing tasks with Lace

1 def spawn(task):
2 push(task)

3 def sync():
4 res← peek()

// res is Work(task) or Stolen(task)
5 if res = Work(task) :
6 pop()
7 return task.execute()
8 else:
9 while task.thief = None : (loop)

10 while ¬ task.done : steal-and-run (task.thief)
11 pop-stolen()
12 return task.result

13 def steal-and-run(victim):
14 if victim.steal() = Task(stolentask) :
15 stolentask.thief← me
16 result← stolentask.execute()
17 stolentask.result← result
18 stolentask.done← True

19 thread worker(id, roottask):
20 done← False
21 if id = 0 :
22 roottask.execute()
23 done← True
24 else: while done is False: steal-and-run(random victim)

Algorithm 3.2 The implementation of the work-stealing using leapfrogging when
waiting for a stolen task to finish, i.e., steal from the thief.

extra indirection (and memory access) that can be avoided by directly storing
tasks in the stack. The “direct task stack”, that stores tasks in the stack, was
proposed by Faxén and implemented in Wool [Fax08; Fax10]. See also below in
Section 3.2 and Section 3.3.

3.2 Existing work-stealing deques

Task pools are commonly implemented using double-ended queues (deques)
specialized for work-stealing. The first demonstrably efficient work-stealing
scheduler for fully strict computations was presented in 1994 [Blu94] and its
implementation in Cilk in 1996 [Blu+96]. One improvement of the original Cilk
algorithm is the THE protocol in Cilk-5 [FLR98], which eliminates acquiring

3

3.2. Existing work-stealing deques c s
51

the lock in push and in most executions of pop, but every steal still requires
locking.

The first non-blocking work-stealing deque is the ABP algorithm, which
uses a fixed-size array that might overflow [ABP01]. Two unbounded non-
blocking deques were proposed, the deque by Hendler et al. based on linked
lists of small arrays [Hen+06], and the Chase-Lev deque that uses dynamic
circular arrays [CL05].

In weak memory models that allow reordering loads before stores, most
deques that allow any spawned task to be stolen require a memory fence in
every pop operation. Memory fences are expensive. For example, the THE
protocol spends half of its execution time in the memory fence [FLR98].

Several approaches alleviate this problem. The split task queue by Dinan et
al. [Din+09], designed for clusters of multiprocessor computers, allows lock-free
local access to a private portion of the queue and can transfer work between
the public and private portions of the queue without copying tasks. Thieves
synchronize using a lock and the local process only needs to take the lock when
transferring work from the public portion to the private portion of the queue.
Michael et al. propose relaxed semantics for work-stealing: inserted tasks are
executed at least once instead of exactly once, to avoid requiring memory fences
and atomic instructions [MVS09]. In the work scheduler Wool [Fax08], originally
only the first N tasks in the deque can be stolen, where N is determined by a
parameter at startup. The pop operation only requires a memory fence when
trying to pop a stealable task. In a later version, the number of stealable tasks
is dynamically updated [Fax10].

In some work-stealing algorithms, shared deques are replaced by private de-
ques, and work is explicitly communicated using a message-passing approach.
Recently, Acar et al. proposed two algorithms for work-stealing using private
deques [ACR13]. See further [ACR13] for an overview of other work with
private deques.

Tasks are often stored as pointers that are removed from the deque when
the task is stolen [FLR98; ABP01; Hen+06; CL05]. To virtually eliminate the
overhead of task creation for tasks that are never stolen, Faxén proposed a
direct task stack, storing tasks instead of pointers in the work queue, imple-
mented in Wool [Fax08; Fax10]. Rather than synchronizing with thieves on the
metadata of the queue (e.g. variables top and bot in the ABP algorithm), Wool
synchronizes on the individual task descriptors, using locks when synchro-
nizing with potential thieves, similar to the THE protocol. Sundell and Tsigas
presented a lock-free version of Wool [ST09; Fax10], which still synchronizes on
the individual task descriptors.

The work presented in this chapter combines some of the ideas from ear-
lier work with a unique non-blocking synchronization mechanism between

3

52
s c

3. Load-balancing tasks with Lace

• • • • • • •
t s h

Figure 3.2 The split deque, with tail t, split point s and head h. A task at position x
is stolen if x < t. It is shared if x < s, and private otherwise. Of the 7 tasks here, 4
are shared and 1 is stolen. It is sometimes possible that tasks are both private and
stolen, i.e. s < t.

the worker and the thieves. Our non-blocking queue is a split task queue,
like [Din+09] and [Fax08; Fax10], and features the direct task stack proposed
in [Fax08]. Contrary to the design in [Fax08; Fax10], we synchronize on the
metadata of the queue instead of on the individual task descriptors.

3.3 Design of the shared split deque

Acar et al. write that concurrent deques suffer from two limitations: 1) local
deque operations (mainly pop) require expensive memory fences in modern
weak-memory architectures; 2) they can be very difficult to extend to support
various optimizations, especially steal-multiple extensions [ACR13]. They lift
both limitations using private deques. Wool reduces the first limitation for
concurrent deques by using a dynamic number of stealable tasks, but is difficult
to extend for steal-multiple strategies, since tasks must be stolen individually.

This section presents a work-stealing deque that eliminates these limitations,
by combining a non-blocking variant of the split task queue [Din+09] with
direct task stealing from Wool [Fax08; Fax10]. A split point splits the deque
into a shared portion and a private portion. This split point is modified in a
non-blocking manner. See also Figure 3.2.

Similar to the direct task stack in Wool, the deque contains fixed-size task
descriptors, rather than pointers to task descriptors stored elsewhere. Stolen
tasks remain in the deque. The result of a stolen task is written to the task
descriptor. This reduces the task-creation overhead of making work available
for stealing, which is important since most tasks are never stolen. In pointer-
based designs, there is the extra overhead of writing the pointer to enable
work-stealing. This also means that with a pointer-based design, there is at
least one additional accessed cacheline (the cacheline which stores the pointer),
which is avoided with direct task stacks.

A major aspect of our design is which variables can be accessed by whom,
and the resulting communication. To minimize unnecessary interactions be-
tween the thieves and the workers, we store all metadata of the queue in the
following three cachelines. Remember that a cacheline is the “unit of transfer”

3

3.3. Design of the shared split deque c s
53

in a computer, and that most communication occurs when a worker writes to a
memory location that is also in the cache of other workers.

Cacheline Contents Thief access Owner access

Shared 1 tail, split, flag allstolen Often Sometimes
Shared 2 flag movesplit Sometimes Often
Private head, osplit, flag oallstolen – Often

The deque is described using variables tail, split and head, which are in-
dices in the task array (as in Figure 3.2), and the flags allstolen and movesplit.

• The tail variable is increased by thieves when stealing a task.

• The tail variable is decreased by the owner after removing stolen tasks,
but this is delayed until the next time a fresh unstolen task is added (see
the discussion below).

• The split variable is read by the thieves when stealing a task, but is only
modified by the owner. The split point is changed either to increase the
shared portion when all shared tasks are stolen, or to decrease the shared
portion during peek, to ensure that the top-most task is in the private
portion so it cannot be stolen.

• The head variable is only accessed by the owner; it is increased when
tasks are added and decreased when tasks are removed.

• The flag allstolen is only modified by the owner. It is set when the peek
operation detects that all tasks are stolen, and it is reset when the push
operation adds a new task. The flag is used by thieves to avoid accessing
the second shared cacheline.

• The flag movesplit is set by thieves to indicate that all shared tasks are
stolen, so the split point should be moved. The flag is often checked by
the owner and it is reset by the owner after moving the split point.

One of the design goals is to minimize communication between the owner
and the thieves. Several choices reflect this goal:

• Thieves are not allowed to change the split point directly. Allowing
this would force the owner to use expensive memory fences or atomic
operations in executions of peek and pop. The disadvantage is that
sometimes there may be tasks available that cannot be stolen until the
owner moves the split point.

• The owner needs to check movesplit often, therefore we store it on a
separate cacheline, to avoid “false sharing” with other variables.

• The owner normally does not need to know the value of tail and has its
own copies of split (osplit) and allstolen (oallstolen).

3

54
s c

3. Load-balancing tasks with Lace

• • • •
t, s, h

• • • • •
t s, h

• • • • •
t, s h

• • • •
t, s, h

• • •
t, sh

• • • •
t, s, h

snapshot 1 (allstolen=true)

snapshot 2 (allstolen=false)

snapshot 3 (allstolen=false)

snapshot 4 (allstolen=false)

snapshot 5 (allstolen=false)

snapshot 6 (allstolen=false)

Figure 3.3 All tasks are stolen, so the owner sets the flag allstolen (snapshot 1).
Task 4 is not yet done, so the owner steals a task from the thief. This task spawns a
new task, and since allstolen is set, the push method sets t and s to appropriate
values and resets the flag allstolen (snapshot 2). The new task is not stolen when
peek is called and the split point is moved to prevent stealing after peek (snapshot 3).
The task is then popped from the stack (snapshot 4) and executed. Now task 4 is done
and is also popped from the stack (snapshot 5). Now another task is spawned, and
since allstolen is no longer set, t and s are not appropriately updated (snapshot 6).
It seems as if the new task 4 has been stolen, which is not the case.

• During normal operation (outside of moving the split point), thieves write
to the first shared cacheline without affecting the owner and the owner
only writes to the private cacheline.

• After stolen tasks have been removed from the deque, the owner must
decrease tail so new tasks start as unstolen. This update to tail is
delayed and performed by push, so removing multiple stolen tasks does
not trigger excessive communication. We use the oallstolen in push to
check if tail and split should be updated.

There is a special case where tail is not properly updated by push. When
performing leapfrogging (stealing from the thief when the stolen task is not
yet done), creating a new subtask causes push to update tail and split as
expected and unset allstolen. However, when this subtask is not stolen and
the originally stolen task is done, the allstolen flag should be set again to

3

3.3. Design of the shared split deque c s
55

• • • • • • •
t s, h

• • • • • • •
t s, h

• • • • • • •
ts h

• • • • • • •
t s h

snapshot 1

snapshot 2

snapshot 3

snapshot 4

Figure 3.4 The owner reads variables t and s (snapshot 1), then thieves steal three
tasks (snapshot 2) and the owner writes the new split point s (snapshot 3). After the
memory fence, the owner reads the new value of t and updates the split point to its
final position (snapshot 4). Without this memory fence, the owner would not know that
more tasks had been stolen after the first new split point.

avoid the scenario in Figure 3.3. The easiest solution is to use a modified version
of pop called pop-stolen when the popped task is stolen, which ensures that
allstolen is set. An alternative solution without this special pop-stolen
operation would check if head < split, and if so, ensure that allstolen
is set. This works, since always if allstolen is reset during leapfrogging,
head < split after popping the task that was stolen, as in snapshot 5.

In some cases, we need to use memory fences to ensure that the algorithms
function correctly in weak memory models, and atomic operations such as
compare_and_swap (cas) to avoid race conditions, as described in Section 1.3.
The only variable that is written by multiple workers and that could cause prob-
lems is the tail variable on the first shared cacheline. Race conditions on the
movesplit variable are not a problem for the correctness of the algorithm. We
use one atomic cas operation and one memory fence to handle race conditions
and reorderings from the weak memory model:

• Thieves use cas on tail and split simultaneously (they are adjacent
in memory) to increase tail and detect modifications to split by the
owner. The cas operation fails if the owner moved the split point, but
the cas operation never modifies the split variable. The cas operation
also ensures that only one thief succeeds in stealing a task. Thieves that
simultaneously try to steal the same task fail their atomic cas operation.

• The owner does not use cas to move the split point, but instead uses
a normal write followed by a memory fence. If the owner uses atomic
cas, then it will have to perform this cas in a loop until it it successful,

3

56
s c

3. Load-balancing tasks with Lace

1 def steal():
2 if allstolen : return None
3 t, s← (tail, split)
4 if t < s :
5 if cas ((tail,split), (t,s), (t+1,s)) : return Task(t)
6 else: return None
7 elif ¬ movesplit : movesplit← true
8 return None

Algorithm 3.3 The steal algorithm.

racing against the thieves. By using a normal write on the split variable,
followed by a memory fence and a reread of the tail variable, it is
guaranteed that no thief can write beyond the new split point after the
change is globally visible, which the memory fence enforces.

See Figure 3.4 for an example with this memory fence. Note that moving
the split point forward (increasing the shared portion) does not result in a
problematic race condition.

3.4 Deque algorithms

We first explain the steal algorithm in detail. See Algorithm 3.3. It first checks
allstolen, which also loads the values of tail and split as they are on the
same cacheline. The method aborts if allstolen is set. We compare tail and
split to see if there are still unstolen shared tasks. If this is the case, then
we use atomic cas to increment the tail variable by 1 while keeping split
unmodified. If this is succesful, then we have stolen task t and return this
status. The atomic cas is unsuccessful if either some other thief has modified
tail, or if the owner has modified split. If there are no unstolen shared tasks,
then we check if movesplit is already set, and if not, then we set movesplit.
This way, we avoid unnecessary communication if movesplit is already set.

Method push (Algorithm 3.4) adds a new task to the deque and increases
head (lines 10–12). If oallstolen is set (line 13), then this is the first new task
after removing one or more stolen tasks. We set tail and split such that
the new task is shared and that it is the next task to be stolen (lines 14–15),
and we reset allstolen and movesplit (lines 16–18). Otherwise, we check if
movesplit is set and if it is, then we move the split point to halfway between
the current split point and head, rounding up (lines 19–23). This is a safe
method to increase the shared portion, as split < head, unless all tasks have
been stolen in which case lines 19–23 are not reachable. Memory fences and

3

3.4. Deque algorithms c s
57

9 def push(task):
10 if head = size : raise QueueFull
11 write task data at head
12 head← head + 1

13 if oallstolen :
14 (tail,split)← (head-1,head)
15 osplit← head
16 allstolen← false
17 oallstolen← false
18 if movesplit : movesplit← false
19 elif movesplit :

// Grow shared portion
20 new_split← (osplit + head + 1) / 2

21 split← new_split
22 osplit← new_split
23 movesplit← false

Algorithm 3.4 The push algorithm.

24 def pop():
25 head← head - 1

26 def pop-stolen():
27 head← head - 1

28 if ¬ oallstolen :
29 allstolen← true
30 oallstolen← true

Algorithm 3.5 The pop and the pop-stolen algorithms.

24 def pop():
25 head← head - 1

26 if head < osplit and ¬ oallstolen :
27 allstolen← true
28 oallstolen← true

Algorithm 3.6 An alternative to pop that avoids a separate pop-stolen method.

atomic operations are not necessary when increasing the shared portion, as
there are no problematic race conditions.

Method pop (Algorithm 3.5) simply decreases the value of head. As per the
discussion in Section 3.3 above, we use a separate method pop-stolen that sets
allstolen in case allstolen was reset during leapfrogging. See Algorithm 3.6
for an alternative for pop that fixes the flag allstolen without requiring a

3

58
s c

3. Load-balancing tasks with Lace

31 def peek():
32 if head=0 : raise QueueEmpty
33 if oallstolen : return Stolen(head-1)
34 if osplit = head :
35 if ¬ shrink-shared() :
36 allstolen← true
37 oallstolen← true
38 return Stolen(head-1)
39 if movesplit :

// Grow public section (excluding head-1)
40 new_split← (osplit + head) / 2

41 split← new_split
42 osplit← new_split
43 movesplit← false
44 return Work(head-1)

Algorithm 3.7 The peek algorithm.

separate method pop-stolen. This requires one additional comparison between
variables that are both on the private cacheline (head < osplit), however this
would be done at every invocation of pop and not only those after leapfrogging.

Method peek (Algorithm 3.7) performs two main functions: check if the task
on top of the stack is stolen, and if not, to ensure that it cannot be stolen. This
is done by ensuring that the top task is in the private portion of the deque. This
functionality is mostly delegated to a helper algorithm shrink-shared which
is discussed below. The shrink-shared algorithm is called when the private
portion is empty and returns true if the top task is now in the private portion
and unstolen, and false if it is stolen. We first check if maybe all tasks are
already stolen (line 33), in which case we can simply return this status. Then
we check if the top task is in the shared portion or in the private portion, by
comparing osplit and head (line 34). If the task is in the shared portion, then
we try to move the split point with shrink-shared (line 35) and if this is not
succesful, then we set the flag allstolen and return the status (lines 36–38). If
either the top task was already in the private portion or if shrink-shared was
successful, we continue at line 39 and check if there is a request to move the
split point to increase the shared portion of the deque. This is implemented
similar to increasing the shared portion in Algorithm 3.4, but we round down
so that the top task stays in the private portion of the deque (lines 40–43).
Finally, we return the status that the top task is not stolen (line 44).

The shrink-shared method (Algorithm 3.8) is called when the private
portion is empty and returns true if the top task is now in the private portion

3

3.5. Correctness c s
59

45 def shrink-shared():
46 t, s← (tail, split)
47 if t = s : return false
48 new_s← (t + s) / 2

49 split← new_s
50 osplit← new_s
51 memory fence
52 t← tail
53 if t = s : return false
54 if t > new_s :
55 new_s← (t + s) / 2

56 split← new_s
57 osplit← new_s
58 return true

Algorithm 3.8 The shrink-shared algorithm.

and unstolen, and false if it is stolen. First the algorithm loads the current
values of tail and split. Note that the value of split equals head (see line 34),
so if tail and split are equal at line 47, this means tail = head therefore all
tasks are stolen and the algorithm immediately returns false. If this is not
the case, then we set the new split point between tail and split, rounding
down so that new_s < split (lines 48–50), which ensures that the task at
the top of the deque will be in the private portion. As per the discussion in
Section 3.3 above, we use a memory fence and then reload the value of tail
(lines 51–52). We again check if tail = head, with s the original split value
when loaded at line 46. If these are equal, then all tasks are stolen and the
algorithm immediately returns false (line 53). If not, then we check if tasks
have been stolen beyond the new split point. If this is the case, we move the
split point again (lines 54–57), rounding down so the top task stays in the
private portion. Since no thieves can steal tasks after the memory write of
line 49 is globally visible (which is the case after the memory fence), we can be
certain that no tasks have been stolen beyond the new split point this time, and
we return true as the top task is not stolen and in the private portion.

3.5 Correctness

In this section, we aim to provide the reader with an intuitive proof of cor-
rectness. A proper full correctness proof should be performed using a proof
checker.

We assume that the program correctly uses the keywords SPAWN and SYNC

3

60
s c

3. Load-balancing tasks with Lace

stolen
(allstolen)

private
not stolen

shared
not stolen

private
stolen

shared
stolen

12

12

14
14,21,41,56

49

5 (cas)

14,21,41,56

49

Work

25

Stolen

27

Figure 3.5 States and transitions of a task (only for tasks that exist). The labels of
the transitions are line numbers in the algorithms.

to parallelize the algorithm, i.e., every SPAWN is matched by a SYNC, and that the
spawned tasks can be performed independently, i.e., their execution order does
not influence the result. The work-stealing algorithm is correct if each created
task is executed once, and if the result of the parallel algorithm is the same as
the original sequential algorithm, i.e., the sync call returns the same value as
the return value of the matched spawn task.

We start with the following definitions and invariants:
1. A task x exists iff x < head.

2. A task x is stolen iff x < tail, and not stolen otherwise.

3. A task x is shared iff x < split, and private otherwise.

4. If allstolen is not set, then tail ≤ split ≤ head.

5. If allstolen is set, then tail ≥ head and tail ≥ split.
We now establish that Figure 3.5 accurately describes the life-cycle of each

task from creation until destruction. Considering all lines of code in Algo-
rithms 3.3, 3.4, 3.5, 3.7 and 3.8, we determine all lines that modify the status of
a task by manipulating tail, split or head.

• Line 5 increases tail by 1 if the atomic cas is successful, leaving split
unmodified. This marks 1 task as stolen.

• Line 12 increases head by 1 and thus creates 1 new task. Note that if
allstolen is set, then tail ≥ head, so the new state then starts as stolen.

3

3.5. Correctness c s
61

• Line 14 decreases tail to head− 1. This only affects 1 existing task.

• Line 14 sets split to head. Note that the old value of split could be
lower or higher than head; allstolen only implies that tail ≥ head and
tail ≥ split. This can move some tasks from private to shared.

• Line 21 increases split (in push), moving tasks from private to shared
when movesplit is set

• Line 25 decreases head by 1 and thus destroys 1 task.

• Line 27 decreases head by 1 and thus destroys 1 task.

• Line 41 increases split (in peek, after ensuring that the last task is
private), moving tasks from private to shared when movesplit is set.

• Line 49 decreases split, moving tasks from shared to private.

• Line 56 increases split (to recover after the memory fence), moving tasks
from private to shared.

Note that peek and shrink-shared not only move tasks from shared to
private, but also from private to shared. The transitions between states in
Figure 3.5 are labeled with the lines in the above list. In particular, note the
following regarding the task created by push:

• If allstolen is set, then the newly created task might start as stolen,
which is repaired at line 14.

• It is also possible that push is called during leapfrogging, in which case it
is possible that allstolen is set, but the new task starts as private and as
not stolen and line 14 moves it to the shared state.

• Line 14 might affect other existing states, moving them from private to
shared, if split < head.

• If allstolen is not set, then by invariant, the new task starts as private
at line 12.

By inspection of Algorithm 3.8 and the explanation in Section 3.4, we state
that if shrink-shared returns false, then the top task is stolen, and if it returns
true, then the top task is private and not stolen. Without the memory fence at
line 51, it would be be possible that a task is stolen but shrink-shared returns
true. Furthermore, by inspection of Algorithm 3.7 we see that peek correctly
returns Stolen if a task is stolen, and Work if it is in the private portion of the
deque and not stolen.

Based on the above discussion, we state the following:

1. Only push creates tasks and push creates one task.

2. Only pop and pop-stolen destroy tasks and they destroy one task.

3. A task can only be stolen once, because we use atomic cas.

3

62
s c

3. Load-balancing tasks with Lace

31 def sync-fast():
32 if ¬ movesplit and ¬ oallstolen and osplit < head :
33 head← head− 1
34 return task[head].execute()
35 else: return sync()

Algorithm 3.9 The sync-fast algorithm.

4. If and only if a task is stolen, peek returns that it is stolen.

5. After peek reports that a task is not stolen, it cannot be stolen until the
next peek or push.

Then, by inspecting Algorithm 3.2 and the above properties, we conclude:
1. spawn creates one task and only spawn creates tasks.

2. sync destroys one task and only sync destroys tasks.

3. sync returns the correct result.

• When a task is not stolen, sync returns the result of execute.
• When a task is stolen, the thief writes the result of execute to result,

which sync returns after synchronizing on the flag done.

4. A task is executed exactly once. It is either stolen once and executed by
the thief, or it is executed by sync.

5. A thief never operates on a task that does not exist.
In particular, this implies that the desired properties (correct result, each

task executed once) are true.

3.6 Implementation of the framework Lace

This section details our implementation of Lace, a C library that provides a
work-stealing framework in a style similar to Wool and Cilk.

Lace creates one POSIX thread (“pthread”) for each available core. The
default configuration allocates two blocks of memory: the program stack for
the new thread, and the memory for the work-stealing deque, including the
cachelines for the metadata. Laces uses the hwloc library (available on various
operating systems, including Linux, OSX and Windows) to pin each pthread
to their processor core and to place the program stack and the work-stealing
deque on the memory closest to their core.

3.6.1 Standard work-stealing functionality

To implement tasks, Lace provides C macros that require only few modifications
of the original source code. See the table below.

3

3.6. Implementation of the framework Lace c s
63

Task declaration TASK_DECL_1(int, f, int, n);

Task implementation TASK_IMPL_1(int, f, int, n) { ... }

Task decl+impl TASK_1(int, f, int, n) { ... }

Spawn a task SPAWN(f, 4);

Synchronize a task int res = SYNC(f);

Call a task directly int res = CALL(f, 4);

Drop a task (if not stolen) DROP();

The TASK_...._n macros are used for tasks with n input parameters. The first
parameter of the macro is the return type, the second is the function name, and
then alternating the type and name of the function parameters. The DECL and
IMPL versions are used to separate the declaration in the header file from the
implementation. The SYNC macro actually requires the identifier of the task,
since each task gets a set of _SPAWN and _SYNC macros, but this is purely to allow
for compiler optimization and for the correct return types. In addition, we use
a “fast” version of sync (Algorithm 3.9) which helps for compiler optimization
and significantly improves the performance due to how the compiler generates
the program code. For programs that want the option to sometimes cancel the
execution of a task rather than synchronizing, they can use DROP instead of
SYNC which skips executing the task unless it has been stolen. The DROP macro
is simply the SYNC macro, but without executing the task if it was not stolen,
or returning the result if it was stolen. It is a convenience macro for programs
that want to discard the result of a subtask that is not yet executed.

3.6.2 Interrupting tasks to run a new task tree

One helpful feature for garbage collection in Sylvan that we implemented in
Lace is a feature that suspends all current tasks and starts a new task tree.

New task tree with 1 root task t NEWFRAME(t)
All workers execute a task t TOGETHER(t)

Both features work in a similar way. The difference is that the NEWFRAME
macro starts 1 new task and all other workers help execute this task in parallel,
while the TOGETHER macro lets all workers execute a local copy of the given
task. Workers regularly check if they have to cooperate on a new “frame”,
e.g., manually by the user or during leapfrogging and work-stealing. This is
done with a macro YIELD_NEWFRAME which checks a task pointer stored in a
separate cacheline. This pointer normally is zero, but if set, it points to the
task that all workers (except the initiating worker) execute. For NEWFRAME this

3

64
s c

3. Load-balancing tasks with Lace

task is a helper task that performs work-stealing until the root task is done; for
TOGETHER this is the task that all workers execute. Events play out as follows:

1. One worker initiates by setting the task pointer using atomic cas.

2. All other workers call the function yield after they see the task pointer.

3. yield creates a local copy of the task for each worker.

4. All workers wait in a barrier until they all finished step 3. This is the first
barrier and it ensures that no workers are still busy stealing from other
workers.

5. The initiating worker sets the task pointer to zero.

6. All workers create a backup copy of their tail, split and allstolen
variables.

7. All workers wait in a barrier until they all finished step 6.

8. The initiating worker executes its root task; all other workers execute their
local copy of the given task, which is work-stealing (for NEWFRAME) or the
same task as the initiating worker (for TOGETHER).

9. All workers wait in a barrier until they all finished step 8.

10. All workers restore their copy of the tail, split and allstolen variables,
and return from the procedure.

A barrier after step 10 is not necessary since after finishing their task,
tail ≥ split for all workers, so workers that finish the last step early cannot
accidentally steal invalid tasks from each other.

Sylvan uses the NEWFRAME macro as part of garbage collection, and the
TOGETHER macro to perform thread-specific initialization. The parallelized
decision diagram operations typically check whether garbage collection must
be performed at the start of each operation using the YIELD_NEWFRAME macro.

3.7 Experimental evaluation

We evaluate Lace on several benchmarks and compare it to the work-stealing
framework Wool [Fax10], which uses the classical leapfrogging strategy. This
version of Wool (0.1.5alpha) has a dynamic split point and does not use lock-
ing. We compare the performance of Lace with Wool, for two reasons. Our
implementation resembles the implementation of Wool, making a comparison
easier. Also, [Fax10] and [PBF10] show that Wool is efficient compared to
Cilk++, OpenMP and the Intel TBB framework, with a slight advantage for
Wool. We also compare our algorithm to the receiver-initiated version (using
the alternative acquire function) of the private deque of Acar et al. [ACR13],
which we implemented as an alternative task pool in the Lace framework.

3

3.7. Experimental evaluation c s
65

A core challenge in parallel processing is load balancing with minimal over-
head. Available work must be distributed among the participating processors
with maximal speedup. Overhead comes from two main sources. There is
“sequential overhead” which is just the result of using parallelization techniques,
i.e., measured by comparing the original sequential program with the paral-
lelized program on one processor. There is “dynamic overhead” which is the
overhead from adding processors, usually a result of extra communication. We
evaluate the performance of the parallelized benchmark programs by looking
at the sequential overhead and at the obtained speedup by the parallelization
with N workers.

3.7.1 Benchmarks

For all benchmarks, we use the smallest possible granularity and do not use
sequential cut-off points, since we are interested in measuring the overhead of
the work-stealing algorithm. Using a larger granularity and sequential cut-off
points may result in better scalability for some benchmarks, but we are not
interested in obtaining the best scalability, rather we want the benchmarks to
be challenging.

• Fibonacci. For a positive integer N, calculate the Fibonacci number by
calculating the Fibonacci numbers N − 1 and N − 2 recursively and add
the results. This benchmark generates a skewed task tree and is commonly
used to benchmark work-stealing algorithms, since the actual work per
task is minimal.
Number of tasks: 20,365,011,073 (fib 50).

• Queens. For a positive integer N, calculate the number of solutions for
placing N queens on a N × N chessboard so that no two queens attack
each other. Each task at depth i spawns up to N new tasks, one for every
correct board after placing a queen on row i.
Number of tasks: 171,129,071 (queens 15).

• Unbalanced Tree Search. This benchmark by Olivier et al. [Oli+06] is
designed to evaluate the performance for parallel applications requiring
dynamic load balancing. The algorithm uses the SHA-1 algorithm to
generate geometric and binomial trees. The generated binomial trees (T3L)
have unpredictable subtree sizes and depths and are optimal adversaries
for load balancing strategies [Oli+06]. The geometric tree (T2L) appears
to be easy to load balance in practice.
Number of tasks: 96,793,509 (uts T2L) and 111,345,630 (uts T3L).

• Rectangular matrix multiplication. Given N, compute the product of two
(pseudo-)random rectangular N×N matrices A and B. We use the matmul

3

66
s c

3. Load-balancing tasks with Lace

algorithm from the Cilk benchmark set.
Number of tasks: 3,595,117 (matmul 4096).

3.7.2 Results

Our test machine has four twelve-core AMD Opteron 6168 processors. The
system has 128 GB of RAM and runs Scientific Linux 6.0 with kernel version
2.6.32. We considered using fewer than 48 cores to reduce the effects of
operating system interference, but we did not see significant effects in practice.
We compiled the benchmarks using gcc 4.7.2 with flag -O3.

See Table 3.2 for the results of the benchmark set. Each T48 data point is the
average of 50 measurements. Each T1 and TS data point is the average of 20

measurements. We also included measurements marked with “LF+” and “TLF”
that are discussed below in Section 3.7.3.

In general, Table 3.2 shows similar performance for all three algorithms.
The three benchmarks uts T2L, queens and matmul are trivial to parallelize
and have no extra overhead with 48 workers, i.e., T1/T48 ≈ 48.

Comparing TS and T1 for all benchmarks, we see that the overhead of work-
stealing is small for all three work-stealing algorithms, with the exception of
the fib benchmark. For benchmark fib with our algorithm, T1 < TS, which
appears to be related to compiler optimizations. In general, we observed that
variation in T1 is often related to code generation by the compiler. In some
cases, removing unused variables and other minor changes even increased T1
by up to 20% during development. Inspection of the generated program code
revealed that the compiler inlined execution of the fib “call”. If we add this
optimization manually in the sequential version of the Fibonacci algorithm, we
see a significant performance improvement. This makes it difficult to compute
or estimate the sequential overhead of parallelization, although the results with
the other benchmarks suggest that this overhead is minor.

We measured the runtimes of fib and uts T3L using 4, 8, 16, 24, 32 and 40

workers to obtain the speedup graph in Figure 3.6. This graph suggests that
the fib benchmark scales well and that similar results may be obtained using
a higher number of processors in the future. The scalability of the uts T3L
benchmark appears to be limited after 16 workers. We discuss this benchmark
below.

We also measured the average number of steals during a parallel run with 48

workers. See Figure 3.7. We make a distinction between normal stealing when a
worker is idle, and leapfrogging when a worker is stalled because of unfinished
stolen work. We also measured the amount of split point changes. The number
of ‘grows’ indicates how often thieves set movesplit. The number of ‘shrinks’
is equal to the number of memory fences. In the uts T3L benchmark, the high

3

3.7. Experimental evaluation c s
67

Benchmark time Speedup
Lace TS T1 T48 TS/T48 T1/T48

fib 50 149.2 144 4.13 34.5 34.9
uts T2L 84.5 86.0 1.81 46.1 47.4
uts T3L 43.11 44.2 2.23 18.7 19.9
uts T3L (LF+) 43.11 44.26 1.154 37.4 38.3
queens 15 533 602 12.63 42.2 47.7
matmul 4096 773 781 16.46 47.0 47.5

Private deque

fib 50 149.2 208 5.22 23.2 39.8
uts T2L 84.5 86.1 1.83 45.7 47.0
uts T3L 43.11 44.8 2.55 17.3 17.5
uts T3L (LF+) 43.11 44.83 1.240 34.8 36.2
queens 15 533 541 11.34 43.3 47.7
matmul 4096 773 774 16.34 47.3 47.4

Wool

fib 50 149.2 185 4.38 34.1 42.2
uts T2L 84.5 85.1 2.00 42.5 42.5
uts T3L 43.11 44.3 2.12 19.4 20.9
uts T3L (TLF) 43.11 44.27 1.172 36.8 37.8
queens 15 533 539 11.23 47.5 48.0
matmul 4096 773 780 16.40 47.2 47.5

Table 3.2 Averages of running times (seconds) for all benchmarks. Speedups are
calculated relative to both the time of the sequential version (TS) and the parallel version
with one worker (T1). Each T48 data point is the average of 50 measurements. Each T1
and TS data point is the average of 20 measurements. The exception are the TLF and
LF+ benchmarks (discussed in Section 3.7.3), which were performed over 200 times.

number of leaps and split point changes may indicate that the stolen subtrees
were relatively small.

3.7.3 Extending leapfrogging

Benchmark uts T3L appears to be a good adversary for all three algorithms.
This is partially related to the leapfrogging strategy, which forces workers
that wait for the result of stolen tasks to steal from the thief. This strategy
can result in chains of thieves waiting for work to trickle down the chain.

3

68
s c

3. Load-balancing tasks with Lace

Workers

Sp
ee

du
p

0

10

20

30

40

0 10 20 30 40

Benchmark
fib
fib-ri
uts-t3l
uts-t3l-ri

Figure 3.6 Absolute speedup graph (T1/TN) of the fib and uts T3L benchmarks
using Lace with our algorithm and Lace with the private deque receiver initiated (-ri)
algorithm. Each data point is based on the average of 20 measurements.

Benchmark #steals #leaps #grows #shrinks

fib 50 865 50,569 70,789 97,750

uts T2L 4,554 82,440 72,222 57,701

uts T3L 158,566 4,443,432 2,173,006 846,509

queens 15 1,964 6,053 5,694 6,618

matmul 4096 2,492 12,456 13,081 9,911

Figure 3.7 The average total number of steals, leaps, grows and shrinks over 7 runs
with 48 workers.

For example, when worker 2 steals from worker 1, worker 1 will only steal
from worker 2. If worker 3 steals from worker 2 and worker 4 steals from
worker 3, new tasks will be generated by worker 4 and stolen by worker 3

first. Worker 3 then generates new work which can be stolen by workers 2

and 4. Worker 1 only acquires new work if the subtree stolen by worker 4 is
large enough. The updated version of Wool [Fax10] implements an extension
to leapfrogging, called transitive leapfrogging. This feature is documented in
the distribution of Wool versions 0.1.5alpha and 0.1.7alpha, which are available
at http://www.sics.se/~kff/wool/. Transitive leapfrogging enables workers

http://www.sics.se/~kff/wool/

3

3.8. Conclusion and Discussion c s
69

to steal from the thief of the thief, i.e., still steal subtasks of the original stolen
task. There is no actual guarantee that the leapfrogging strategy steals subtasks
of the stolen branch, since thieves may finish the stolen task and steal another
branch of the subtree while the victim is about to steal from the thief. This is
also the case with transitive leapfrogging.

Instead of implementing transitive leapfrogging like in Wool, we extended
Lace to steal from a random worker whenever the thief has no available work to
steal. We included the results of this extension (“LF+”) in Table 3.2, compared to
transitive leapfrogging (“TLF”) in Wool. All benchmarks now have reasonable
speedups, improving from a speedup of 20x to a speedup of 36x with 48

workers.
The disadvantage of our extension is that in practice transitive leapfrogging

and classical leapfrogging require a smaller task stack than the random stealing
extension. It is, however, very simple to implement, while resulting in similar
performance. We measured the peak stack depth with the uts T3L benchmark
for all 48 workers. We observed an increase from a peak stack depth of 6500–
12500 tasks with classical leapfrogging to 17000–21000 tasks with the random
stealing extension. Since every task descriptor for uts T3L is 64 bytes large
(including padding), this strategy required at most 1 extra megabyte per worker
for uts T3L. We also observed that the number of times the shared porting was
increased (“grows”) decreased by 50%.

3.8 Conclusion and Discussion

This chapter presented our work-stealing framework Lace, with features that
we need for garbage collection in Sylvan. Lace has an intuitive interface similar
to frameworks like Cilk and Wool, and has a small source code footprint. This
chapter also presented the novel non-blocking split deque that Lace is built
around. Our design has the advantage that it does not require memory fences
for local deque operations, except when reclaiming tasks from the shared
portion of the deque, and only needs the expensive atomic cas operation for
stealing tasks.

Our experiments show that our work-stealing deque is competitive with
Wool and with the private deque algorithm of Acar [ACR13]. We gain near
optimal speedup for several benchmarks, with very limited overhead compared
to the sequential program. The most challenging benchmark was the uts T3L
benchmark, for which a speedup of 37.4x was obtained on 48 cores, compared
to the sequential version. Extending leapfrogging with random stealing greatly
improves the scalability for the uts T3L benchmark. Clearly, for this bench-
mark, the ideal speedup is not yet reached, although it is not clear whether
improvements are possible in practice.

3

70
s c

3. Load-balancing tasks with Lace

The other benchmark that did not result in the ideal speedup was the
Fibonacci benchmark. This benchmark consists of nearly empty tasks, and
suffered from variation in the runtime due to compiler optimizations. Although
there is theoretical room for better performance, it depends on the application
whether the bottleneck for speedup is the work-stealing framework or not.

Compared to the private deque algorithm, our split deque allows stealing
of multiple tasks by different thieves in the shared deque without cooperation
of the owner, while the private deque algorithm requires cooperation of the
owner for every steal transaction.

Extensions There are several possible extensions to the work-stealing deque.
Resizing. Our work-stealing deque uses a fixed-size array. Given that

virtual memory is several orders of magnitude larger than real memory and
the ability of modern operating systems to allocate only used pages, we can
avoid overflows by allocating an amount of virtual memory much higher than
required. The deque could be extended for resizing, for example using linked
lists of arrays, but we feel this is unnecessary in practice.

Steal-multiple strategies. One extension to work-stealing is the policy to
steal more than one task at the same time, e.g., stealing half the tasks in the
deque, which has been argued to be beneficial in the context of irregular graph
applications [HS02; Din+09]. This is easily implemented by modifying line 5 to
steal multiple tasks (increase tail by more than 1). However, in preliminary
tests on a single NUMA machine, this did not sufficiently improve performance
to be further investigated at the time.

Other memory models. The algorithm is designed for the standard x86 weak
memory model, which only allows reordering loads before stores. Weaker
memory models may for example allow reordering stores. Additional memory
fences may be needed, for example to ensure in the steal-and-run algorithm
that the result is set before the done flag is set.

Several open questions Several open questions remain. When growing the
shared deque, the new split point is the average of split and head, and when
shrinking the shared deque, the new split point is the average of tail and head.
More optimal strategies may exist. A limitation of our approach is that tasks
can only be stolen at the tail of the deque. This limits work-stealing strategies.
Designs that allow stealing any task may be useful for some applications. Our
benchmarks all consist of uniform small tasks. Benchmarking on larger or
irregular sized tasks may be disadvantageous for the private deque algorithm,
since it requires owner cooperation on every steal. Workers that spend a
relatively long time performing a task, are unable to check if they need to
communicate work to a thief. We mainly studied the leapfrogging strategy

3

3.8. Conclusion and Discussion c s
71

and the extension that uses random stealing when leapfrogging does not work.
It may be interesting to see what the performance characteristics and typical
memory requirements are for purely random work-stealing, or perhaps for
strategies that try to steal from workers that have most tasks. Finally, we
performed our experiments on a single NUMA machine. On such machines,
communication costs are low compared to distributed systems. It may be
interesting to compare the work-stealing algorithms on a cluster of computers
using a shared-memory abstraction. In fact, this work is being performed by
Oortwijn et al. at the University of Twente. Especially steal-multiple strategies
may be more beneficial when communication is more expensive, which is still
open for further investigation.

3

4

Chapter 4

Concurrent nodes table and
operation cache

A s outlined in Chapter 2, to efficiently parallelize decision diagram
operations, we need to (1) execute recursive subtasks in parallel, and (2)
perform memory operations in a scalable manner, i.e., using optimized

scalable data structures. This chapter is concerned with scalable data structures.
Section 4.1 introduces the topic. We present three versions (one light-weight
blocking and two wait-free variants) of the hash table that store the decision
diagram nodes in Section 4.2. Section 4.3 then discusses the wait-free operation
cache. Finally, Section 4.4 concludes this chapter.

4.1 Scalable data structures

The parallel efficiency or parallel speedup of a task-based parallelized algorithm
depends largely on the contents of each task. Apart from the number of
independent subtasks, which influences the amount of parallelism for work-
stealing, an important metric for parallel speedup is the “arithmetic intensity”
(or its dual “memory intensity”). Arithmetic intensity expresses the ratio
of processor computation versus memory access, usually in clock cycles per
transferred byte or transferred cacheline. Typically, processor computation is
not a shared resource, while memory bandwidth is a scarce shared resource.
Algorithms with a low arithmetic intensity (or high memory intensity) often
have lower parallel speedup as the number of threads increases, as the time
required to perform memory operations increases. This is especially so if the
processors operate on the same cachelines in the memory, as then the number of
messages increases with the number of threads. Therefore, for optimal parallel
speedups, the memory intensity of the operations should be as low as possible.
See also [WWP09] for a more thorough discussion of this subject.

73

4

74
s c

4. Concurrent nodes table and operation cache

Decision diagram operations are typically memory intensive, since they
consist mainly of calls to the operation cache and the unique table and perform
few calculations. Hence the design of scalable concurrent data structures for the
cache and the unique table is crucial for the parallel performance of decision
diagram implementations.

In parallel programs, memory accesses can result in race conditions or
data corruption, for example when multiple threads write to the same location
in memory. Typically data structures are protected against race conditions
using locking techniques. While locks are relatively easy to implement and
reason about, they often severely cripple parallel performance, especially as the
number of threads increases. Threads have to wait until the lock is released,
and locks can be a bottleneck when many threads try to acquire the same lock.
Also, locks can sometimes cause spurious delays that smarter data structures
could avoid, for example by recognizing that some operations do not interfere
even though they access the same resource.

A standard technique that avoids locks uses the atomic compare-and-swap
(cas) operation, which is supported by many modern processors.

1 def compare-and-swap(location, expected, newvalue):
2 value← *location
3 if value 6= expected : return False
4 *location← newvalue
5 return True

This operation atomically compares the contents of a given location in shared
memory to some given expected value and, if the contents match, changes the
contents to a given new value. If multiple processors try to change the same
bytes in memory using cas at the same time, then only one succeeds.

Datastructures that avoid locks are called non-blocking or lock-free. Such
data structures often use the atomic cas operation to make progress in an
algorithm, rather than protecting a part that makes progress. For example,
when modifying a shared variable, an approach using locks would first acquire
the lock, then modify the variable, and finally release the lock. A lock-free
approach would use atomic cas to modify the variable directly. This requires
only one memory write rather than three, but lock-free approaches are typically
more complicated to reason about, and prone to bugs that are more difficult to
reproduce and debug.

There is a distinction between different levels of lock freedom. In this thesis
we are concerned with three levels:

• In blocking data structures, it may be possible that no threads make
progress if a thread is suspended. If an operation may be delayed forever
because another thread is suspended, then that operation is blocking.

4

4.2. Unique table c s
75

Furthermore, we call data structures where mutexes are avoided (espe-
cially heavy-weight mutexes provided by the operating system, which can
cause process switches) but that have light-weight fine-grained cas-locks
light-weight blocking.

• In lock-free data structures, if any thread working on the data structure
is suspended, then other threads must still be able to perform their
operations. There is always at least one thread that makes progress. In
other words, an operation may be delayed forever, but if this is because
another thread is making progress and never because another thread is
suspended, then that operation is lock-free.

• In wait-free data structures, regardless of the behavior of the other
threads, every thread can complete its operation within a bounded num-
ber of steps; all threads make progress.

The atomic cas operation is often used in loops. Typically this loop consists
of reading the current value of the variable, and using cas to change the
variable from this current value to a new value, until the operation succeeds or
is aborted. This can lead to different levels of lock freedom:

• If a thread may fail the atomic cas operation when other threads are
suspended (often when using something else than the current value of
the variable for cas, for example when implementing a spinlock), then
the thread stays in the loop forever and the operation is blocking.
For example, the loop “loop until cas(location, 0, 1)” only terminates
when another thread (which may be suspended) sets location to 0.

• If a thread performs an atomic cas operation in a loop, and there are
no spurious cas failures, i.e., every time the cas operation fails, it is
because another thread made progress, then the operation is lock-free. It
is however possible that a thread stays in the loop forever, while other
threads make progress.

• If a thread performs an atomic cas operation in a loop, but the number
of cas failures is bounded, then the thread can complete its operation
within a bounded number of steps and the operation is wait-free.

This chapter presents several light-weight blocking and wait-free hash tables.

4.2 Unique table

This subsection describes the hash tables that we use to store the unique
decision diagram nodes. The hash tables store fixed-size decision diagram
nodes (16 bytes for each node) and strictly separates lookup and insertion
of nodes from a stop-the-world garbage collection phase, during which the

4

76
s c

4. Concurrent nodes table and operation cache

table may be resized. From the perspective of the nodes table algorithms (and
correctness), all threads of the program are in one of two phases:

1. During normal operation, threads only call the find-or-insert opera-
tion, which takes as input the 16-byte data and either returns a unique
identifier for the data, or raises the TableFull signal if the algorithm fails
to insert the data.

2. During garbage collection, the find-or-insert operation is never called.
Instead, methods clear, mark and rehash (described in Section 2.2.5) are
called to perform garbage collection.

This simplifies the requirements for the hash tables. The find-or-insert
operation must have the following property: if the operation returns a value
for some given data, then other find-or-insert operations may not return
the same value for a different input, or return a different value for the same
input. This property must hold between garbage collections; garbage collection
obviously breaks the property for nodes that are not kept during garbage
collection, as nodes are removed from the table to make room for new data.

The rest of this section is organized as follows. First, Section 4.2.1 describes
the original hash table from [LPW10] that we based our designs on. Section 4.2.2
then presents variant 1 of our nodes table, an early design that incorporates
a reference counter for each bucket. We used this design in the preliminary
implementation of Sylvan and include it here for completeness. We continue
in Section 4.2.3 with variant 2, which is the first version of the hash table that
uses the current mark-and-sweep approach for garbage collection and also
supports resizing the table. We finish in Section 4.2.4 with variant 3, which is
the final version of the hash table. This hash table uses bit arrays to manage
data allocation, reducing the number of expensive atomic cas operations per
find-or-insert invocation. The designs presented in Section 4.2.3 and Sec-
tion 4.2.4 are also wait-free rather than light-weight blocking. In Section 4.2.5
we compare the three variants by analyzing the number of memory writes and
atomic cas operations that are necessary in normal operation. The performance
of variants 2 and 3 is compared using the LTSmin toolset in Section 5.5.5 in the
next chapter.

Related work Various shared-memory concurrent hash tables have been pub-
lished in the literature. For an overview of such hash tables, see for exam-
ple [SB14; MSD16]. The hash tables that we present here are based on the
shared hash table by Laarman et al. [LPW10]. See the work by Gao, Groote and
Hesselink [GGH05b; GGH05a; GGH07] for a line of research on lock-free hash
tables with garbage collection, which is an important aspect also for decision
diagrams operations. In particular [GGH07] studies mark-and-sweep garbage
collection and uses computer-assisted theorem proving to prove the correctness

4

4.2. Unique table c s
77

72 73 74 75 76 77 78 79

232 233 234 235 236 237 238 239

296 297 298 299 300 301 302 303

Order of buckets:
236–239, 232–235,
297–303, 296,
77–79, 72–76

Figure 4.1 Example of the walking-the-line probe sequence, with the starting buckets
236, 297 and 77 based on the first three hash values of the data.

of their hash table algorithms, although their algorithms are designed to allow
garbage collection concurrently with inserting data into the hash table, which
we do not support.

4.2.1 Original hash table

Our hash tables are based on the hash table in [LPW10] that is designed to
store visited states in model checking. This hash table only supports the
find-or-insert operation and does not need to support resizing operations,
as almost all the available memory is used for the hash table anyway, which
simplifies its design. The hash table incorporates several ideas:

• Using a probe sequence called “walking-the-line” that is efficient with
respect to transferred cachelines.

• Separating the stored data in a “data array” and the hash of the data in
the “hash array” so directly comparing the data is often avoided.

• Using a light-weight parametrised local “writing lock” when inserting
data, which almost always only delays threads that insert the same data.

Probe sequence Every hash table needs to implement a strategy to deal with
hash table collisions, i.e., when different data hashes to the same location in
the table. To find a location for the data in the hash table, some hash tables use
open addressing: they visit buckets in the hash table in a deterministic order
called the probe sequence, to either detect that the data is already in the hash
table, or to find an empty bucket which indicates that the data can be inserted
into that bucket. One of the simplest probe sequences is linear probing, where
the data is hashed once to obtain the first bucket (e.g. bucket 61), and the probe
sequence consists of all buckets from that first bucket (e.g. 61, 62, 63...).

4

78
s c

4. Concurrent nodes table and operation cache

lock hash data

lock hash data

lock hash data

1 bit 31 bits

4 bytes 16 bytes

.

0:

1:

2:

Hash array: Data array:

Figure 4.2 Layout of the lock-less hash table using a separate hash array and data
array.

An alternative to linear probing is walking-the-line, proposed in [LPW10].
Since data in a computer is transferred in blocks called cachelines, it is more
efficient to use the entire cacheline instead of only a part of the cacheline.
For example, if there are 8 buckets per cacheline and we assume that the
buckets are properly aligned so that the first cacheline starts with bucket 0,
then linear probing starting at bucket 61 would only check buckets 61–63

of the first accessed cacheline. In walking-the-line, the other buckets in that
cacheline are also checked, so after buckets 61–63, also buckets 56–60 would
be checked. Then, a new hash value is obtained for the data using a hash
function to obtain the next starting bucket. In theory, this procedure could be
repeated forever; in practice, after a certain number of cachelines the procedure
terminates with the result that the table is full. See also Figure 4.1 for an
example of walking-the-line.

Writing lock When multiple workers simultaneously access the hash table to
find or insert data, there must be some mechanism to avoid race conditions,
such as inserting the same data twice, or trying to insert different data at the
same location simultaneously. Rather than using a global lock on the entire
hash table or regions of the hash table, or a non-specific local lock on each
bucket, the hash table of [LPW10] combines a short-lived local lock with a hash
value of the data that is inserted. This way, threads that are finding or inserting
data with a different hash value know that they can skip the locked bucket in
their search.

An empty bucket is first locked using an atomic cas operation that sets the
lock with the hash value of the inserted data, then writes the data, and then
releases the lock. Only workers that are finding or inserting data with the same
hash as the locked bucket need to wait until the lock is released. This approach

4

4.2. Unique table c s
79

1 def find-or-insert(data):
2 h← hash(data)
3 for s ∈ probe-sequence(data) :
4 V← harray[s]
5 if V = empty :
6 if cas(harray[s], empty, locked(h)) :
7 darray[s]← data
8 harray[s]← filled(h)
9 return s

10 else: V← harray[s]
11 if V.hash = h :
12 while V = locked(h) : V← harray[s]
13 if darray[s] = data : return s
14 raise TableFull

Algorithm 4.1 Algorithm for parallel find-or-insert of the original lock-less hash
table [LPW10].

is not lock-free. The authors state that a mechanism could be implemented
that ensures local progress (making the algorithm wait-free), but that this is not
needed, since the writing locks are rarely hit under normal operation [LPW10].

Separated arrays The hash table stores the hash of the data and the short-
lived lock separated from the stored data. The idea is that the find-or-insert
algorithm does not need to access the stored data if the stored hash does not
match with the hash of the data given to find-or-insert. This reduces the
number of accessed cachelines during find-or-insert. See also Figure 4.2.
Each bucket i in the hash array matches with the bucket i in the data array. The
hash that is stored in the hash array is independent of the hash value used to
determine the starting bucket in the probe sequence, although in practice hash
functions give a 64-bit or 128-bit hash that we can use both to determine the
starting bucket in the probe sequence and the 31-bit hash for the hash array.

The find-or-insert algorithm The find-or-insert algorithm is given in
Algorithm 4.1. Each bucket can be in three states: either empty (the fields “lock”
and “hash” of the bucket are zero), or locked for a certain hash, indicating
that data is being inserted in that bucket, or filled for a certain hash. A hash
function is used that never hashes to zero.

The algorithm itself is straightforward. For every bucket in the probe
sequence, we read the bucket (line 4) and check if it is empty (line 5). In this
case, we know that the data is not yet in the hash table, so we try to claim the

4

80
s c

4. Concurrent nodes table and operation cache

empty bucket to insert the data (line 6). If the atomic cas succeeds, then we
know for sure that we are the exclusive owner of the bucket (due to atomic
cas) and we write the data (line 7) and release the lock (line 8). Since we
assume a system architecture that has total store ordering (memory writes are
not reordered, Section 1.3), we know that when the lock is released for other
threads, then the data they read is also the correct data. If the atomic cas fails,
then the bucket is already claimed by some other worker, since atomic cas
can only fail if another worker succeeded in changing the state from empty to
locked. In that case, we need to reload our knowledge of the bucket (line 10).
Either this worker is inserting data with the same hash, or not, which we check
at line 11. If this is not the case, then we can simply continue with the next
bucket in the probe sequence. If this is the case, then we need to wait until the
lock is released (line 12), after which we compare the data to see if the other
worker inserted our data or not (line 13).

We provide a short informal proof of correctness, by showing that a) it is
not possible that find-or-insert returns the same value for different data,
and that b) it is not possible that find-or-insert returns a different value for
the same data.

By inspection of Algorithm 4.1 we see that the algorithm only returns a
value s if the value of darray[s] equals data and that harray[s] contains
filled(h). Furthermore, it is not possible that the contents of darray[s]
change later. The contents of darray[s] can only be modified by a thread that
succeeds the atomic cas at line 6, i.e., after harray[s] is originally empty, and
harray[s] cannot be set to empty after an operation succeeded at line 6 and
returned s. Therefore, it is not possible that find-or-insert returns the same
value s for different data.

Furthermore, we assume that probe-sequence is always the same for given
data, i.e., that every find-or-insert operation on the same data visits the
same buckets in the same order. By inspection of Algorithm 4.1, we state that
it is impossible for the algorithm to go to the next bucket unless it is certain
that the bucket contains different data: the algorithm only proceeds to the next
bucket if the hash values are different (thus the bucket contains different data)
or if a direct comparison of the data after the lock is released reveals that the
data is different. Consider two threads that insert the same data and the first
thread succeeds. If the second find-or-insert operation returns a different
value for the same data, then the second thread inserts the data in a bucket
that is either before or after the bucket where the first thread inserted the data.
If it is inserted in an earlier bucket, then the first thread skipped this bucket
earlier, and if it is inserted in a later bucket, then the second thread skipped
the existing bucket, which is not possible, since the algorithm cannot go to the
next bucket unless it is certain that it contains different data. Therefore, it is

4

4.2. Unique table c s
81

not possible that find-or-insert returns a different value for the same data.
Note that the loop at line 12 is blocking. Therefore the algorithm is not

lock-free. However, the loop only blocks for concurrent threads that insert
data with the same hash, which is a rare event in practice. [LPW10] states that
a mechanism could be implemented that ensures local progress (making the
algorithm wait-free), but that this is not needed, since the writing locks are
rarely hit under normal operation.

4.2.2 Variant 1: Reference counter and tombstones

This subsection describes the lock-less hash table that we used in the initial
implementation of Sylvan, presented in [DLP13]. The initial implementation
of Sylvan used a different approach to garbage collection than is described in
Section 2.2.5. The initial version used reference counting with the reference
counter for each node embedded in the hash table, whereas the later versions
use external data structures to manage which decision diagram nodes must be
kept during garbage collection.

Implementations of decision diagrams like CUDD [Som15] have a reference
count variable as a part of each decision diagram node, which is used both for
internal referencing (within operations) and external referencing (by the user of
the implementation). We therefore initially extended the hash table described
in Section 4.2.1 with a reference counter in the hash array, reserving 1 bit for
the wait lock, 15 bits for the hash, and 16 bits for the reference counter.

In addition, we extended the hash table with a mechanism for deleting
decision diagram nodes, as garbage collection is essential for the manipulation
of decision diagrams. Node deletion causes a challenge with probe sequences,
as nodes earlier in the probe sequence of some node may be deleted. If we
simply delete nodes by setting the bucket to empty, then later find-or-insert
calls find this empty bucket and insert the node again, resulting in node
duplication. One option is to reinsert all nodes into the hash table during
garbage collection, which is problematic since we derive the node identities
from their location in the hash table, which would change upon reinsertion.
Another option is to use so-called tombstones for deleted buckets. When
buckets are deleted, they are not set to empty, but to a state tombstone. The
find-or-insert algorithm can overwrite the tombstones to insert data, but
must follow the probe sequences until an actual empty bucket or the end of the
probe sequence is found to determine whether the data is already in the table.
Empty buckets are buckets that have never stored data, whereas tombstones
are empty buckets that have at some time contained data.

In this extension of the hash table, presented in [DLP13], each bucket is in
one the following states, manipulated using atomic cas:

4

82
s c

4. Concurrent nodes table and operation cache

1 def find-or-insert(data):
2 h← hash(data)
3 for s ∈ probe-sequence(data) :
4 V← harray[s]
5 if V = empty : return insert(h, data)
6 elif V.hash = h :
7 while V = locked(h) : V← harray[s]
8 if darray[s] = data :
9 while not cas(harray[s], V, filled(V.hash, V.refcount+1)) :

10 V← harray[s]
11 return s
12 raise TableFull

13 def insert(h, data):
14 for s ∈ probe-sequence(data) :
15 V← harray[s]
16 if V = empty∨V = tombstone :
17 if cas(harray[s], V, locked(h)) :
18 darray[s]← data
19 harray[s]← filled(h, 1)
20 return s
21 else: V← harray[s]
22 if V.hash = h :
23 while V = locked(h) : V← harray[s]
24 if darray[s] = data :
25 while not cas(harray[s], V, filled(V.hash, V.refcount+1)) :
26 V← harray[s]
27 return s
28 raise TableFull

Algorithm 4.2 Algorithm for parallel find-or-insert of the lock-less hash table.

• empty for unused buckets.
• locked(hash) for buckets that are about to contain data with hash hash.
• filled(hash, count) for buckets that contain data with hash hash and

with count references.
• tombstone for unused buckets that earlier stored data.

During the normal operation of the hash tables, buckets can only move from
the empty and tombstone state to the locked state, and from the locked state
to the filled state. During garbage collection, buckets can be moved to the
tombstone state.

See Algorithm 4.2 for the implementation of the find-or-insert operation.

4

4.2. Unique table c s
83

The algorithm consists of two phases, a “find” phase and an “insert” phase.
First, the algorithm tries to find either an empty bucket which signifies that
the node is not yet in the table, or a node with the same hash. This phase is
similar to Algorithm 4.1. The main difference is that if we find the data in the
table, then we increase the reference counter using atomic cas at line 9. If this
atomic cas fails, we simply reload the contents of the bucket and try again.
The second phase is similar to the first phase (and Algorithm 4.1), but now we
insert the data when we encounter a bucket that is empty or a tombstone.

There is a separate stop-the-world phase for garbage collection, in which no
nodes are inserted. No nodes are deleted outside of this separate phase. This
means that no tombstones are created during the execution of find-or-insert.
We also experimented with a version of this hash table where garbage collection
and node insertion can occur simultaneously. This requires additional locking
on the first bucket of the probe sequence to avoid the scenario where two
threads want to insert the same node after finding that the node is not yet in
the table, one thread succeeds first, then a third thread deletes a node earlier
in the probe sequence, and the second thread inserts the node at that location,
resulting in node duplication.

Algorithm 4.2 is correct for the same reason that Algorithm 4.1 is correct,
with the additional distinction that the tombstone does not signify that certain
data is not in the table, but it can be reused for inserting data. An additional
property for this particular variant is that find-or-insert must always set the
reference count to 1 for newly inserted data and increase it by 1 when finding
existing data. The former is trivial to prove (line 19) and the latter follows from
the loops at lines 9–10 and lines 25–26.

Note that the cas-loops in lines 9–10 and lines 25–26 are lock-free (always a
thread progresses if the cas operation fails), whereas the loops in line 7 and
line 23 are light-weight blocking: they are rarely hit, since they only block
threads that insert data with the same hash.

4.2.3 Variant 2: Independent locations

In [DP15], we implemented mark-and-sweep garbage collection in Sylvan
and designed a hash table without reference counting and with independent
locations for the bucket in the hash array and in the data array. The idea is
that the location of the decision diagram node in the data array is used for the
node identifier and that nodes can be reinserted into the hash array without
changing the node identifier.

If we have a separate garbage collection phase that clears the hash array
and reinserts the nodes that we want to keep, then tombstones are no longer
necessary. Tombstones have a significant disadvantage, as over time all empty

4

84
s c

4. Concurrent nodes table and operation cache

D H hash index in data array data

D H hash index in data array data

D H hash index in data array data

1 1 22 40 bits

8 bytes 16 bytes

.

0:

1:

2:

Hash array: Data array:

Figure 4.3 Layout of the hash table with hash array h and data array d. The field D of
hash bucket i controls whether the data bucket i is used; the field H of hash bucket i
controls whether the hash bucket i is used, i.e., the fields hash and index.

buckets become tombstones, which forces every find-or-insert operation
to check the entire probe sequence even if the table is actually nearly empty,
as most empty buckets are now tombstones. With operations on decision
diagrams, often garbage collection removes many nodes (e.g. 80%-90% of the
table), which all become tombstones.

See Figure 4.3 for the layout of this hash table. Note that we now require
larger buckets in the hash array, mainly to store the location of the hashed data
in the data array. The bucket in the hash array can be in the following states:

• empty (D = 0, H = 0) when both the bucket in the hash array and the
corresponding bucket in the data array are not used.

• dfilled (D = 1, H = 0) when only the corresponding bucket in the data
array is filled.

• hfilled(hash, index) (D = 0, H = 1) when only the bucket in the hash
array is filled.

• dhfilled(hash, index) (D = 1, H = 1) when both buckets are filled.
All modifications to buckets in the hash array must be performed with atomic
cas operations. Note that the field D can be set to 1 and to 0 by find-or-insert
as discussed below, but the field H can only be set from 0 to 1.

See Algorithm 4.3 for find-or-insert. The find-or-insert algorithm
now consists of three phases: a find phase, then a phase that inserts the data
in the data array, and finally a phase that inserts the data into the hash array.
Data is inserted in the data array first and then in the hash array. If some other
worker concurrently inserted the same data after we inserted the data in the
data array, then we undo this operation by setting the field D back to 0 using
atomic cas (lines 28–31). Note that this implementation no longer needs a
writing lock.

The algorithm first searches through the probe sequence to either find an

4

4.2. Unique table c s
85

1 def find-or-insert(data):
2 h← hash(data)
3 for s ∈ probe-sequence(data) :
4 V← harray[s]
5 if V.H = 0 : return insert(h, data)
6 elif V.hash = h∧ darray[V.index] = data : return V.index
7 raise TableFull

8 def insert(h, data):
9 for d ∈ data-sequence(data) :

10 V← harray[d]
11 if V.D = 0∧ cas(harray[d], V, V with [D:=1]) :
12 darray[d]← data
13 return insert2(h, d, data)
14 raise TableFull

15 def insert2(h, d, data):
16 for s ∈ probe-sequence(data) :
17 V← harray[s]
18 if V.H = 0 :
19 loop:
20 if cas(harray[s], V, 〈V.D, 1, h, d〉) : return d
21 V← harray[s]
22 if V.H = 1 : break
23 if V.h = h∧ darray[V.index] = data :
24 uninsert(d)
25 return V.index
26 uninsert(d)
27 raise TableFull

28 def uninsert(d):
29 loop:
30 V← harray[d]
31 if cas(harray[d], V, V with [D:=0]) : return

Algorithm 4.3 Algorithm for parallel find-or-insert of the lock-less hash table.

4

86
s c

4. Concurrent nodes table and operation cache

empty bucket (H = 0) signifying the data is not yet in the table, or a matching
bucket. If the data is not yet in the table, then the insert function continues
the procedure by finding an empty bucket in the data array and claiming that
bucket using atomic cas setting D to 1. If this is successful, then we continue
with insert2 to insert the data into the hash array, which uses an atomic cas to
insert the data in the hash array. We perform this atomic cas in a loop because
other threads might be manipulating the field D. In case another worker has
inserted the same data, we rollback the operation by unsetting the field D from
the bucket in the data array. We also need to rollback if we exhaust the probe
sequence.

The insert method that inserts the data into the data array uses a different
probe sequence. In particular this data sequence does not need to be deter-
ministic. In our implementation, we simply let every thread start at a different
position in the hash table and search linearly (with a bounded number of buck-
ets). Also, small experiments with random probing resulted in performance
deterioration. Our hypothesis is that the operating system automatically allo-
cates new memory pages on the memory closest to the processor on which the
thread resides that is writing to the memory page for the first time. However,
we did not further investigate this.

The informal proof of correctness follows along the same lines as for the
previous variants. Again, it is not possible to continue to the next bucket in the
probe sequence of the hash array unless it is determined that the bucket contains
other data. It is also not possible that data is changed after its “definitive”
insertion in the hash array (line 20), even though the same bucket in the data
array can be used many times for speculative insertion.

The find-or-insert operation of Algorithm 4.3 is wait-free (although with
a high bound). To support this, we consider all loops in the algorithm.

• The for-loops at line 3, line 9 and line 16 are bounded as the probe
sequence and the data sequence are bounded.

• The cas-loop at lines 19–22 is technically wait-free, although the bound
is very high. The cas operation fails when another thread has modified
the fields H, hash and index (also at line 20), but this can occur at most
once and it breaks the loop. The cas operation also fails when another
thread has modified the field D, which can occur at most twice as often
as there are buckets in the hash table, since the number of times field D
can change from 1 to 0 is bounded by the size of the hash table.

• The cas-loop at lines 29–31 is wait-free, as the number of times the cas
operation can fail is at most once, which is when another thread succeeds
writing H, hash and index (at line 20).

4

4.2. Unique table c s
87

hash index in data array data

hash index in data array data

hash index in data array data

24 bits 40 bits

8 bytes 16 bytes

.

0:

1:

2:

Hash array: Data array:

Figure 4.4 Layout of the hash array and data array in the final hash table design.

4.2.4 Variant 3: Using bit arrays to manage the data array

The hash table above has the drawback that the speculative insertion and
uninsertion into the data array requires atomic cas operations, once for the
insertion, once for the uninsertion. We present the final version of this hash
table in [DP16b]. Instead of using a field D in the hash array, we use a
separate bit array databits to implement a parallel allocator for the data array.
Furthermore, to avoid having to use cas for every change to databits, we
divide this bit array into regions, such that every region matches exactly with
one cacheline of the databits array, i.e., 512 buckets per region if there are 64

bytes in a cacheline, which is the case for most current architectures. Every
worker has exclusive access to one region, which is managed with a second
bit array regionbits. Only changes to regionbits (to claim a new region)
require an atomic cas. The new version therefore only uses normal writes for
insertion and uninsertion into the data array, and only occasionally an atomic
cas during speculative insertion to obtain exclusive access to the next region of
512 buckets.

A claimed region is not given back until garbage collection, which resets
claimed regions. On startup and after garbage collection, the regionbits array
is cleared and all threads claim an initial region using the claim-next-region
method in Algorithm 4.4. All threads start at a different position (distributed
over the entire table) for their first claimed region, to minimize the interactions
between threads. The databits array is empty at startup and during garbage
collection threads use atomic cas to set the bits in databits of decision diagram
nodes that must be kept in the table. In addition, the bit of the first bucket
is always set to 1 to avoid using the index 0 since this is a reserved value in
Sylvan.

The layout of the hash array and the data array is given in Figure 4.4. We

4

88
s c

4. Concurrent nodes table and operation cache

1 def find-or-insert(data):
2 index← 0
3 h← hash(data)
4 for s ∈ probe-sequence(data) :
5 V← harray[s]
6 if V = 0 :
7 if index = 0 :
8 index← reserve-data-bucket()
9 darray[index]← data

10 if cas(harray[s], 0, {h, index}) : return index
11 else: V← harray[s]
12 if V.hash = h∧ darray[V.index] = data :
13 if index 6= 0 : free-data-bucket(index)
14 return V.index
15 raise TableFull

16 def reserve-data-bucket():
17 loop:
18 if myregion has a bit set to 0 :
19 i← first bit in myregion that is 0
20 set-bit(databits, 512×myregion + i, 1)
21 return 512×myregion + i
22 else: myregion← claim-next-region(myregion)

23 def free-data-bucket(d):
24 set-bit(databits, d, 0)

25 def claim-next-region(oldregion):
26 newregion← (oldregion + 1) mod (tablesize/512)
27 while newregion 6= oldregion :
28 loop:
29 if the bit for newregion is 1 : break
30 if set-bit-cas(regionbits, newregion, 0, 1) : return newregion
31 newregion← (newregion + 1) mod (tablesize/512)
32 raise TableFull

Algorithm 4.4 Algorithm for parallel find-or-insert of the hash table, with 512
buckets per region. The variable myregion is a thread-specific variable.

4

4.2. Unique table c s
89

also remove the field H, which is obsolete as we use a hash function that never
hashes to 0 and we forbid nodes with the index 0 because 0 is a reserved value
in Sylvan. The fields hash and index are therefore never 0, unless the hash
bucket is empty, so the field H to indicate that hash and index have valid values
is not necessary. Manipulating the hash array bucket is also simpler, since we
no longer need to take into account changes to the field D.

Inserting data in the hash table consists of three steps. First the algorithm
tries to find whether the data is already in the table. If this is not the case, then
a new bucket in the data array is reserved in the current region of the thread
with the reserve-data-bucket function. If the current region is full, then the
thread claims a new region with the claim-next-region function. Note that it
may be possible that the next region contains used buckets, if there has been a
garbage collection earlier. Afterwards the new bucket is inserted in the hash
array. Sometimes, the data has been inserted concurrently (by another thread)
and then the bucket in the data array is freed again with the free-data-bucket
function, so it is available the next time the thread wants to insert data.

The main method of the hash table is find-or-insert. See Algorithm 4.4.
The algorithm uses the local variable “index” to keep track of whether the data
is inserted into the data array. This variable is initialized to 0 (line 2) which
signifies that data is not yet inserted in the data array. For every bucket in the
probe sequence, we first check if the bucket is empty (line 6). In that case, the
data is not yet in the table. If we did not yet write the data in the data array,
then we reserve the next bucket and write the data (lines 7–9). We use atomic
cas to insert the hash and index into the hash array (line 10). If this is succesful,
then the algorithm is done and returns the location of the data in the data array.
If the cas operation fails, some other thread inserted data here and we refresh
our knowledge of the bucket (line 11) and continue at line 12. If the bucket is
not or no longer empty, then we compare the stored hash with the hash of our
data, and if this matches, we compare the data in the data array with the given
input (line 12). If this matches, then we may need to free the reserved bucket
(line 13) and we return the index of the data in the data array (line 14). If we
finish the probe sequence without inserting the data, we raise the TableFull
signal (line 15).

The find-or-insert method relies on the methods reserve-data-bucket
and free-data-bucket which are also given in Algorithm 4.4. They are fairly
straightforward.

The claim-next-region method searches for the first 0-bit in the regionbits
array. The value tablesize here represents the size of the entire table. We use
a simple linear search and a cas-loop to actually claim the region. Note that
we may be competing with threads that are trying to set the bit of a different
region, since the smallest range for the atomic cas operation is 1 byte or 8 bits.

4

90
s c

4. Concurrent nodes table and operation cache

The informal proof of correctness of this algorithm follows along the same
lines as before. We establish that threads truly have exclusive access to regions
by inspecting claim-next-region. From this we can argue that once a thread
inserts new data and returns, the data will not change. Furthermore, we can
again establish that find-or-insert only proceeds to the next bucket in the
probe sequence if establishes that either the current bucket has a different hash
or that the associated data bucket contains different data.

The algorithms in Algorithm 4.4 are wait-free. The claim-next-region
method is wait-free, since the number of cas failures is bounded: regions
are only claimed and not released (until garbage collection), and the number
of regions is bounded, so in principle the maximum number of cas failures
is the number of regions. The free-data-bucket is trivially wait-free: there
are no loops. The reserve-data-bucket method contains a loop, but since
claim-next-region is wait-free and the number of times claim-next-region
returns a value instead of raising the TableFull signal is bounded by the number
of regions, reserve-data-bucket is also wait-free. Finally the find-or-insert
method only relies on wait-free methods and has only one for-loop (line 4)
which is bounded by the number of items in the probe sequence. It is therefore
also wait-free.

4.2.5 Comparing the three variants

This section contains an informal analysis of the number of memory writes and
atomic cas operations that are minimally needed for various operations on the
nodes table. The real-world performance of variants 2 and 3 is compared using
the LTSmin toolset in Section 5.5.5 in the next chapter.

Expected cost in number of operations The main difference between the
variants of the hash tables is in the number of cachelines they read and write
and the number of atomic cas operations. See Table 4.1. We consider the costs
of finding existing nodes and inserting new nodes. Since inserting data is a
two-step process in variants 2 and 3, we also consider the cost of inserting a
node, then discovering it is already added simultaneously by another thread,
and undoing the insertion.

For variant 1, we also add the cost of dereferencing nodes in the future,
which uses atomic cas to decrease the reference count by 1. This is necessary
for the vast majority of created decision diagram nodes, for typical applications.
The cost of dereferencing nodes for variants 2 and 3 is not part of the table,
but depends on the application. For example, node lists can be maintained on
the program stack (relatively cheap) or using BDD “protected” variables (only
memory write for the initialization of the variable, see Section 2.2.5).

4

4.2. Unique table c s
91

Cost of finding existing node

Original Only memory reads, at least 2 cachelines (1+ in the
hash array, 1 in the data array)

Variant 1 In addition to memory reads: • 1 cas to increase the
reference count • 1 cas in the future to decrease the
reference count

Variant 2 Only memory reads, at least 2 cachelines (1+ in the
hash array, 1 in the data array)

Variant 3 Only memory reads, at least 2 cachelines (1+ in the
hash array, 1 in the data array)

Cost of inserting new node

Original • 1 cas in the hash array • 1 write (16 bytes) in the data
array • 1 write on the same cacheline in the hash array
Total: 2 cachelines, 1 cas, 2 write

Variant 1 • 1 cas in the hash array • 1 write (16 bytes) in the data
array • 1 write on the same cacheline in the hash array
• 1 cas in the future to decrease the reference count
Total: 2 cachelines, 2 cas, 2 write

Variant 2 • 1 cas in the hash array for the data bucket • 1 write
(16 bytes) in the data array • 1 cas in the hash array for
the hash bucket • possibly more cachelines searching
for an empty data bucket
Total: 3 cachelines, 2 cas, 1 write

Variant 3 • 1 write in the array databits • 1 write (16 bytes) in
the data array • rarely 1 cas in the array regionbits
• 1 cas in the hash array for the hash bucket
Total: 3 cachelines, 1 cas, 2 write, rarely +1 cas on +1

cacheline
Cost of undoing inserting a node

Original –
Variant 1 –
Variant 2 • 1 cas in the hash array field D to undo insertion
Variant 3 • 1 write in the array databits to undo insertion

Table 4.1 Comparison of cost in accessed cachelines, memory writes and atomic
cas operations for typical calls to find-or-insert

4

92
s c

4. Concurrent nodes table and operation cache

lock hash tag key value

lock hash tag key value

lock hash tag key value

1 bit 15 bits 16 bits 24 bytes 8 bytes

4 bytes 32 bytes

.

0:

1:

2:

Hash array: Data array:

Figure 4.5 Layout of the operation cache.

Table 4.1 assumes that all atomic cas operations are successful; in all cases
when the cas fails, the cas operation is performed again until it is successful.
There is also some additional cost from following the probe sequence that is the
same for all variants and not included here. As we see in Table 4.1, variants 2

and 3 touch an additional cacheline to either set the field D in the hash array, or
to set the bit in the databits array. Typically we want to avoid cas operations,
as they are not only more expensive than normal writes and imply a memory
fence, but also because they need to be restarted when the cas operation fails.
The main difference between these two variants is that a cas operation is
replaced by a normal write (which is cheaper), both for inserting the node and
for undoing that insertion if needed, and that only sometimes a new region is
claimed using cas in variant 3. An application-specific performance comparison
of variants 2 and 3 is compared in Section 5.5.5.

Memory cost The original hash table requires 20 bytes per bucket (16 bytes
data, 4 bytes in the hash array). Variant 1 also requires 20 bytes per bucket.
Variant 2 requires 24 bytes per bucket (8 bytes in the hash array). Variant 3

requires 24 bytes and 1 + 1/512 bits for the bit array per bucket.

4.3 Operation cache

The operation cache is a hash table that stores intermediate results of BDD
operations. It is well known that an operation cache is required to reduce
the worst-case time complexity of BDD operations from exponential time to
polynomial time. See also Section 2.2.4.

We use an operation cache which, like the hash tables described in Sec-
tion 4.2, consists of two arrays: the hash array and the data array. See Figure 4.5
for the layout.

4

4.3. Operation cache c s
93

1 def cache-put(key, value):
2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return
5 if s.hash = h : return
6 if not cas(harray[location], s, {1, h, s.tag + 1}) : return
7 darray[location]← {key, value}
8 harrray[location]← {0, h, s.tag + 1}

Algorithm 4.5 The cache-put algorithm.

Since we implement a lossy cache, the design of the operation cache is
extremely simple. We do not implement a special strategy to deal with hash
collisions, but simply overwrite the old results. There is a trade-off between the
cost of recomputing operations and the cost of synchronizing with the cache.
For example, the caching granularity (see Section 2.2.4) increases the number
of recomputed operations but improves the performance in practice.

The most important concern for correctness is that every result obtained
via cache-get was inserted earlier with cache-put, and the most important
concern for performance is that the number of memory accesses is as low as
possible. To ensure this, we use a 16-bit “tag” counter that increments (modulo
4096) with every update to the bucket, and check this value before reading the
cache and after reading the cache to check if the obtained result is valid. The
chance that this tag counter is the same for a different result is astronomically
small, as this requires exactly 4096 cache-put operations on the same bucket
by other workers between the first and the second time the tag is read in
cache-get, and the last of these 4096 other operations must have the same hash
value but different data.

We reserve 24 bytes of the bucket for the operation and its parameters. We
use the first 64-bit value to store a BDD parameter and the operation identifier.
The remaining 128 bits store other parameters, such as up to two 64-bit values,
or up to three BDDs (123 bits, with 41 bits per BDD with a complement edge).
The same holds for MTBDDs and LDDs. The result of the operation can be
any 64-bit value or a BDD. Note that with 32 bytes per bucket and a properly
aligned array, accessing a bucket requires only 1 cacheline transfer.

See Algorithms 4.5 and 4.6 for the cache-put and cache-get algorithms.
The algorithms are quite straight-forward. We use a 64-bit hash function

that returns sufficient bits for the 15-bit h value and the location value. The h
value is used for the hash in the hash array, and the location for the location
of the bucket in the table. The cache-put operation aborts as soon as some
problem arises, i.e., if the bucket is locked (line 4), or if the hash of the stored

4

94
s c

4. Concurrent nodes table and operation cache

1 def cache-get(key):
2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return ⊥
5 if s.hash 6= h : return ⊥
6 storedkey, value← darray[location]
7 if storedkey 6= key : return ⊥
8 if s 6= harray[location] : return ⊥
9 return value

Algorithm 4.6 The cache-get algorithm.

key matches the hash of the given key (line 5), or if the cas operation fails
(line 6). If the cas operation succeeds, then the bucket is locked. The key-value
pair is written to the cache array (line 7) and the bucket is unlocked (line 8, by
setting the locked bit to 0).

In the cache-get operation, when the bucket is locked (line 4), we abort
instead of waiting for the result. We also abort if the hashes are different (line 5).
We read the result (line 6) and compare the key to the requested key (line 7).
If the keys are identical, then we verify that the cache bucket has not been
manipulated by a concurrent operation by comparing the “tag” counter (line 8).

It is theoretically possible that between lines 6–8 of the cache-get operation,
exactly 4096 cache-put operations are performed on the same bucket by other
workers, with at least one of these such that the comparison at line 7 succeeds.
The chances of this occurring are astronomically small. The reason we choose
this design is that this implementation of cache-get only reads from memory
and never writes. Memory writes cause additional communication between
processors and with the memory when writing to the cacheline, and also force
other processor caches to invalidate their copy of the bucket. We also want to
avoid locking buckets for reading, because locking often causes bottlenecks.
Since there are no loops in either algorithm, both algorithms are wait-free.

4.4 Conclusion and Discussion

This chapter presented the data structures that we have implemented in Sylvan
for the unique table and the operation cache. Because Sylvan strictly separates
garbage collection and possible table resizing from the normal operation with
find-or-insert, the table designs can be kept simple.

The designs presented in this chapter follow the evolution of Sylvan as
a research implementation of parallel decision diagrams, and were mainly
evaluated with the model checking toolset LTSmin (see Chapter 5). We have

4

4.4. Conclusion and Discussion c s
95

a comparison of variants 2 and 3 using a large benchmark set for the model
checking toolset LTSmin in Section 5.5.5.

One direction for future research is to look at different architectures. We
focus on multi-core systems, but distributed systems are also popular. Recently,
Oortwijn et al. [ODP15] studied the performance of a distributed hash table
design, which uses a shared memory abstraction with Infiniband and remote
direct memory access. This paper is part of the research by Oortwijn into
parallelizing BDD operations on distributed systems, similar to our approach
on multi-core systems.

There are many options to further improve or study the hash tables pre-
sented here. An open question is how large exactly the cost is of not waiting
in cache-get until a thread that is writing a result is finished. Also, we did
not really look at the performance of the hash function, while this may be
very important for good performance. It may be interesting to consider an
operation cache that looks at multiple buckets (maybe several buckets on the
same cacheline) and if none of them contain the data, uses the bucket with
the smallest value of the tag counter to write the result. Currently, garbage
collection removes all results from the cache, but it may be interesting to study
whether some results can be kept in the table if garbage collection only removes
a small number of nodes. Another interesting question would be whether
more intelligent garbage collection, for example generational garbage collection
might be useful with some support from the nodes table. We tried to keep
the data structures in this chapter as “stupid” and simple as possible, but
maybe more intelligent approaches could improve the performance further in
the future.

4

5

Chapter 5

Application: State space exploration

The main application for which we developed parallel decision diagram oper-
ations is symbolic model checking. In model checking, systems are modeled
as sets of possible states of the system and transitions between these states.
System states are typically represented by Boolean vectors. In symbolic model
checking, rather than treating and storing these states individually, sets of states
are represented by Boolean functions stored using decision diagrams.

Fixed point algorithms, which are procedures that repeatedly apply some
operation until a fixed point is reached, play a central role in many model
checking algorithms. An example of a fixed point algorithm is state space
exploration (“reachability”), which computes all states reachable from some
initial state of the system, i.e., the transitive closure of the transition relation
on some initial set of states. The algorithms in Figure 5.1 are well-known
methods to compute this transitive closure, with the closure-fs algorithm
using a so-called frontier set that only contains the newly discovered states in
each iteration. Model checking algorithms depend on state space exploration
to determine the number of states, to check if an invariant is always true, to

1 def closure(S , T):
2 S ′ ← ∅
3 while S 6= S ′ :
4 S ′ ← S
5 S ← S ∪ relnext(S , T)
6 return S

1 def closure-fs(S , T):
2 F ← S
3 while F 6= ∅ :
4 next← relnext(F , T)
5 S , F ← next∪ S , next \ S
6 return S

Figure 5.1 Algorithms closure and closure-fs compute the transitive closure of
the transition relation T on the initial set of states S .

97

5

98
s c

5. Application: State space exploration

find cycles and deadlocks, and so forth.
This chapter describes the implementation of on-the-fly state space explo-

ration in the model checking toolset LTSmin (Section 5.1), and shows how we
parallelize symbolic state space exploration using

1. the parallel decision diagram operations of Sylvan, including a specialised
operation relnext (Section 5.2),

2. parallel transition learning with a special decision diagram operation
collect that combines enumeration with set union (Section 5.3), and

3. high-level parallelism, using the disjunctive partitioning of transitions
offered by LTSmin (Section 5.4).

We study the effects of these three consecutive steps on the parallel speed-up
(Section 5.5) using benchmarks from the BEEM database [Pel07]. Section 5.6
concludes this chapter.

This chapter and the experimental results in this chapter are mainly based on
the publications [DP15] and [DP16b]. For this thesis, we added Sections 5.1, 5.2
and 5.6, and also added new experiments in Section 5.5.2.

5.1 On-the-fly state space exploration in LTSmin

The Pins interface The model checking toolset LTSmin provides a language
independent Partitioned Next-State Interface (Pins), which connects various in-
put languages to model checking algorithms [BPW10; LPW11; DLP12; Kan+15;
Mei+14]. In Pins, the states of a system are represented by vectors of N integer
values. Furthermore, transitions are distinguished in K disjunctive “transition
groups”, i.e., each transition in the system belongs to one of these transition
groups. The transition relation of each transition group usually only depends
on a subset of the entire state vector called the “short vector”. This enables the
efficient encoding of transitions that only affect some integers of the state vector.
Variables in the short vector are further distinguished by the notions of read
dependency and write dependency [Mei+14]: the variables that are inspected or
read to obtain new transitions are in the “read vector” of the transition group,
and the variables that can be modified by transitions in the transition group are
in the “write vector”. An example of a variable that is only in the read vector is
a guard; when a variable is only in the write vector, then its original value is
irrelevant. Computing short vectors from long vectors is called “projection” in
LTSmin and is similar to existential quantification.

Learning transitions Initially, LTSmin does not have knowledge of the tran-
sitions in each transition group, and only the initial state is known. As the
model is explored, new transitions of each transition group are learned via the
Pins interface and their projection is added to the transition relation. Every

5

5.1. On-the-fly state space exploration in LTSmin
c s

99

1 def learn-transitions(states, k):
2 shorts← project(states, readvariables[k])
3 shorts← minus(shorts, visited[k])
4 visited[k]← union(visited[k], shorts)
5 enumerate (shorts, readvariables[k], next-state-wrapper, k)

6 def next-state-wrapper(state, k):
7 next-state(state, k, add-transition)

8 def add-transition(source, target, k):
9 relations[k]← union(relations[k], transition(source, target))

Algorithm 5.1 The algorithm for on-the-fly learning in LTSMIN.

Pins language module implements a next-state function. This next-state
function takes as input the source state (read vector), a transition group, a
callback function, and optional parameters that are given to the callback func-
tion. For every transition from the short state, the callback function is called
with as input the source state (read vector), the target state (write vector), the
transition group, and the extra parameters that were given to the next-state
function. In addition, for each transition group, LTSmin stores the set of read
vectors for which next-state has been called. Algorithms in LTSmin thus
learn new transitions on-the-fly. Internally, LTSmin offers various backends to
store discovered states and transitions, including binary decision diagrams and
list decision diagrams from Sylvan. With list decision diagrams, integers from
the state vector can be used directly in the decision diagram nodes. With binary
decision diagrams, the integers must be represented in binary form, typically
using a fixed number of bits per integer.

The algorithm learn-transitions that learns new transitions is given in
Algorithm 5.1. This algorithm is given a set of states, i.e., as a BDD or LDD,
and the transition group k, and also uses global variables:

• relations is an array of BDDs or LDDs with the transition relation of
each transition group;

• readvariables is an array that encodes for each transition group the
variables that are in the read vector;

– for BDDs, this is a cube of BDD variables
– for LDDs, this is a singleton vector with the value 1 for every vari-

able in the read vector, e.g., with 4 state variables, the singleton
{〈0, 1, 1, 0〉} encodes that the 2nd and 3rd variable are in the read
vector.

• visited is an array of BDDs or LDDs with the read vectors for which the
transitions have already been computed.

5

100
s c

5. Application: State space exploration

First the set of (new) states is reduced to the short states (read vector) by
abstracting from variables that are not in the read vector of transition group k
(line 2). In LTSmin, this is called the projection of the set of long vectors onto
the variables in the read vector, and it is similar to existential quantification. We
remove the states from shorts that have been seen before (line 3) and update
the visited set with the new states (lines 4). Finally, we enumerate all new
short states (line 5). The enumerate function takes four parameters (three for
LDDs): the set of states, the variables in the BDD (omitted for LDDs), the
callback function, and a parameter for the callback function. enumerate calls
the wrapper function next-state-wrapper for every state in the given set. This
wrapper function calls the next-state function of the Pins language module
(line 7), which calls the callback add-transition for every discovered transition.
The add-transition callback then converts the transition to a singleton set
with the method transition and adds this transition to the set relation[k]
(line 9).

The advantage of this technique is that on-the-fly transition learning uses
short vectors via Pins, implicitly learning many “long transitions” with every
learned “short transition”. While Pins is in essence an explicit-state interface,
using the short (read and write) vectors makes Pins quite efficient for sym-
bolic model checking. The learned transitions (explicit-state) are added to the
transition relation first and then used to compute the successor states (as long
vectors) symbolically.

The reachability algorithm The symbolic reachability algorithm with K tran-
sition groups and on-the-fly learning is given in Algorithm 5.2. This algorithm
is an extension of the standard breadth-first-search (BFS) reachability algorithm
with a frontier set (Figure 5.1). Algorithm 5.2 iteratively discovers new states
until no new states are found (line 4). For every transition group (line 5), the
transition group is updated with new transitions learned from the frontier
set (line 6). The updated transition relation relations[k] is then used to
symbolically find all successors of the states in the frontier set (line 7). This
uses the relnext operation that is described in Section 2.3.3. The sets of new
states discovered for every transition group are pair-wise merged into the new
set frontier (line 8). Successors that have been found in earlier iterations are
removed (line 9). All new states are then added to the set of discovered states
states (line 10). When no new states are discovered, the set of discovered
states is returned (line 11).

The algorithm big-union that pair-wise merges sets is given in Algo-
rithm 5.3.

5

5.2. Parallel operations in a sequential algorithm c s
101

1 def reachable(initial):
// global variables: relations[K], K

2 states← initial
3 frontier← initial
4 while frontier 6= ∅ :
5 for k ∈ {0, . . . , K−1} :
6 learn-transitions (frontier, k)
7 next[k]← relnext (frontier, relations[k])
8 frontier← big-union (next, 0, K)
9 frontier← minus (frontier, states)

10 states← union (states, frontier)
11 return states

Algorithm 5.2 Symbolic on-the-fly reachability algorithm (using a frontier set) with
K transition groups. Computes the set of states reachable from the initial state. The
transition relations are updated with on-the-fly learning (line 6).

1 def big-union(array, i, k):
2 if k = 1 : return array[i]
3 else:
4 left← big-union(array, i, k/2)
5 right← big-union(array, i + k/2, k− k/2)
6 return union(left, right)

Algorithm 5.3 Implementation of pair-wise merge algorithm big-union, which
given an array of BDDs or LDDs, merges the k consecutive sets, starting at the ith
element in the array.

5.2 Parallel operations in a sequential algorithm

To parallelize the symbolic reachability algorithm in LTSmin, we can simply use
the parallel operations of Sylvan, without special modifications to the original
algorithm. However, we use a non-parallel enumerate method (Algorithm 5.1,
line 5), because the add-transitions callback (Algorithm 5.1, lines 8–9) is not
thread-safe. If we use a parallel enumerate method, then multiple threads
update the same global transition relation at the same time, resulting in a race
condition.

5.3 Parallel learning

In order to exploit the automatic parallelization offered by Sylvan with a parallel
enumerate method to parallelize transition learning, we need to modify the

5

102
s c

5. Application: State space exploration

1 def collect(states, variables, callback, vec={}, k):
2 if variables = ∅ : return callback(vec, k)
3 if states = false : return ∅
4 v, variables← head(variables), tail(variables)
5 do in parallel:
6 low← collect(statesv=0, variables, callback, vec+{0}, k)
7 high← collect(statesv=1, variables, callback, vec+{1}, k)
8 return or(low, high)

Algorithm 5.4 The parallel collect algorithm for BDDs combining set enumeration
and set union. The algorithm expects the BDD states, a cube of variables used for the
enumeration, and a callback function. The callback is called for every element of the set
and returns a BDD. The returned BDDs are pairwise merged (using or) and returned.

1 def collect(states, callback, vec={}, k):
2 if states = 1 : return callback(vec, k)
3 if states = 0 : return ∅
4 do in parallel:
5 right← collect(states.right, callback, vec, k)
6 down← collect(states.down, callback, vec+{states.value}, k)
7 return union(right, down)

Algorithm 5.5 The parallel collect algorithm for LDDs combining set enumeration
and set union. The algorithm expects the LDD states and a callback function. The
callback is called for every element of the set and returns an LDD. The returned LDDs
are pairwise merged (using union) and returned.

design of the Pins callback wrappers in LTSmin. The next-state method
implemented by the language modules remains the same, but we modify both
the wrapper around the next-state function and the callback called by the
next-state function to enable parallel learning. We modify the callback to put
learned transitions in a temporary set and return this set, instead of updating a
global transition relation. We implement a custom decision diagram operation
collect that combines set enumeration with set union. See Algorithm 5.4 for
BDDs and Algorithm 5.5 for LDDs.

By using this collect algorithm with the modified next-state wrapper in-
stead of the sequential enumerate operation, we parallelize on-the-fly transition
learning. See Algorithm 5.6 for the modified learn-transitions method that
uses collect instead of enumerate (line 5) and adds the learned relations to
the global transition relation (line 6). The modified next-state-wrapper uses a
local temporary set learned (lines 8–10) that is updated by the add-transition
method (line 12).

5

5.4. Fully parallel on-the-fly symbolic reachability c s
103

1 def learn-transitions(states, i, learned):
2 shorts← project(states, readvariables[i])
3 shorts← minus(shorts, visited[i])
4 visited[i]← union(visited[i], shorts)
5 learned← collect(shorts, readvariables[i], next-state-wrapper, i)
6 relations[i]← union(relations[i], learned)

7 def next-state-wrapper(state, k):
8 learned← ∅
9 next-state(state, k, add-transition, &learned)

10 return learned

11 def add-transition(source, target, k, learned):
12 learned← union(learned, encode-transition(source, target, k))

Algorithm 5.6 Transition learning with the collect operation.

∪
∪

∪

successors[0]
successors[1]
successors[2]
successors[3]

relnext+minus
relnext+minus
relnext+minus
relnext+minus

learn(frontier, 0)
learn(frontier, 1)
learn(frontier, 2)
learn(frontier, 3)

frontier

Figure 5.2 Schematic overview of parallel on-the-fly reachability.

5.4 Fully parallel on-the-fly symbolic reachability

Even with parallel decision diagram operations and parallel learning with the
collect operation, the parallel speedup of model checking in LTSmin is limited,
especially for smaller benchmark models. See Section 5.5.2 and Section 5.5.3
for benchmark results that show speedups of up to 20x with 48 cores for a
few benchmark models, but slowdowns for many other benchmark models.
We expect that performing reachability on these benchmark models results in
mostly small “work units” (between sequential points in the algorithm) and
insufficient parallelism inside each work unit.

Since LTSmin partitions the transition relation in transition groups, many
small operations are executed in sequence, for each transition group. To
improve the parallel speedups, we execute lines 5–8 of Algorithm 5.2 in parallel,
as in Figure 5.2. We still perform the same decision diagram operations, but
the number of sequential points is decreased and this increases the size of each
work unit and also the amount of parallelism in the task tree. We therefore
expect improved parallel speedup.

The fully parallel on-the-fly symbolic reachability algorithm is given in
Algorithm 5.7. The new par-next method implements the parallelization for

5

104
s c

5. Application: State space exploration

1 def par-next(frontier, i, k):
2 if k = 1 :
3 learn-transitions (frontier, i)
4 next← relnext(frontier, relations[i])
5 return next
6 else:
7 do in parallel:
8 left← par-next(frontier, i, k/2)
9 right← par-next(frontier, i + k/2, k− k/2)

10 return union(left, right)

11 def reachable(initial):
12 states← initial
13 frontier← initial
14 while frontier 6= ∅ :
15 frontier← par-next(frontier, 0, K)
16 frontier← minus(frontier, states)
17 states← union (states, frontier)
18 return states

Algorithm 5.7 Parallel symbolic on-the-fly reachability with K transition groups.

all transition groups. Lines 3–5 correspond with lines 6–7 in Algorithm 5.2.
Lines 7–10 correspond with the big-union method.

5.5 Experimental evaluation

5.5.1 Experimental setup

We evaluate the application of parallelization to LTSmin. The experimental eval-
uation is based on the BEEM model database [Pel07]. Of these 300 benchmark
models, 269 were successfully explored in [DP15]. The plc and train-gate
models had an unfortunate parsing error in the Pins wrapper and we ignore
these models in our evaluation. Several other models timed out (we use a
timeout of 1200 seconds). We perform the experiments on a 48-core machine,
consisting of 4 AMD OpteronTM

6168 processors with 12 cores each and 128

GB of internal memory.
We perform symbolic reachability using the LTSmin toolset using the fol-

lowing command:

dve2lts-sym -rgs --order=<order>
--vset=<dd> <model>.dve

5

5.5. Experimental evaluation c s
105

Most experiments use the LDD implementation of Sylvan (selected with
--vset=lddmc) but in Section 5.5.6 we compare these results with the BDD
implementation (selected with --vset=sylvan). We also select as size of the
unique table 230 buckets and as size of the operation cache also 230 buckets. The
parameter --order selects the variation of the algorithm that we use: bfs-prev
for the sequential algorithm with parallel operations and par-prev for the fully
parallel version. The -prev versions use a frontier set, whereas bfs and par do
not use a frontier set. We perform the following experiments:

No Section Experiment

1 5.5.2 parallel operations, sequential learning with enumerate
algorithm described in Section 5.2
(table variant 3, newest ltsmin)

2 5.5.3 parallel operations, parallel learning with collect
algorithm described in Section 5.3
(table variant 2, oldest ltsmin)

3 5.5.4 fully parallel reachability algorithm
algorithm described in Section 5.4
(table variant 2, oldest ltsmin)

4 5.5.5 fully parallel with nodes table variant 3

compare tables of Section 4.2.3 and Section 4.2.4
(table variant 3, old ltsmin)

5 5.5.6 fully parallel but with binary decision diagrams
compare BDDs with LDDs
(table variant 3, old ltsmin)

The experiments with the “oldest” version of LTSmin were performed for [DP15],
whereas the experiments with the “old” version of LTSmin were performed
for [DP16b]. The experiments with the “new” version of LTSmin were per-
formed specifically for this thesis.

In all cases, we measure the time spent to execute symbolic reachability,
excluding time spent initializing LTSmin, loading the models and computing
the heuristic for the variable ordering (the -rgs parameter), which is the same
for all models. The speedups given are the absolute speedups, but we also
present the total time to run all experiments.

5.5.2 Experiment 1: Only parallel LDD operations

In Section 5.2 we discuss parallelizing LTSmin by only performing the decision
diagram operations in parallel, but without modifying the sequential algorithm

5

106
s c

5. Application: State space exploration

Experiment 1 T1 T8 T48 T1/T8 T1/T48

firewire_link.1 2.62 3.44 6.39 0.7 0.4
anderson.1 6.67 7.01 13.76 1.0 0.5
firewire_tree.1 2.57 2.73 3.67 0.9 0.7
blocks.4 555.97 98,23 39.08 5.7 14.2
collision.5 271.55 46.92 18.12 5.8 15.0
lifts.8 315.41 53.01 18.64 5.6 16.9
exit.4 418.25 67.03 20.33 6.2 20.6
telephony.8 737.76 116.61 34.96 6.3 21.1

Sum of all 269 models 12917 3649 2970 3.5 4.3

Table 5.1 Benchmark results (runtimes in seconds) for experiment 1. Each data point
of T1 and T48 is the average of at least 25 measurements; each data point of T8 is the
average of at least 2 measurements.

0

5

10

15

20

25

1 10 100 1000

Time with 1 worker (s)

Sp
ee

du
p

w
it

h
4

8
w

or
ke

rs

Figure 5.3 Plot of logarithmic time spent with 1 worker versus the obtained (absolute)
speedup with 48 workers for the 269 benchmark models for experiment 1 (only parallel
operations, but no parallel learning and no parallel reachability).

5

5.5. Experimental evaluation c s
107

Experiment 2 T1 T48 T1/T48

firewire_link.1 17.93 15.23 1.2
anderson.1 24.44 30.78 0.8
firewire_tree.1 16.43 11.35 1.4
blocks.4 630.04 21.69 29.0
collision.5 401.26 20.03 20.0
lifts.8 377.36 26.11 14.5
exit.4 440.66 20.67 21.3
telephony.8 843.06 31.10 27.1

Sum of all 269 models 20745 3737 5.6

Table 5.2 Benchmark results (runtimes in seconds) for experiment 2 (parallel opera-
tions and parallel learning, but no parallel reachability). Each data point is the average
of at least 3 measurements.

in LTSmin, and using the sequential enumerate method for transition learning.
Table 5.1 summarizes the results for all 269 benchmark models and shows in

particular the results of several selected models. We selected a few models that
performed badly and a few models that performed well. The highest speedup
was obtained with the telephony.8 model, with a speedup of 21.1x. Unfortu-
nately, 125 of the 269 benchmark models have a slowdown when executed with
48 workers, and 31 of the 269 benchmarks models have a slowdown already
with 8 workers.

See also Figure 5.3. This plot shows that for this particular benchmark set,
small models (under 10 seconds) have low parallel speedups (under 3x) or even
slowdowns. Of course, this also means that many of these benchmarks are
not very interesting for parallel execution on a 48-core machine, as they are
done quickly enough (under 10 seconds) that they are not very interesting for
parallelism anyway.

5.5.3 Experiment 2: Parallel learning

This subsection presents the experimental results using the bfs-prev variation
in LTSmin, which uses collect that parallizes on-the-fly transition learning as
described in Section 5.3.

Table 5.2 summarizes the results for all 269 benchmark models. These results
were earlier published in [DP15] and were obtained with using an older version
of LTSmin than the results in Section 5.5.2. Also, this version used the nodes
table variant 2 presented in Section 4.2.3, while the results in Section 5.5.2 were

5

108
s c

5. Application: State space exploration

Experiment 3 T1 T48 T1/T48

firewire_link.1 17.96 1.57 11.5
anderson.1 24.43 15.45 1.6
firewire_tree.1 16.40 0.99 16.5
blocks.4 629.54 16.58 38.0
collision.5 401.38 12.97 31.0
lifts.8 377.52 12.03 31.4
exit.4 441.06 12.71 34.7
telephony.8 843.70 24.68 34.2

Sum of all 269 models 20756 1298 16.0

Table 5.3 Benchmark results (runtimes in seconds) for experiment 3 (parallel opera-
tions, parallel learning and parallel reachability). Each data point is the average of at
least 3 measurements.

obtained with the nodes table variant 3 (with bitmaps) presented in Section 4.2.4.
For this reason, the obtained runtimes are not directly comparable to the results
in Section 5.5.2. However, compared to those results, we obtain better speedups
here. The blocks.4 model resulted in the highest speedup of 29.0x with 48

workers.

5.5.4 Experiment 3: Fully parallel reachability

This subsection presents the experimental results using the par-prev variation
in LTSmin, which fully parallelizes on-the-fly symbolic reachability as described
in Section 5.4.

Table 5.3 summarizes the results for all 269 benchmark models. These
results were earlier published in [DP15] and were obtained using the same
version of LTSmin and Sylvan as the results in Section 5.5.3. Model blocks.4
results in the highest speedup of 38.0x. We also highlight the model lifts.8
which has a speedup of 14.5x with bfs-prev and more than twice as high
with par-prev. Also, models firewire_link.1 and firewire_tree.1 have
much better speedup with the fully parallelized version. One of the largest
improvements was obtained with the firewire_tree.1 model, which went
from 1.4x to 16.5x. The overhead (difference in T1) between the “sequential”
bfs-prev and “parallel” par-prev versions is negligible. For all models, the
speedup either improves with the par-prev strategy, or stays the same.

For an overview of the obtained speedups on the entire benchmark set, see
Figure 5.4. Here we see that “larger” models (higher T1) are associated with a

5

5.5. Experimental evaluation c s
109

0

5

10

15

20

25

30

35

40

1 10 100 1000

Time with 1 worker (s)

Sp
ee

du
p

w
it

h
4

8
w

or
ke

rs

0

5

10

15

20

25

30

35

40

1 10 100 1000

Time with 1 worker (s)

Sp
ee

du
p

w
it

h
4

8
w

or
ke

rs

Figure 5.4 Plot of logarithmic time spent with 1 worker versus the obtained (absolute)
speedup with 48 workers for the 269 benchmark models for experiment 2 (parallel
learning, but no parallel reachability, above) and 3 (fully parallel, below).

5

110
s c

5. Application: State space exploration

Experiment 4 T1 T48 T1/T48

firewire_link.1 4.24 0.48 8.8
anderson.1 8.93 6.21 1.4
firewire_tree.1 4.23 0.30 14.1
blocks.4 635.86 17.27 36.8
collision.5 341.57 10.99 31.1
lifts.8 416.04 13.05 31.9
exit.4 494.85 13.95 35.5
telephony.8 915.61 28.18 32.5

Sum of all 269 models 16231 896 18.1

Table 5.4 Benchmark results (runtimes in seconds) for experiment 4 (fully parallel,
with nodes table variant 3). Each data point is the average of at least 5 measurements.

higher parallel speedup. This plot also shows the benefit of adding parallellism
on the algorithmic level, as many models in the fully parallel version have
higher speedups. We conclude that the lack of parallelism is a bottleneck, which
can be alleviated by exploiting the disjunctive partitioning of the transition
relation.

5.5.5 Experiment 4: Comparing nodes table variants 2 and 3

We repeated the benchmarks on all 269 benchmark models using the par-prev
variation with variant 2 of the nodes table presented in Section 4.2.3 and variant
3 presented in Section 4.2.4. See Table 5.4. We observe that the total benchmark
set is run faster and result in a slightly improved parallel speedup. However,
the results for individual models varies, for examples the model collision.5
and the firewire models are performed faster, but the telephony.8 and exit.4
models are performed slower.

For a more insightful comparison of these results, see Figure 5.5. The results
suggest that smaller benchmark models benefit more from the new hash table
design. For the larger models, the difference between variants 2 and 3 is not
very large, which is disappointing.

See Figure 5.6 for a speedup graph of a selection of the models with the
highest speedups with variant 3 of the nodes table. The point of this speedup
graph is that most likely further speedups would be obtained after 48 cores for
the selected models.

5

5.5. Experimental evaluation c s
111

1

10

100

1000

1 10 100 1000

Time (variant 2) (s)

Ti
m

e
(v

ar
ia

nt
3

)
(s

)

1

10

100

1 10 100

Time (variant 2) (s)

Ti
m

e
(v

ar
ia

nt
3

)
(s

)

Figure 5.5 Comparison between the benchmark results of experiment 3 (with variant
2 of the nodes table) and experiment 4 (with variant 3 of the nodes table), for 1 worker
(above) and for 48 workers (below).

5

112
s c

5. Application: State space exploration

0

10

20

30

40

0 10 20 30 40 50

Workers

Sp
ee

du
p

Model
blocks.4
collision.5
exit.4
lann.6
lifts.8
mcs.5
rether.6
telephony.5

Figure 5.6 Speedup graphs of several well-performing models (experiment 4), using
LDDs, the fully parallel strategy and nodes table variant 3. Each data point is an
average of at least 5 measurements.

5.5.6 Experiment 5: Comparing BDDs and LDDs

Finally, we compared the performance of experiment 3 (fully parallel, using
nodes table variant 2) with the same setup but using binary decision diagrams
instead of list decision diagrams. One of the problems when using binary
decision diagrams is selecting how many bits we need per integer in the state
vector. For each model, we obtained the smallest number of bits per integer by
experimentation and we used that for the experiments.

Figure 5.7 shows that the majority of models, especially larger models,
are performed up to several orders of magnitude faster using LDDs. The
most extreme example is model frogs.3, which has for BDDs T1 = 989.40,
T48 = 1005.96 and for LDDs T1 = 61.01, T48 = 9.36. The large difference
suggests that LDDs are a more efficient representation for the models of the
BEEM database. Some models are missing that timed out for BDDs but did
not time out for LDDs, for example model blocks.4. Perhaps better results
for BDDs would be obtained by obtaining the smallest number of bits for

5

5.6. Conclusion and Discussion c s
113

2

16

128

1024

2 16 128 1024

BDD T48 (seconds)

LD
D

T 4
8

(s
ec

on
ds

)

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

BDD Speedup (48)

LD
D

Sp
ee

du
p

(4
8

)

Figure 5.7 Results of the models that did not time out for both BDDs and LDDs,
comparing time with 48 workers (left) and obtained (absolute) speedup (right).

each specific integer of the state vector, instead of for all integers. When we
performed these experiments, LTSmin did not support this feature.

5.6 Conclusion and Discussion

The following table summarizes the experiments of Sections 5.5.2–5.5.5.

Experiment T1 T48 T1/T48

parallel operations, sequential learning
(table variant 3, newest ltsmin)

12917 2970 4.3

parallel operations, parallel learning
(table variant 2, oldest ltsmin)

20745 3737 5.6

fully parallel reachability algorithm
(table variant 2, oldest ltsmin)

20756 1298 16.0

fully parallel reachability algorithm
(table variant 3, old ltsmin)

16231 896 18.1

The evolution of LTSmin and Sylvan is shown in the above table. The results
with the “oldest” version of LTSmin were obtained for [DP15], whereas the
results with the “old” version of LTSmin were obtained for [DP16b]. The results
with the “new” version of LTSmin were obtained specifically for this thesis. It
is clear that newer versions have better performance, although the “oldest” and
“old” versions were relatively similar in terms of performance; the difference
here is caused by the new design of the nodes table (variant 3).

5

114
s c

5. Application: State space exploration

We have seen that the best obtained speedups were obtained with the
telephony.8 model in the first experiment (21.1x), and with the blocks.4
model in the second (29.0x), third (38.0x) and fourth (36.8x) experiments, all
with 48 workers. Not all models result in good speedup, as we have seen that
the speedup greatly depends on the model of which we compute the reachable
state space.

The majority of the work to parallelize on-the-fly symbolic reachability
was implementing parallel decision diagram operations in Sylvan. Using the
framework offered by Sylvan, parallel on-the-fly symbolic reachability is then
quite straightforward to implement. We use the Lace work-stealing framework
that is a part of Sylvan to implement Algorithm 5.7. The collect method was
the only custom decision diagram operation needed and only required about
25 lines of code, including some overhead to manage internal references for
garbage collection.

We conclude that parallelizing on-the-fly symbolic state space exploration
using Sylvan is a success. Furthermore, disjunctive partitioning of the state
space contributed significantly to the obtained parallel speedup reported here.

Recent experiments in related work Sylvan has also been used as a symbolic
backend in the model checker IscasMC, a probabilistic model checker [Hah+14]
written in Java. A recent study [Dij+15] compared the performance of the BDD
libraries CUDD, BuDDy, CacBDD, JDD, Sylvan, and BeeDeeDee when used as
the symbolic backend of IscasMC and performing symbolic reachability. This
result is quite important, as we did not directly compare our decision diagram
library with other such libraries in LTSmin.

They summarize the overall runtimes by the following table [Dij+15]:

backend time (s) backend time (s)

sylvan-7 608 buddy 2156

cacbdd 1433 jdd 2439

cudd-bdd 1522 beedeedee 2598

sylvan-1 1838 cudd-mtbdd 2837

This result was produced with variant 2 of the nodes table in Sylvan. As the
results show, Sylvan is competitive with other BDD implementations when used
sequentially (with 1 worker) and benefits from parallelism (with 7 workers).

More sophisticated algorithms The work in this chapter and the performed
experiments are based on one of the most basic methods to perform state space
exploration: a set-based breadth first search. Based on the results we obtained,
we expect that the application of parallel decision diagram operations in more

5

5.6. Conclusion and Discussion c s
115

sophisticated model checking algorithms and for other types of transition
systems also results in parallel speedup. It is quite likely though that some
more sophisticated algorithms can be challenging to parallelize in this way and
may require some creativity to obtain good speedup. One particular example
is the saturation algorithm proposed and advocated by Ciardo et al. [CLS01;
CMS03; CZJ12]. They write on the parallelization of state space exploration with
the saturation algorithm [ELC07; CZJ09], suggesting in [CZJ09, Section 3] that
on shared-memory systems, calls to relational products could be parallelized.
They write here that operations on decision diagrams often share computation
paths and that parallelization may result in recomputation, and suggest to use
the operation cache to record the intention of computation might alleviate this
problem. In our experience, the amount of recomputation due to parallelization
is small and the benefits outweigh the extra work that is done.

In [ELC07], they report parallel speedup for some models on a dual-core
machine, and slowdowns in other cases. We suggest that one of the reasons may
be the use of mutexes to protect the nodes tables (one table for each variable
level) against race conditions. Perhaps the nodes tables that we propose in this
thesis and that are fundamental to our success with breadth first search could
alleviate some of the problems they encountered.

Additionally, they report that many operations are very small and therefore
difficult to parallelize. This may be similar to the limited speedup that we ob-
tained with the sequential breadth first search algorithm (only parallel decision
diagram operations) and perhaps a similar strategy using disjunctive transition
relations of some kind could improve the parallel performance.

It may well be possible that the techniques that allowed good scalability for
LTSmin, especially the scalable lock-free nodes table and operation cache, may
result in much better scalability for parallel saturation in the future.

5

6

Chapter 6

Application: Bisimulation
minimisation

One of the main challenges for model checking is that the space and time
requirements of model checking algorithms increase exponentially with the
size of the models. One technique that helps combat this challenge is called
bisimulation minimisation. Given an input model, bisimulation minimisation
computes the smallest equivalent model, also called the maximal bisimulation,
under some notion of equivalence. This can significantly reduce the number of
states. This technique is also used to abstract models from internal behavior,
when only observable behavior is relevant.

The maximal bisimulation of a model is typically computed using partition
refinement. Starting with an initially coarse partition (e.g., all states are equiva-
lent), the partition is refined until states in each equivalence class can no longer
be distinguished. The result is the maximal bisimulation with respect to the
initial partition. Blom et al. [BO03] introduced a signature-based method, which
assigns states to equivalence classes according to a characterizing signature.
This method easily extends to various types of bisimulation.

In the literature, symbolic methods have been applied to bisimulation mini-
misation in several ways. Bouali and De Simone [BS92] refine the equivalence
relation R ⊆ S× S, by iteratively removing all “bad” pairs from R, i.e., pairs
of states that are no longer equivalent. For strong bisimulation, Mumme and
Ciardo [MC13] apply saturation-based methods to compute R. Wimmer et
al. [WHB07; Wim+06] use signatures to refine the partition, represented by the
assignment to equivalence classes P : S→ C. Symbolic bisimulation based on
signatures has also been applied to Markov chains by Derisavi [Der07b] and
Wimmer et al. [WB10; WDH10].

The symbolic representation of the maximal bisimulation, when effective,
often tends to be much larger than the original model. One particular applica-

117

6

118
s c

6. Application: Bisimulation minimisation

tion of symbolic bisimulation minimisation is as a bridge between symbolical
models and explicit-state analysis algorithms. Such models can have very large
state spaces that are efficiently encoded using BDDs. If the minimised model
is sufficiently small, then it can be analyzed efficiently using explicit-state
algorithms.

Symbolic techniques mainly reduce the memory requirements of model
checking. To take advantage of computer systems with multiple processors,
developing scalable parallel algorithms is the way forward. Parallelization has
been applied to explicit-state bisimulation minimisation. Blom et al. [Blo+08;
BO03] introduced a parallel, signature-based algorithm for various types of
bisimulation, especially strong and branching bisimulation. Also, [Kul13] pro-
posed a concurrent algorithm for bisimulation minimisation which combines
signatures with the approach by Paige and Tarjan [PT87]. Recently, Wijs [Wij15]
implemented highly parallel strong and branching bisimilarity checking on
GPGPUs. As far as we are aware, no earlier work combines symbolic bisimula-
tion minimisation and parallelism.

This chapter studies bisimulation minimisation for labeled transition sys-
tems (LTSs), continuous-time Markov chains (CTMCs) and interactive Markov
chains (IMCs), which combines the features of LTSs and CTMCs. These allow
the analysis of quantitative properties, e.g., performance and dependability. We
concentrate on strong bisimulation and branching bisimulation. Strong bisimu-
lation preserves both internal behavior (τ-transitions) and observable behavior,
while branching bisimulation abstracts from internal behavior. The advantage
of branching bisimulation compared to other variations of weak bisimulation
is that it preserves the branching structure of the LTS, thus preserving certain
interesting properties such as CTL* without next-state operator [DV95].

The current chapter contains the following contributions. After preliminaries
(Section 6.1), we introduce the notion of partition refinement with partial
signatures in Section 6.2. Section 6.3 discusses how we extend Sylvan to
parallelize signature-based partition refinement. In particular, we develop two
specialized BDD algorithms. We implement a new refine algorithm, that
refines a partition according to a signature, but maximally reuses the block
number assignment of the previous partition (Section 6.3.2). This algorithm
improves the operation cache use for the computation of the signatures of
stable blocks, and enables partition refinement with partial signatures. We also
present the inert algorithm, which, given a transition relation and a partition,
removes all transitions that are not inert (Section 6.3.3). This algorithm avoids
an expensive intermediate result reported in the literature [Wim+06]. We
present the implementation of these algorithms as a versatile tool that can
be customized for bisimulation minimisation in various contexts (Section 6.4).
Section 6.5 discusses experimental data based on benchmarks from the literature

6

6.1. Definitions c s
119

to demonstrate a speedup of up to 95x sequentially. In addition, we find parallel
speedups of up to 17x due to parallelisation with 48 cores. Finally, we end the
chapter with conclusions in Section 6.6.

This chapter is based on the following publication:
[DP16a] Tom van Dijk and Jaco van de Pol. “Multi-Core Symbolic Bisimulation
Minimisation.” In: TACAS. vol. 9636. LNCS. Springer, 2016, pp. 332–348

6.1 Definitions

We recall the basic definitions of partitions, of LTSs, of CTMCs, of IMCs, and of
various bisimulations as in [BO03; HK09; WHB07; Wim+06; Wim+07].

Definition 6.1.1. Given a set S, a partition π of S is a subset π ⊆ 2S such that⋃
C∈π

C = S and ∀C, C′ ∈ π : (C = C′ ∨ C ∩ C′ = ∅).

If π′ and π are two partitions, then π′ is a refinement of π, written π′ v π,
if each block of π′ is contained in a block of π. The elements of π are called
equivalence classes or blocks. Each equivalence relation ≡ is associated with a
partition π = S/≡. In this chapter, we use π and ≡ interchangeably.

Definition 6.1.2. A labeled transition system (LTS) is a tuple (S, Act,→), con-
sisting of a set of states S, a set of labels Act that may contain the non-observable
action τ, and transitions→⊆ S× Act× S.

We write s a→ t for (s, a, t) ∈→. and s τ9 when s has no outgoing τ-
transitions. We use a∗→ to denote the transitive reflexive closure of a→. Given
an equivalence relation ≡, we write a→≡ for a→ ∩ ≡, i.e., transitions between
equivalent states, called inert transitions. We use a∗→≡ for the transitive reflexive
closure of a→≡ .

Definition 6.1.3. A continuous-time Markov chain (CTMC) is a tuple (S,⇒),
consisting of a set of states S and Markovian transitions⇒⊆ S×R>0 × S.

We write s λ⇒ t for (s, λ, t) ∈⇒. The interpretation of s λ⇒ t is that the
CTMC can switch from s to t within d time units with probability 1−e−λ·d. For

a state s, let R(s)(s′) = ∑{λ | s λ⇒ s′} be the rate to move from state s to state
s′, and let R(s)(C) = ∑s′∈C R(s)(s′) be the cumulative rate to reach a set of
states C ⊆ S from state s.

Definition 6.1.4. An interactive Markov chain (IMC) is a tuple (S, Act,→,⇒),
consisting of a set of states S, a set of labels Act that may contain the non-
observable action τ, transitions →⊆ S× Act× S, and Markovian transitions
⇒⊆ S×R>0 × S.

http://dx.doi.org/10.1007/978-3-662-49674-9_19
http://dx.doi.org/10.1007/978-3-662-49674-9_19

6

120
s c

6. Application: Bisimulation minimisation

An IMC basically combines the features of an LTS and a CTMC. One feature
of IMCs is the maximal progress assumption. Internal interactive transitions, i.e.
τ-transitions, can be assumed to take place immediately, while the probability
that a Markovian transition executes immediately is zero. Therefore, we may
remove all Markovian transitions from states that have outgoing τ-transitions:
s τ→ implies R(s)(S) = 0. We call IMCs to which this operation has been
applied maximal-progress-cut (mp-cut) IMCs.

In this chapter, we look at strong and branching bisimulation.
For LTSs, strong and branching bisimulation are typically defined as fol-

lows [Wim+06]:

Definition 6.1.5. An equivalence relation ≡S is a strong bisimulation on an
LTS iff for all states s, t, s′ with s ≡S t and for all s a→ s′, there is a state t′ with
t a→ t′ and s′ ≡S t′.

Definition 6.1.6. An equivalence relation ≡B is a branching bisimulation on an
LTS iff for all states s, t, s′ with s ≡B t and for all s a→ s′, either

• a = τ and s′ ≡B t, or
• there are states t′, t′′ with t τ∗→ t′ a→ t′′ and t ≡B t′ and s′ ≡B t′′.

For CTMCs, strong bisimulation is defined as follows [Der07b; WB10]:

Definition 6.1.7. An equivalence relation ≡S is a strong bisimulation on a
CTMC iff for all (s, t) ∈ ≡S and for all classes C ∈ S/≡S, R(s)(C) = R(t)(C).

For mp-cut IMCs, strong and branching bisimulation are defined as fol-
lows [HK09; Wim+07]:

Definition 6.1.8. An equivalence relation ≡S is a strong bisimulation on an
mp-cut IMC iff for all (s, t) ∈≡S and for all classes C ∈ S/≡S

• s a→ s′ for some s′ ∈ C implies t a→ t′ for some t′ ∈ C
• R(s)(C) = R(t)(C)

Definition 6.1.9. An equivalence relation ≡B is a branching bisimulation on an
mp-cut IMC iff for all (s, t) ∈≡B and for all classes C ∈ S/≡B

• s a→ s′ for some s′ ∈ C implies
– a = τ and (s, s′) ∈≡B, or
– there are states t′, t′′ ∈ S with t τ∗→ t′ a→ t′′ and (t, t′) ∈≡B and

t′′ ∈ C.
• R(s)(C) > 0 implies

– R(s)(C) = R(t′)(C) for some t′ ∈ S such that t τ∗→ t′ τ9 and (t, t′) ∈
≡B.

• s τ9 implies t τ∗→ t′ τ9 for some t′

6

6.2. Signature-based bisimulation minimisation c s
121

6.2 Signature-based bisimulation minimisation

Blom and Orzan [BO03] introduced a signature-based approach to compute the
maximal bisimulation of an LTS, which was further developed into a symbolic
method by Wimmer et al. [Wim+06]. Each state is characterized by a signature,
which is the same for all equivalent states in a bisimulation. These signatures
are used to refine a partition of the state space until a fixed point is reached,
which is the maximal bisimulation.

In the literature, multiple signatures are sometimes used that together fully
characterize states, for example based on the state labels, based on the rates
of continous-time transitions, and based on the enabled interactive transitions.
We consider these multiple signatures as elements of a single signature that
fully characterizes each state.

Definition 6.2.1. A signature σ(π)(s) is a tuple of functions fi(π)(s), that
together characterize each state s with respect to a partition π.

Two signatures σ(π)(s) and σ(π)(t) are equivalent, if and only if for all fi,
fi(π)(s) = fi(π)(t).

The signatures of five bisimulations from Section 6.1 are known from the
literature. For all actions a ∈ Act and equivalence classes C ∈ π, we define

• T(π)(s) = {(a, C) | ∃s′ ∈ C : s a→ s′}

• B(π)(s) = {(a, C) | ∃s′ ∈ C : s τ∗→
π

a→ s′ ∧ ¬(a = τ ∧ s ∈ C)}
• Rs(π)(s) = C 7→ R(s)(C)

• Rb(π)(s) = C 7→ max({R(s′)(C) | ∃s′ : s τ∗→
π

s′ τ9})
The five bisimulations are associated with the following signatures:

Strong bisimulation for an LTS (T) [Wim+06]
Branching bisimulation for an LTS (B) [Wim+06]
Strong bisimulation for a CTMC (Rs) [WB10]
Strong bisimulation for an mp-cut IMC (T, Rs) [Wim+07]
Branching bisimulation for an mp-cut IMC (B, Rb, s τ∗→ τ9) [Wim+07]

Functions T and B assign to each state s all actions a and equivalence classes
C ∈ π, such that state s can reach C by an action a either directly (T) or via
any number of inert τ-steps (B). Rs equals R but with the domain restricted to
the equivalence classes C ∈ π, and represents the cumulative rate with which
state s can go to states in C. Rb equals Rs for states s τ9, and takes the highest
“reachable rate” for states with inert τ-transitions. In branching bisimulation
for mp-cut IMCs, the “highest reachable rate” is by definition the rate that all

6

122
s c

6. Application: Bisimulation minimisation

states s τ9 in C have. The element s τ∗→ τ9 distinguishes time-convergent states
from time-divergent states [Wim+07], and is independent of the partition.

For the bisimulations of Definitions 6.1.5–6.1.9, we state:

Lemma 6.2.2. A partition π is a bisimulation, if and only if for all s and t that are
equivalent in π, σ(π)(s) = σ(π)(t).

For the above definitions it is fairly straightforward to prove that they are
equivalent to the classical definitions of bisimulation. See e.g. [BO03; Wim+06]
for the bisimulations on LTSs and [Wim+07] for the bisimulations on IMCs.

6.2.1 Partition refinement

The definition of signature-based partition refinement is as follows.

Definition 6.2.3 (Partition refinement with full signatures).

sigref(π, σ) ··= {{t ∈ S | σ(π)(s) = σ(π)(t)} | s ∈ S}
π0 ··= {S}

πn+1 ··= sigref(πn, σ)

The algorithm iteratively refines the initial coarsest partition {S} according
to the signatures of the states, until some fixed point πn+1 = πn is obtained.
This fixed point is the maximal bisimulation for “monotone signatures”:

Definition 6.2.4. A signature is monotone if for all π, π′ with π v π′, whenever
σ(π)(s) = σ(π)(t), also σ(π′)(s) = σ(π′)(t).

For all monotone signatures, the sigref operator is monotone: π v π′

implies sigref(π, σ) v sigref(π′, σ). Hence, following Kleene’s fixed point
theorem, the procedure above reaches the greatest fixed point.

In Definition 6.2.3, the full signature is computed in every iteration. We
propose to apply partition refinement using parts of the signature. By definition,
σ(π)(s) = σ(π)(t) if and only if for all parts fi(π)(s) = fi(π)(t).

Definition 6.2.5 (Partition refinement with partial signatures).

sigref(π, fi) ··= {{t ∈ S | fi(π)(s) = fi(π)(t) ∧ s ≡π t} | s ∈ S}
π0 ··= {S}

πn+1 ··= sigref(πn, fi) (select fi ∈ σ)

We always select some fi that refines the partition π. A fixed point is reached
only when no fi refines the partition further: ∀ fi ∈ σ : sigref(πn, fi) = πn. The
extra clause s ≡π t ensures that every application of sigref refines the partition.

6

6.3. Symbolic signature refinement c s
123

Theorem 6.2.6. If all parts fi are monotone, Def. 6.2.5 yields the greatest fixed point.

Proof. The procedure terminates since the chain is decreasing (πn+1 v πn),
due to the added clause s ≡π t. We reach some fixed point πn, since ∀ fi ∈
σ : sigref(πn, fi) = πn implies sigref(πn, σ) = πn. Finally, to prove that we get
the greatest fixed point, assume there exists another fixed point ξ = sigref(ξ, σ).
Then also ξ = sigref(ξ, fi) for all i. We prove that ξ v πn by induction on n.
Initially, ξ v S = π0. Assume ξ v πn, then for the selected i, ξ = sigref(ξ, fi) v
sigref(πn, fi) = πn+1, using monotonicity of fi.

There are several advantages to this approach due to its flexibility. First,
for any fi that is independent of the partition, refinement with respect to that
fi only needs to be applied once. Furthermore, refinements can be applied
according to different strategies. For instance, for the strong bisimulation of
an mp-cut IMC, one could refine w.r.t. T until there is no more refinement,
then w.r.t. Rs until there is no more refinement, then repeat until neither T
nor Rs refines the partition. Finally, computing the full signature is the most
memory-intensive operation in symbolic signature-based partition refinement.
If the partial signatures are smaller than the full signature, then larger models
can be minimised.

6.3 Symbolic signature refinement

This section describes the (MT)BDDs and (MT)BDD operations required for
signature-based partition refinement. We describe how we encode partitions
and signatures for signature-based partition refinement. We present a new
parallelized refine function that maximally reuses block numbers from the
old partition. Finally, we present a new BDD algorithm that computes inert
transitions, i.e., restricts a transition relation such that states s and s′ are in the
same block.

6.3.1 Encoding of signature refinement

We implement symbolic signature refinement similar to [Wim+06]. However,
we do not refine the partition with respect to a single block, but with respect to
all blocks simultaneously. We use a binary encoding with variables s for the
current state, s′ for the next state, a for the action labels and b for the blocks. We
order BDD variables a and b after s and s′, since this is required to efficiently
replace signatures (a, b) by new block numbers b (see below). Variables s and
s′ are interleaved, which is common in the context of transition systems.

To perform symbolic bisimulation we represent a number of sets by their
characteristic functions. See also Figure 6.1.

6

124
s c

6. Application: Bisimulation minimisation

s, s′

a

BDD T (s, s′, a)

s

a

b

BDD σT(s, a, b)

s

b

MTBDD σR(s, b)

s

b

BDD P(s, b)

Figure 6.1 Schematic overview of the BDDs in signature refinement

• A set of states is represented by a BDD S(s);
• Transitions are represented by a BDD T (s, s′, a);

• Markovian transitions are represented by an MTBDD R(s, s′), with leaves
containing rational numbers (Q) that represent the transition rates;

• Signatures T and B are represented by a BDD σT(s, a, b);

• Signatures Rs and Rb are represented by an MTBDD σR(s, b), with leaves
containing rational numbers (Q) that represent the rates in the signature.

In the literature, three methods have been proposed to represent π.
1. As an equivalence relation, using a BDD E(s, s′) = 1 iff s ≡π s′ [BS92;

MC13].

2. As a partition, by assigning each block a unique number, encoded with
variables b, using a BDD P(s, b) = 1 iff s ∈ Cb [Der07b; Wim+06;
Wim+07].

3. Using k = dlog2 ne BDDs P0, . . . ,Pk−1 such that Pi(s) = 1 iff s ∈ Cb and
the ith bit of b is 1. This requires significant time to restore blocks for the
refinement procedure, but can require less memory [Der07a].

We choose to use method 2, since in practice the BDD of P(s, b) is smaller
than the BDD of E(s, s′). Using P(s, b) also has the advantage of straight-
forward signature computation. The logarithmic representation is incompatible
with our approach, since we refine all blocks simultaneously. Their approach
involves restoring individual blocks to the P(s, b) representation, performing a
refinement step, and compacting the result to the logarithmic representation.
Restoring all blocks simply computes the full P(s, b).

We represent Markovian transitions using rational numbers, since they offer
better precision than floating-point numbers. The manipulation of floating-
point numbers typically introduces tiny rounding errors, resulting in different

6

6.3. Symbolic signature refinement c s
125

results of similar computations. This significantly affects bisimulation reduction,
often resulting in finer partitions than the maximal bisimulation [WB10], which
is unacceptable.

6.3.2 The refine algorithm

In this section, we present a new BDD algorithm to refine partitions according
to a signature, which maximally preserves previously assigned block numbers.

Partition refinement consists of two steps: computing the signatures and
computing the next partition. Given the signatures σT and/or σR for the current
partition π, the new partition can be computed as follows.

Since the chosen variable ordering has variables s, s′ before a, b, each path in
σ ends in a (MT)BDD representing the signature for the states encoded by that
path. For σT , every path that assigns values to s ends in a BDD on a, b. For σR,
every path that assigns values to s ends in a MTBDD on b with rational leaves.

Wimmer et al. [Wim+06] present a BDD operation refine that “replaces”
these sub-(MT)BDDs by the BDD representing a unique block number for each
distinct signature. The result is the BDD of the next partition. They use a
global counter and a hash table to associate each signature with a unique block
number. This algorithm has the disadvantage that block number assignments
are unstable. There is no guarantee that a stable block has the same block
number in the next iteration. This has implications for the computation of the
new signatures. When the block number of a stable block changes, cached
results of signature computation in earlier iterations cannot be reused.

We modify the refine algorithm to use the current partition to reuse the
previous block number of each state. This also allows refining a partition with
respect to only a part of the signature, as described in Section 6.2. The modifi-
cation is applied such that it can be parallelized in Sylvan. See Algorithm 6.1.

The algorithm has two input parameters: the (MT)BDD σ which encodes
the (partial) signature for the current partition, and the BDD P which encodes
the current partition. The algorithm uses a global counter iter, which is the
current iteration of partition refinement. This is necessary since the cached
results of the previous iteration cannot be reused. It also uses and updates an
array blocks, which contains the signature of each block in the new partition.
This array is cleared between iterations of partition refinement.

The implementation is similar to other BDD operations, featuring the use
of the operation cache (lines 2 and 15) and a recursion step for variables in
s (lines 3–7), with the two recursive operations executed in parallel. refine
simultaneously descends in σ and P (lines 5–6), matching the valuation of si in
σ and P . Block assignment happens at lines 9–14. We rely on the well-known
atomic operation compare_and_swap (cas), which atomically compares and

6

126
s c

6. Application: Bisimulation minimisation

1 def refine(σ, P):
2 if (σ,P , iter) ∈ cache : return cache[(σ,P , iter)]
3 v = topVar(σ, P)
4 if v equals si for some i :

// match paths on s in σ and P
5 low← refine(σsi=0, Psi=0)
6 high← refine(σsi=1, Psi=1)
7 result← lookupBDDnode(si, low, high)
8 else:

// σ now encodes the state signature
// P now encodes the previous block

9 B← decodeBlock(P)
// try to claim block B if still free

10 if blocks[B].sig = ⊥ : cas(blocks[B].sig,⊥, σ)
11 if blocks[B].sig = σ : result← P
12 else:
13 B← search_or_insert(σ, B)
14 result← encodeBlock(B)
15 cache[(σ,P , iter)] ← result
16 return result

Algorithm 6.1 refine, the (MT)BDD operation that assigns block numbers to
signatures, given a signature σ and the previous partition P .

modifies a value in memory. This is necessary so the algorithm is still correct
when parallelized. We use cas to claim a block number for the signature (line
10). If the block number is already used for a different signature, then this
block is being refined and we call a method search_or_insert to assign a new
block number.

Different implementations of search_and_insert are possible. We imple-
mented a parallel hash table that uses a global counter for the next block
number when inserting a new pair (σ, B), similar to [Wim+06]. An alternative
implementation that performed better in our experiments integrates the blocks
array with a skip list. A skip list is a probabilistic multi-level ordered linked
list. See [Pug90].

Skip list implementation Our implementation of the skip list is restricted to
at most 5 levels and supports only the insert operation. We use a short-lived
local lock at the lowest level to insert buckets, and lock-free insertions using
atomic cas at higher levels. Furthermore, by restricting the number of blocks

6

6.3. Symbolic signature refinement c s
127

1 def search-or-insert(sig, pb):
// Uses global variable next_block

2 loc← 0

3 level← 4

4 loop:
5 cur← buckets[loc]
6 locnext← cur.next[level].value
7 next← buckets[locnext]
8 if locnext 6= 0∧ 〈next.sig, next.prev_block〉 = 〈sig, pb〉 :
9 return locnext

10 elif locnext 6= 0∧ 〈next.sig, next.prev_block〉 < 〈sig, pb〉 :
11 loc← locnext
12 elif level > 0 :
13 trace[level]← loc
14 level← level− 1
15 elif not cur.next[0].locked :
16 if cas(cur.next[0], locnext, locked+locnext) : break
17 locnew← fetch_and_add(next_block, 1)
18 new← buckets[locnew]
19 new.sig← sig
20 new.prev_block← pb
21 new.next[0]← locnext
22 cur.next[0]← locnew
23 level← 1

24 h← some random height (geometric distribution) from 1 to 5

25 while level < h :
26 loc← trace[level]
27 loop:
28 cur← buckets[loc]
29 locnext← cur.next[level].value
30 next← buckets[locnext]
31 if locnext 6= 0∧ 〈next.sig, next.prev_block〉 < 〈sig, pb〉 :
32 loc← locnext
33 else:
34 new.next[level]← locnext
35 if cas(cur.next[level], locnext, locnew) : break
36 level← level + 1
37 return locnew

Algorithm 6.2 The search-or-insert algorithm with a skiplist.

6

128
s c

6. Application: Bisimulation minimisation

to at most 231, we only need 32 bytes for each bucket in the skip list:

struct { uint64_t sig; uint32_t prev_block; uint32_t next[5]; }

Each bucket in the skip list contains the pair (σ, B) (sig and prev_block) and
the 31-bit indices of the next bucket at each level. The highest bit of next[0] is
used as a lock, which is released when setting next[0] to a new value.

We implement search_or_insert as follows. We traverse the skip list until
either a bucket with (σ, B) is found (and returned), or the bucket B′ that would
immediately precede a bucket with (σ, B). We use cas to set the highest bit of
next[0] and lock bucket B′. This ensures that no other thread can insert (σ, B)
(or any other pair directly preceded by bucket B′) simultaneously. A new block
number B′′ is generated using a global counter next_block, which is increased
atomically with cas. Bucket B′′ is initialized and inserted into the skip list by
updating next[0] of B′ with B′′, which also releases the lock on B′. Finally, the
new bucket is inserted at a random number of higher levels using cas.

See Algorithm 6.2 for this algorithm in more detail. The first loop (lines 4–
16) traverses the skip list and performs the atomic cas to lock the next pointer
where we insert the new bucket. The new bucket is then acquired and initialized
(lines 17–21) and the insertion is completed at line 22. At that point, the new
bucket is done, but we still want to insert the bucket in higher levels, depending
on a randomly generated “height” (line 24). For every level where we want to
insert the bucket, the loop (lines 27–35) traverses the level (it is possible other
buckets have been added) and use atomic cas (line 35) to insert our bucket.

6.3.3 Computing inert transitions

To compute the set of inert τ-transitions for branching bisimulation, i.e., s τ→
π

s′,
or more generally, to compute any inert transition relation → ∩ ≡ where
≡ is the equivalence relation corresponding to π computed by E(s, s′) =
∃b : P(s, b) ∧ P(s′, b), the expression T (s, s′) ∧ ∃b : P(s, b) ∧ P(s′, b) must be
computed. [Wim+06] writes that the intermediate BDD of ∃b : P(s, b)∧P(s′, b),
obtained by first computing P(s′, b) using variable renaming from P(s, b)
and then ∃b : P(s, b) ∧ P(s′, b) using and_exists, is very large. This makes
sense, since this intermediate result is indeed the BDD E(s, s′), which we were
avoiding by representing the partition using P(s, b).

The solution in [Wim+06] was to avoid computing E by computing the
signatures and the refinement only with respect to one block at a time, which
also enables several optimizations in [WHB07].

We present an alternative solution, which computes→∩≡ directly using
a custom BDD algorithm. The inert algorithm takes parameters T (s, s′) (T
may contain other variables ordered after s, s′) and two copies of P(s, b): P s

6

6.4. Implementation c s
129

1 def inert(T , P s, P s′):
2 if (T ,P s,P s′) ∈ cache : return cache[(T ,P s,P s′)]

// find highest variable, interpreting si in P s′ as s′i
3 v = topVar(T , P s, P s′)
4 if v equals si for some i :

// match si in T with P s

5 low← inert(Tsi=0, P s
si=0, P s′)

6 high← inert(Tsi=1, P s
si=1, P s′)

7 result← lookupBDDnode(si, low, high)
8 elif v equals s′i for some i :

// match s′i in T with si in P s′

9 low← inert(Ts′i=0, P s, P s′
si=0)

10 high← inert(Ts′i=1, P s, P s′
si=1)

11 result← lookupBDDnode(s′i, low, high)
12 else:

// match the blocks P s and P s′

13 if P s 6= P s′ : result← False
14 else: result← T
15 cache[(T ,P s,P s′] ← result
16 return result

Algorithm 6.3 Computes the inert transitions of a transition relation T according to
the block assignments to current states (P s) and next states (P s′).

and P s′ . The algorithm matches T and P s on valuations of variables s, and T
and P s′ on valuations of variables s′. See Algorithm 6.3, and also Figure 6.2 for
a schematic overview. When in the recursive call all valuations to s and s′ have
been matched, with Ss, Ss′ ⊆ S the sets of states represented by these valuations,
then T is the set of actions that label the transitions between states in Ss and
Ss′ , P s is the block that contains all Ss and P s′ is the block that contains all
Ss′ . Then if P s 6= P s′ , the transitions are not inert and inert returns False,
removing the transition from T . Otherwise, T (which may still contain other
variables ordered after s, s′, such as action labels), is returned.

6.4 Implementation

We implemented multi-core signature-based partition refinement in a tool called
SigrefMC. The tool supports LTSs, CTMCs and IMCs delivered in two input
formats, the XML format used by the original Sigref tool, and the BDD format

6

130
s c

6. Application: Bisimulation minimisation

s, s′ s

b

s, s′s

b

match s′ = smatch s = s

same block

T P s′P s inert

Figure 6.2 Schematic overview of the BDDs in the inert algorithm

that the tool LTSmin [Kan+15] generates for various model checking languages.
SigrefMC supports both the floating-point and the rational representation of
rates in continuous-time transitions.

One of the design goals of this tool is to encourage researchers to extend
it for their own file formats and notions of bisimulation, and to integrate it in
other toolsets. Therefore, SigrefMC is freely available online and licensed with
the MIT license. Documentation is available and instructions for extending the
tool for different input/output formats and types of bisimulation are included.

6.5 Experimental evaluation

6.5.1 Experiments

To study the improvements presented in the current chapter, we compared our
results (using the skip list variant of refine) to Sigref 1.5 [WHB07] for LTS
and IMC models, and to a version of Sigref used in [WB10] for CTMC models.
For the CTMC models, we used Sigref with rational numbers provided by
the GMP library and SigrefMC with rational number support by Sylvan. For
the IMC models, version 1.5 of Sigref does not support the GMP library and
the version used in [WB10] does not support IMCs. We used SigrefMC with
floating points for a fairer comparison, but the tools give a slightly different
number of blocks.

For the experiments, we restrict ourselves to the models presented in [WB10;
Wim+06] and an IMC model that is part of the distribution of Sigref. These
models have been generated from PRISM benchmarks using a custom version
of the PRISM toolset [KNP11]. We refer to the literature for a description of
these models.

We perform experiments on the three tools using the same 48-core machine,
containing 4 AMD OpteronTM

6168 processors with 12 cores each. We measure

6

6.6. Conclusion and Discussion c s
131

the runtimes for partition refinement using Sigref, SigrefMC with only 1

worker, and SigrefMC with 48 workers.
Note that apart from the new refine and inert algorithms presented in

the current chapter, there are several other differences. The first is that the
original Sigref uses the CUDD implementation of BDDs, while SigrefMC
obviously uses Sylvan, along with some extra BDD algorithms that avoid
explicitly computing variable renaming of some BDDs. The second is that
Sigref has several optimizations [WHB07] that are not available in SigrefMC.

6.5.2 Results

See Table 6.1 for the results of these experiments. These results were obtained by
repeating each benchmark at least 15 times and taking the average. The timeout
was set to 3600 seconds. The column “States” shows the number of states before
bisimulation minimisation, and “Blocks” the number of equivalence classes
after bisimulation minimisation. We show the wallclock time using Sigref (Tw),
using SigrefMC with 1 worker (T1) and using SigrefMC with 48 workers (T48).
We compute the sequential speedup Tw/T1, the parallel speedup T1/T48 and
the total speedup Tw/T48.

We restrict ourselves to larger models in the presentation of the results here.
In the full set of results, excluding executions that take less than 1 second,
SigrefMC is always faster sequentially and always benefits from parallelism.

The results show a clear advantage for larger models. One interesting result
is for the p2p-7-5 model. This model is ideal for symbolic bisimulation with a
large number of states (235) and very few blocks after minimisation (336). For
this model, our tool is 95x faster sequentially and has a parallel speedup of
8x, resulting in a total speedup of 767x. The best parallel speedup of 17x was
obtained for the kanban05 model.

In almost all experiments, the signature computation dominates the execu-
tion time in the sequential case with 70%–99%. We observe that the refinement
step sometimes benefits more from parallelism than signature computation,
with speedups up to 29.9x. We also find that reusing block numbers for stable
blocks causes a major reduction in computation time towards the end of the
procedure. The kanban LTS models and the larger polling CTMC models are
an excellent case study to demonstrate this. See Figure 6.3.

6.6 Conclusion and Discussion

Originally we intended to investigate parallelism in symbolic bisimulation
minimisation. To our surprise, we obtained a much higher sequential speedup
using specialized BDD operations, as demonstrated by the results in Table 6.1

6

132
s c

6. Application: Bisimulation minimisation

Sigref time (s)
0

25

50

75

100

0 5 10 15 20 25

IterSigrefMC-1 time (s)

0

10

20

30

0 5 10 15 20 25

IterNew blocks
per iteration

0

50,000

100,000

Iteration

Figure 6.3 Time per iteration for SIGREF and SIGREFMC (1 worker), and the number
of new blocks per iteration for strong bisimulation of the kanban04 LTS model.

6

6.6. Conclusion and Discussion c s
133

LTS models (strong) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

kanban03 1024240 85356 92.16 10.09 0.88 9.14 11.52 105.29

kanban04 16020316 778485 1410.66 148.15 11.37 9.52 13.03 124.06

kanban05 16772032 5033631 – 1284.86 73.57 – 17.47 –
kanban06 264515056 25293849 – – 2584.23 – – –

LTS models (branching) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

kanban04 16020316 2785 8.47 0.52 0.24 16.39 2.11 34.60

kanban05 16772032 7366 34.11 1.48 0.43 22.98 3.47 79.81

kanban06 264515056 17010 118.19 3.87 0.83 30.55 4.65 142.20

kanban07 268430272 35456 387.16 8.83 1.66 43.86 5.31 232.71

kanban08 4224876912 68217 1091.67 17.91 2.98 60.96 6.02 366.72

kanban09 4293193072 123070 3186.48 34.23 5.51 93.10 6.21 578.59

CTMC models Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

cycling-4 431101 282943 220.23 26.72 2.60 8.24 10.29 84.84

cycling-5 2326666 1424914 1249.23 170.28 19.42 7.34 8.77 64.34

fgf 80616 38639 71.62 8.86 0.88 8.08 10.04 81.20

p2p-5-6 230
336 750.29 26.96 2.99 27.83 9.03 251.24

p2p-6-5 230
266 248.17 9.49 1.21 26.15 7.82 204.47

p2p-7-5 235
336 2280.76 24.01 2.97 94.99 8.08 767.12

polling-16 1572864 98304 792.82 118.50 10.18 6.69 11.64 77.85

polling-17 3342336 196608 1739.01 303.65 22.58 5.73 13.45 77.03

polling-18 7077888 393216 – 705.22 49.81 – 14.16 –
robot-020 31160 30780 28.15 3.21 0.60 8.78 5.36 47.04

robot-025 61200 60600 78.48 6.78 0.95 11.58 7.11 82.39

robot-030 106140 105270 174.30 12.26 1.47 14.21 8.33 118.44

IMC models (strong) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 1133 1.26 1.14 0.2 1.11 5.76 6.38

ftwc02 32768 16797 154.55 102.07 15.85 1.51 6.44 9.75

IMC models (branching) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 430 1.12 0.77 0.13 1.45 6.07 8.83

ftwc02 32786 3886 152.9 50.39 4.89 3.03 10.3 31.26

Table 6.1 Results for the benchmark experiments. Each data point is an average of
at least 15 runs. The timeout was 3600 seconds.

6

134
s c

6. Application: Bisimulation minimisation

and Figure 6.3. The specialized BDD operations offer a clear advantage se-
quentially and the integration with Sylvan results in decent parallel speedups.
Our best result had a total speedup of 767x. Similar to our experiments in
symbolic reachability [DP15], further parallel speedups might be obtained by
disjunctively partitioning the transition relations.

7

Chapter 7

Conclusions

We studied the multi-core implementation of decision diagram operations,
using work-stealing and scalable data structures, for the applications symbolic
model checking and symbolic bisimulation minimisation.

7.1 The multi-core decision diagram package Sylvan

The main contribution of this thesis is the reusable multi-core decision diagram
library Sylvan. Sylvan implements parallelized operations on various types of
decision diagrams.

One of its particular strengths is that it can replace existing non-parallel
decision diagram libraries to bring the processing power of multi-core machines
to non-parallel applications. We demonstrated this for state space exploration
in LTSmin, where we obtained a reasonable parallel speedup of up to 21x
with 48 cores (Experiment 1, Section 5.5.2) when we did not modify LTSmin,
and 29x with 48 cores (Experiment 2, Section 5.5.3) when we slightly modified
LTSmin to make transition learning thread-safe. Also, symbolic bisimulation
minimisation is a sequential algorithm that we parallelized using Sylvan. We
did not introduce additional parallelism to this application and obtained the
reasonable parallel speedup of up to 17x with 48 cores (Section 6.5, Table 6.1).

As discussed in Section 5.6, Sylvan has also been used as a symbolic backend
in the probabilistic model checker IscasMC [Hah+14]. A recent study [Dij+15]
compared the performance of the BDD libraries CUDD, BuDDy, CacBDD, JDD,
Sylvan, and BeeDeeDee when used as the symbolic backend of IscasMC and
performing symbolic reachability. The results show that Sylvan is competitive
with other BDD implementations when used sequentially (with 1 worker) and
significantly faster when using multiple cores (with 7 workers).

Sylvan supports binary decision diagrams, list decision diagrams and multi-
terminal binary decision diagrams with various leaf types. It has been designed

135

7

136
s c

7. Conclusions

with customization in mind, so there is extensive support for adding different
leaf types and custom decision diagram operations. This is demonstrated
by the application of bisimulation minimisation, as it is very beneficial to
develop specialised BDD operations there. Compared to the state of the art
tool Sigref [Wim+06] that relies on a version of CUDD [Som15], we obtained a
sequential speedup of up to 95x, mainly due to the specialised BDD operations.
We also implemented specialised algorithms for state space exploration, such as
the algorithms relnext and relprev, the operations on list decision diagrams,
and the collect operation for parallel transition learning.

Using the framework offered by Sylvan and Lace to further parallelize
applications that use the parallelized decision diagram operations is also fairly
straightforward, as is demonstrated in Chapter 5 for LTSmin. Parallelizing
LTSmin is only a few lines of code, since the difficult task of performing
load-balancing is solved by the work-stealing in Lace. Experimentally, we
demonstrated a speedup of up to 38x for fully parallel on-the-fly symbolic
reachability in LTSmin.

Sylvan is freely available online1 and licensed with the Apache 2.0 license.

7.2 The work-stealing framework Lace

At the heart of the parallel implementation of decision diagram operations
lies the work-stealing framework Lace, which we developed for Sylvan. We
implemented this framework as a research vehicle and for features that are
particularly useful for parallel decision diagrams, such as a feature where all
workers cooperatively suspend their current tasks and start a new task tree.
This is used to implement stop-the-world garbage collection in Sylvan. Lace
uses the non-blocking split deque for work-stealing that we introduced in
Chapter 3 and that shows good results on a number of typical benchmarks.

Lace is freely available online2 and licensed with the Apache 2.0 license.

7.3 The symbolic bisimulation minimisation tool SigrefMC

We implemented multi-core signature-based partition refinement in a tool
called SigrefMC. The tool supports LTSs, CTMCs and IMCs delivered in
two input formats, the XML format used by the original Sigref tool, and the
BDD format that LTSmin generates for various model checking languages.
SigrefMC supports both the floating-point and the rational representation of
rates in continuous-time transitions.

1https://github.com/utwente-fmt/sylvan
2https://github.com/utwente-fmt/lace

https://github.com/utwente-fmt/sylvan
https://github.com/utwente-fmt/lace

7

7.4. Future directions c s
137

For this application, we developed two specialised BDD algorithms. The
algorithm refine refines a partition based on the signatures of the states, and
reuses the block numbers assigned in the previous partition. The algorithm
inert computes the inert transition relation in one step.

One of the design goals of SigrefMC is to encourage researchers to extend it
for their own file formats and notions of bisimulation, and to integrate it in other
toolsets. SigrefMC is freely available online3 and licensed with the Apache 2.0
license. Documentation is available and instructions for extending the tool for
different input/output formats and types of bisimulation are included.

7.4 Future directions

In this section we summarize possible future research directions that we dis-
cussed in earlier chapters and some ideas that did not fit in any particular
chapter.

7.4.1 Scalable data structures

In Chapter 4, we implemented several different variants of the hash table used
to store decision diagram nodes, and we presented the data structure of the
operation cache. Our focus was on keeping these data structures simple. Their
performance was evaluated in Chapter 5 using LTSmin.

There are many options to further improve or study these hash tables. We
discussed several ideas in Chapter 4. Different variations on the operation cache
are possible, for example versions that wait in cache-get when another thread
has locked the bucket, or versions that look at multiple buckets. It may be
interesting to consider more intelligent garbage collection, which keeps results
in the cache if the decision diagrams are kept during garbage collection. We
tried to keep the data structures as simple as possible, but more intelligent
approaches may improve the performance and scalability in the future.

7.4.2 Other decision diagrams and operations

BDD minimization Decision diagram operations that we did not discuss in
this thesis but that are interesting for model checking and related fields include
BDD minimization algorithms such as restrict and compose, which we imple-
mented but did not study in great detail. A possibility is to use restrict and
compose or the leaf-identifying compaction algorithm [Hon+97] after exploring
the state space with LTSmin to produce a minimal BDD. This minimal BDD
could then be used as input for symbolic bisimulation minimisation.

3https://github.com/utwente-fmt/sigrefmc

https://github.com/utwente-fmt/sigrefmc

7

138
s c

7. Conclusions

Dynamic variable reordering Another interesting algorithm is dynamic vari-
able reordering using sifting [Rud93], which we did not implement in Sylvan.
There are various applications for which dynamic reordering is interesting,
for example when there are no known heuristics for a good static reordering.
Considering the typical cost of performing dynamic reordering, we think it
should be a priority to research heuristics for good static reordering whenever
reordering is desired. The only true case where dynamic reordering is inher-
ently superior is when the optimal reordering changes during the computation
and the performance difference outweighs the cost of performing dynamic
reordering, or if the structure of the input problem is not known or understood.

Other types of decision diagrams We could also consider other types of deci-
sion diagrams. For example, zero-suppressed binary decision diagrams [Min93]
are also relevant for current research [Min13] and relatively easy to implement
(they are very similar to normal BDDs in their implementation) and show good
performance for model checking in LTSmin [Haj14]. Other types of decision
diagrams that are used in current research include hierarchical decision dia-
grams [CT05] and hierarchical set decision diagrams [HTK08], which are used
in model checking petri nets.

Operation nodes Another idea is to use special operation nodes in the deci-
sion diagrams that signify operations in progress, similar to [HDB96]. Decision
diagram operations could perform an operation by creating an operation node,
and multiple workers could work on “pushing down” the nodes in the decision
diagrams in order to compute the results of the operations. This might also en-
able other optimizations when certain operations could be rewritten on-the-fly,
for example combinations of variable substitution, ∧, ¬, ∃ and ∀.

Arithmetic intensity of the operations Currently each suboperation in Syl-
van is one task. Maybe fewer tasks that are larger might improve the perfor-
mance of the binary decision diagram operations. However, Lace is already
quite efficient for fine-grained operations. In addition, the cache granularity
described in Chapter 4 has a similar effect. It may be difficult to obtain further
improvements this way.

7.4.3 Applications

Parallel saturation Chapter 5 concentrated on the parallelization of a standard
breadth first search algorithm to explore the state space. The toolset LTSmin

also implements a “chaining” strategy (fire the transition groups after each
other, and already include new states from one transition group as input for the

7

7.5. Multi-core and beyond c s
139

next group), and Ciardo et al. have proposed and advocated an optimal iteration
strategy called saturation [CLS01; CMS03; CZJ12], which is also implemented
in LTSmin [Sia12]. Ciardo and Ezekiel have also written on the parallization
of the saturation algorithm [ELC07; CZJ09], especially [CZJ09] has the explicit
title that parallel symbolic state space exploration is difficult.

Hardware model checking Another promising future direction may be hard-
ware model checking. In hardware models the composed subsystems are often
not asynchronous as in various protocols and in software model checking, but
are bound to a common clock. Transition relations are not disjunctively defined
but conjunctively. For example, for and-inverter graphs where the state of the
model is defined as the contents of gates, we could define a transition relation
for each gate, and then combine all these transition relations to form implicitly
the entire transition system. Rather than parallelizing on the set of disjunctive
transition relations, we could parallelize on the set of conjunctive transition
relations, which has additional challenges such as the order in which transitions
are fired and subresults are combined.

7.4.4 Formal verification of the algorithms

In this thesis, we have presented a number of algorithms on data structures,
namely several different versions of the unique table, the operation cache,
various algorithms on decision diagrams, in particular two specialised algo-
rithms for bisimulation minimisation, and a novel non-blocking split deque for
work-stealing.

It is well known that non-blocking algorithms, especially wait-free algo-
rithms, are prone to bugs and unexpected corner cases. Although we provide
an informal proof for most of these data structures, a formal proof, for example
using an automated verification tool or computer aided verification, would
be insightful and useful. Especially the work-stealing deque would be an
interesting case study for verification tools, due to its complexity.

7.5 Multi-core and beyond

Finally, we believe that research into parallel processing will only be more
relevant in the future. The number of cores on multi-core systems increases,
which enables studying larger problems than is now feasible. While it is
certainly true that adding cores only improves the computation time linearly to
the number of cores, it seems for the moment that parallel processing is here to
stay. For some applications, graphics processors (many-core systems) have been
a great success, improving the performance of specific algorithms by several

7

140
s c

7. Conclusions

orders of magnitude. Networks of workstations can combine the power of many
multi-core systems to obtain speedup, although relatively slow connections
between these workstations form a considerable challenge for memory intensive
computations like operations on decision diagrams.

New algorithms may be discovered for existing problems that have better
time and space complexity, but these new algorithms can often also be paral-
lelized. This thesis shows that at least for algorithms that use decision diagrams,
there is the potential to greatly reduce the computation time. Better algorithms
with more favorable properties are merely a new challenge for parallelization.
There will always be computations that are so large that parallelizing them
reduces their computation time from weeks to days, or from hours to seconds.

Bibliography

[ABP01] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. “Thread
Scheduling for Multiprogrammed Multiprocessors.” In: Theory
Comput. Syst. 34.2 (2001), pp. 115–144.

[ACM96] Prakash Arunachalam, Craig M. Chase, and Dinos Moundanos.
“Distributed Binary Decision Diagrams for Verification of Large
Circuit.” In: ICCD. 1996, pp. 365–370.

[ACR13] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. “Schedul-
ing parallel programs by work stealing with private deques.” In:
PPOPP. ACM, 2013, pp. 219–228.

[Ake78] S.B. Akers. “Binary Decision Diagrams.” In: IEEE Trans. Computers
C-27.6 (June 1978), pp. 509–516.

[AR86] Magdy S. Abadir and Hassan K. Reghbati. “Functional Test Gen-
eration for Digital Circuits Described Using Binary Decision Dia-
grams.” In: IEEE Trans. Computers 35.4 (1986), pp. 375–379.

[BAA95] Debashis Bhattacharya, Prathima Agrawal, and Vishwani D. Agrawal.
“Test Generation for Path Delay Faults Using Binary Decision Dia-
grams.” In: IEEE Trans. Computers 44.3 (1995), pp. 434–447.

[Bah+93] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel,
Enrico Macii, Abelardo Pardo, and Fabio Somenzi. “Algebraic
decision diagrams and their applications.” In: ICCAD 1993. 1993,
pp. 188–191.

[BCT07] Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. “Sym-
bolic Fault Tree Analysis for Reactive Systems.” In: ATVA 2007.
Vol. 4762. LNCS. Springer, 2007, pp. 162–176.

[Bia+97] F. Bianchi, Fulvio Corno, Maurizio Rebaudengo, Matteo Sonza
Reorda, and Roberto Ansaloni. “Boolean Function Manipulation
on a Parallel System Using BDDs.” In: HPCN Europe. 1997, pp. 916–
928.

141

142
s c Bibliography

[Blo+08] Stefan Blom, Boudewijn R. Haverkort, Matthias Kuntz, and Jaco
van de Pol. “Distributed Markovian Bisimulation Reduction aimed
at CSL Model Checking.” In: ENTCS 220.2 (2008), pp. 35–50.

[Blu+96] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. “Cilk: An
Efficient Multithreaded Runtime System.” In: J. Parallel Distrib.
Comput. 37.1 (1996), pp. 55–69.

[Blu94] Robert D. Blumofe. “Scheduling Multithreaded Computations by
Work Stealing.” In: FOCS. IEEE Computer Society, 1994, pp. 356–
368.

[BO03] Stefan Blom and Simona Orzan. “Distributed Branching Bisimu-
lation Reduction of State Spaces.” In: ENTCS 89.1 (2003), pp. 99–
113.

[BP08] Stefan Blom and Jaco van de Pol. “Symbolic Reachability for Pro-
cess Algebras with Recursive Data Types.” In: ICTAC. Vol. 5160.
LNCS. Springer, 2008, pp. 81–95.

[BPW10] Stefan Blom, Jaco van de Pol, and Michael Weber. “LTSmin: Dis-
tributed and Symbolic Reachability.” In: CAV. Vol. 6174. LNCS.
Springer, 2010, pp. 354–359.

[BRB90] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. “Efficient
Implementation of a BDD Package.” In: DAC. 1990, pp. 40–45.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Func-
tion Manipulation.” In: IEEE Trans. Computers C-35.8 (Aug. 1986),
pp. 677–691.

[BS92] Amar Bouali and Robert de Simone. “Symbolic Bisimulation Mini-
misation.” In: Computer Aided Verification, 4th Int. Workshop. Vol. 663.
LNCS. Springer, 1992, pp. 96–108.

[Bur+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. “Symbolic Model Checking: 10ˆ20 States
and Beyond.” In: Inf. Comput. 98.2 (1992), pp. 142–170.

[Bur+94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill.
“Symbolic model checking for sequential circuit verification.” In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 13.4 (Apr. 1994), pp. 401–424.

[CB99] Jer-Sheng Chen and P. Banerjee. “Parallel construction algorithms
for BDDs.” In: ISCAS 1999. IEEE, 1999, pp. 318–322.

[CC04] Ming-Ying Chung and Gianfranco Ciardo. “Saturation NOW.” In:
QEST. IEEE Computer Society, 2004, pp. 272–281.

Bibliography c s
143

[CGS92] G.P. Cabodi, S. Gai, and M. Sonza Reorda. “Boolean Function
Manipulation on Massively Parallel Computers.” In: Proc. of 4th
Symp. on Frontiers of Massively Parallel Computation. IEEE, Oct. 1992,
pp. 508–509.

[CL05] David Chase and Yossi Lev. “Dynamic circular work-stealing
deque.” In: SPAA. ACM, 2005, pp. 21–28.

[Cla+93] Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro
Fujita, and J. Yang. “Spectral Transforms for Large Boolean Func-
tions with Applications to Technology Mapping.” In: DAC. 1993,
pp. 54–60.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. “Sat-
uration: An Efficient Iteration Strategy for Symbolic State-Space
Generation.” In: TACAS. Vol. 2031. LNCS. 2001, pp. 328–342.

[CM90] Olivier Coudert and Jean Christophe Madre. “A Unified Frame-
work for the Formal Verification of Sequential Circuits.” In: ICCAD
1990. IEEE Computer Society, 1990, pp. 126–129.

[CMS03] Gianfranco Ciardo, Robert M. Marmorstein, and Radu Siminiceanu.
“Saturation Unbound.” In: TACAS 2003. 2003, pp. 379–393.

[CT05] Jean-Michel Couvreur and Yann Thierry-Mieg. “Hierarchical De-
cision Diagrams to Exploit Model Structure.” In: FORTE. Ed. by
Farn Wang. Vol. 3731. Lecture Notes in Computer Science. Springer,
2005, pp. 443–457.

[CZJ09] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. “Parallel sym-
bolic state-space exploration is difficult, but what is the alterna-
tive?” In: PDMC. 2009, pp. 1–17.

[CZJ12] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. “Ten Years of
Saturation: A Petri Net Perspective.” In: T. Petri Nets and Other
Models of Concurrency. Lecture Notes in Computer Science 5 (2012).
Ed. by Kurt Jensen, Susanna Donatelli, and Jetty Kleijn, pp. 51–95.

[Der07a] Salem Derisavi. “A Symbolic Algorithm for Optimal Markov Chain
Lumping.” In: TACAS 2007. Vol. 4424. LNCS. 2007, pp. 139–154.

[Der07b] Salem Derisavi. “Signature-based Symbolic Algorithm for Optimal
Markov Chain Lumping.” In: QEST 2007. IEEE Computer Society,
2007, pp. 141–150.

144
s c Bibliography

[Dij+15] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li,
Thomas Neele, Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang.
“A Comparative Study of BDD Packages for Probabilistic Symbolic
Model Checking.” In: SETTA. Vol. 9409. LNCS. Springer, 2015,
pp. 35–51.

[Din+09] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krish-
namoorthy, and Jarek Nieplocha. “Scalable work stealing.” In:
SC. ACM, 2009.

[DLP12] Tom van Dijk, Alfons W. Laarman, and Jaco van de Pol. “Multi-core
and/or Symbolic Model Checking.” In: ECEASST 53 (2012).

[DLP13] Tom van Dijk, Alfons Laarman, and Jaco van de Pol. “Multi-Core
BDD Operations for Symbolic Reachability.” In: ENTCS 296 (2013),
pp. 127–143.

[DP14] Tom van Dijk and Jaco van de Pol. “Lace: Non-blocking Split Deque
for Work-Stealing.” In: MuCoCoS. Vol. 8806. LNCS. Springer, 2014,
pp. 206–217.

[DP15] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-Core Decision
Diagrams.” In: TACAS. Vol. 9035. LNCS. Springer, 2015, pp. 677–
691.

[DP16a] Tom van Dijk and Jaco van de Pol. “Multi-Core Symbolic Bisimu-
lation Minimisation.” In: TACAS. Vol. 9636. LNCS. Springer, 2016,
pp. 332–348.

[DP16b] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-core Framework
for Decision Diagrams.” In: STTT (2016). Accepted.

[DV95] Rocco De Nicola and Frits W. Vaandrager. “Three Logics for Branch-
ing Bisimulation.” In: J. ACM 42.2 (1995), pp. 458–487.

[ELC07] Jonathan Ezekiel, Gerald Lüttgen, and Gianfranco Ciardo. “Par-
allelising Symbolic State-Space Generators.” In: CAV. Vol. 4590.
LNCS. 2007, pp. 268–280.

[Fax08] Karl-Filip Faxén. “Wool-A work stealing library.” In: SIGARCH
Computer Architecture News 36.5 (2008), pp. 93–100.

[Fax10] Karl-Filip Faxén. “Efficient Work Stealing for Fine Grained Par-
allelism.” In: ICPP 2010. IEEE Computer Society, 2010, pp. 313–
322.

[Fis+05] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and
Michael Carl Tschantz. “Verification and change-impact analysis
of access-control policies.” In: ICSE 2005. ACM, 2005, pp. 196–205.

Bibliography c s
145

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The
Implementation of the Cilk-5 Multithreaded Language.” In: PLDI.
ACM, 1998, pp. 212–223.

[GGH05a] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. “Lock-free dy-
namic hash tables with open addressing.” In: Distributed Computing
18.1 (2005), pp. 21–42.

[GGH05b] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. “Lock-Free
Parallel Garbage Collection.” In: ISPA. Vol. 3758. Lecture Notes in
Computer Science. Springer, 2005, pp. 263–274.

[GGH07] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. “Lock-free
parallel and concurrent garbage collection by mark&sweep.” In:
Sci. Comput. Program. 64.3 (2007), pp. 341–374.

[GHS06] Orna Grumberg, Tamir Heyman, and Assaf Schuster. “A work-
efficient distributed algorithm for reachability analysis.” In: Formal
Methods in System Design 29.2 (2006), pp. 157–175.

[GRS95] S. Gai, M. Rebaudengo, and M. Sonza Reorda. “An improved data
parallel algorithm for Boolean function manipulation using BDDs.”
In: Proc. Euromicro Workshop on Par. and Distrib. Processing. IEEE,
Jan. 1995, pp. 33–39.

[Hah+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun
Zhang. “iscasMc: A Web-Based Probabilistic Model Checker.” In:
FM. Vol. 8442. LNCS. Springer, 2014, pp. 312–317.

[Haj14] Maryam Haji Ghasemi. “Symbolic model checking using Zero-
suppressed Decision Diagrams.” MA thesis. University of Twente,
Dept. of C.S., Nov. 2014.

[HDB96] A. Hett, R. Drechsler, and B. Becker. “MORE: an alternative im-
plementation of BDD packages by multi-operand synthesis.” In:
Design Automation Conference, EURO-DAC ’96, Geneva. IEEE, Sept.
1996, pp. 164–169.

[Hen+06] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. “A dynamic-
sized nonblocking work stealing deque.” In: Distributed Computing
18.3 (2006), pp. 189–207.

[Hey+00] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster.
“Achieving Scalability in Parallel Reachability Analysis of Very
Large Circuits.” In: Computer Aided Verification. Vol. 1855. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2000,
pp. 20–35.

146
s c Bibliography

[HK09] Holger Hermanns and Joost-Pieter Katoen. “The How and Why of
Interactive Markov Chains.” In: 8th Intl. Symp. Formal Methods for
Components and Objects. Vol. 6286. LNCS. Springer, 2009, pp. 311–
337.

[Hon+97] Youpyo Hong, Peter A. Beerel, Jerry R. Burch, and Kenneth L.
McMillan. “Safe BDD Minimization Using Don’t Cares.” In: DAC.
1997, pp. 208–213.

[HS02] Danny Hendler and Nir Shavit. “Non-blocking steal-half work
queues.” In: PODC. ACM, 2002, pp. 280–289.

[HTK08] Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon. “Hi-
erarchical Set Decision Diagrams and Automatic Saturation.” In:
PETRI NETS. Ed. by Kees M. van Hee and Rüdiger Valk. Vol. 5062.
Lecture Notes in Computer Science. Springer, 2008, pp. 211–230.

[ISM11] Masakazu Ishihata, Taisuke Sato, and Shin-ichi Minato. “Compil-
ing Bayesian Networks for Parameter Learning Based on Shared
BDDs.” In: AI 2011. Vol. 7106. Lecture Notes in Computer Science.
Springer, 2011, pp. 203–212.

[Kam+98] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto L.
Sangiovanni-vincentelli. “Multi-valued decision diagrams: theory
and applications.” In: Multiple-Valued Logic 4.1 (1998), pp. 9–62.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan
Blom, and Tom van Dijk. “LTSmin: High-Performance Language-
Independent Model Checking.” In: TACAS 2015. Vol. 9035. LNCS.
Springer, 2015, pp. 692–707.

[KC90] S. Kimura and E.M. Clarke. “A Parallel Algorithm for Constructing
Binary Decision Diagrams.” In: Proc. of IC on Computer Design: VLSI
in Computers and Processors ICCD. Sept. 1990, pp. 220–223.

[KIH92] S. Kimura, T. Igaki, and H. Haneda. “Parallel Binary Decision
Diagram Manipulation.” In: IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Science E75-A.10 (Oct.
1992), pp. 1255–62.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM
4.0: Verification of Probabilistic Real-Time Systems.” In: CAV.
Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[Kul13] Konrad Kulakowski. “Concurrent bisimulation algorithm.” In:
CoRR abs/1311.7635 (2013).

[Laa14] Alfons W. Laarman. “Scalable Multi-Core Model Checking.” PhD
thesis. Enschede, The Netherlands, 2014.

Bibliography c s
147

[LB06] Elsa Loekito and James Bailey. “Fast mining of high dimensional
expressive contrast patterns using zero-suppressed binary decision
diagrams.” In: SIGKDD 2006. ACM, 2006, pp. 307–316.

[LMS14] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. “A Thread-
Safe Library for Binary Decision Diagrams.” In: SEFM. Vol. 8702.
LNCS. Springer, 2014, pp. 35–49.

[LPW10] Alfons Laarman, Jaco van de Pol, and Michael Weber. “Boosting
multi-core reachability performance with shared hash tables.” In:
FMCAD 2010. IEEE, 2010, pp. 247–255.

[LPW11] Alfons W. Laarman, Jaco van de Pol, and Michael Weber. “Multi-
Core LTSmin: Marrying Modularity and Scalability.” In: NASA
Formal Methods - Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18-20, 2011. Proceedings. Vol. 6617. LNCS. Springer,
2011, pp. 506–511.

[Mal+88] Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. “Logic verification using binary decision
diagrams in a logic synthesis environment.” In: ICCAD 1998. 1988,
pp. 6–9.

[MC13] Malcolm Mumme and Gianfranco Ciardo. “An Efficient Fully
Symbolic Bisimulation Algorithm for Non-Deterministic Systems.”
In: Int. J. Found. Comput. Sci. 24.2 (2013), pp. 263–282.

[MD02] D. Michael Miller and Rolf Drechsler. “On the Construction of
Multiple-Valued Decision Diagrams.” In: 32nd IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2002). 2002, pp. 245–
253.

[Mei+14] Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol. “Read,
Write and Copy Dependencies for Symbolic Model Checking.” In:
HVC. Ed. by Eran Yahav. Vol. 8855. Lecture Notes in Computer
Science. Springer, 2014, pp. 204–219.

[MF89] Yusuke Matsunaga and Masahiro Fujita. “Multi-level logic opti-
mization using binary decision diagrams.” In: ICCAD 1989. IEEE,
1989, pp. 556–559.

[MH98] Kim Milvang-Jensen and Alan J. Hu. “BDDNOW: A Parallel BDD
Package.” In: FMCAD. 1998, pp. 501–507.

[Min13] Shin-ichi Minato. “Techniques of BDD/ZDD: Brief History and
Recent Activity.” In: IEICE Transactions 96-D.7 (2013), pp. 1419–
1429.

148
s c Bibliography

[Min93] Shin-ichi Minato. “Zero-suppressed BDDs for set manipulation in
combinatorial problems.” In: Proceedings of the 30th international
Design Automation Conference. DAC ’93. New York, NY, USA: ACM,
1993, pp. 272–277.

[Moo65] Gordon E Moore. “Cramming more components onto integrated
circuits.” In: Proceedings of the IEEE 38.10 (1965), pp. 114–117.

[MSD16] Tobias Maier, Peter Sanders, and Roman Dementiev. “Concurrent
Hash Tables: Fast and General?(!)” In: CoRR abs/1601.04017 (2016).

[MSS07] Shin-ichi Minato, Ken Satoh, and Taisuke Sato. “Compiling Bayesian
Networks by Symbolic Probability Calculation Based on Zero-
Suppressed BDDs.” In: IJCAI 2007. 2007, pp. 2550–2555.

[MVS09] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. “Idem-
potent work stealing.” In: PPOPP. ACM, 2009, pp. 45–54.

[ODP15] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. “A Distributed
Hash Table for Shared Memory.” In: Parallel Processing and Applied
Mathematics. Vol. 9574. LNCS. Springer, 2015, pp. 15–24.

[OIY91] Hiroyuki Ochi, Nagisa Ishiura, and Shuzo Yajima. “Breadth-First
Manipulation of SBDD of Boolean Functions for Vector Process-
ing.” In: DAC. 1991, pp. 413–416.

[Oli+06] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P.
Sadayappan, and Chau-Wen Tseng. “UTS: An Unbalanced Tree
Search Benchmark.” In: LCPC. Vol. 4382. LNCS. Springer, 2006,
pp. 235–250.

[Oor15] Wytse Oortwijn. “Distributed Symbolic Reachability Analysis.”
MA thesis. University of Twente, Dept. of C.S., 2015.

[Oss10] Jörn Ossowski. “JINC – A Multi-Threaded Library for Higher-
Order Weighted Decision Diagram Manipulation.” PhD thesis.
Rheinischen Friedrich-Wilhelms-Universität Bonn, Oct. 2010.

[PBF10] Artur Podobas, Mats Brorsson, and Karl-Filip Faxen. “A Compar-
ison of some recent Task-based Parallel Programming Models.”
In: 3rd Workshop on Programmability Issues for Multi-Core Computers
(2010).

[Pel07] Radek Pelánek. “BEEM: benchmarks for explicit model checkers.”
In: SPIN. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 263–267.

[PSC94] Yegnashankar Parasuram, Edward P. Stabler, and Shiu-Kai Chin.
“Parallel implementation of BDD Algorithms using a Distributed
Shared Memory.” In: HICSS (1). 1994, pp. 16–25.

Bibliography c s
149

[PT87] Robert Paige and Robert Endre Tarjan. “Three Partition Refinement
Algorithms.” In: SIAM J. Comput. 16.6 (1987), pp. 973–989.

[Pug90] William Pugh. “Skip Lists: A Probabilistic Alternative to Balanced
Trees.” In: Commun. ACM 33.6 (1990), pp. 668–676.

[RA02] Karen A. Reay and John D. Andrews. “A fault tree analysis strategy
using binary decision diagrams.” In: Rel. Eng. & Sys. Safety 78.1
(2002), pp. 45–56.

[Rud93] R. Rudell. “Dynamic variable ordering for ordered binary decision
diagrams.” In: ICCAD. 1993, pp. 42–47.

[Sak+11] Yuko Sakurai, Suguru Ueda, Atsushi Iwasaki, Shin-ichi Minato,
and Makoto Yokoo. “A Compact Representation Scheme of Coali-
tional Games Based on Multi-Terminal Zero-Suppressed Binary
Decision Diagrams.” In: PRIMA 2011. Vol. 7047. Lecture Notes in
Computer Science. Springer, 2011, pp. 4–18.

[San+96] Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton, and Al-
berto L. Sangiovanni-Vincentelli. “High Performance BDD Package
By Exploiting Memory Hiercharchy.” In: DAC. 1996, pp. 635–640.

[SB14] Julian Shun and Guy E. Blelloch. “Phase-Concurrent Hash Tables
for Determinism.” In: SPAA. ACM, 2014, pp. 96–107.

[SB96] Tony Stornetta and Forrest Brewer. “Implementation of an Efficient
Parallel BDD Package.” In: DAC. 1996, pp. 641–644.

[Sew+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. “x86-TSO: a rigorous and usable program-
mer’s model for x86 multiprocessors.” In: Commun. ACM 53.7
(2010), pp. 89–97.

[Sia12] Tien Loong Siaw. “Saturation for LTSmin.” MA thesis. University
of Twente, Dept. of C.S., Feb. 2012.

[Soe+16] Mathias Soeken, Laura Tague, Gerhard W. Dueck, and Rolf Drech-
sler. “Ancilla-free synthesis of large reversible functions using
binary decision diagrams.” In: J. Symb. Comput. 73 (2016), pp. 1–26.

[Som01] Fabio Somenzi. “Efficient manipulation of decision diagrams.” In:
STTT 3.2 (2001), pp. 171–181.

[Som15] Fabio Somenzi. “CUDD: CU Decision Diagram Package Release
3.0.0.” http://vlsi.colorado.edu/~fabio/CUDD/. 2015.

[ST09] Håkan Sundell and Philippas Tsigas. “Brushing the Locks out of
the Fur: A Lock-Free Work Stealing Library Based on Wool.” In:
2nd Swedish Workshop on Multi-Core Computing MCC09. University
of Borås. School of Business and Informatics, 2009, pp. 126–130.

http://vlsi.colorado.edu/~fabio/CUDD/

150
s c Bibliography

[WB10] Ralf Wimmer and Bernd Becker. “Correctness Issues of Symbolic
Bisimulation Computation for Markov Chains.” In: MMB&DFT.
Vol. 5987. LNCS. Springer, 2010, pp. 287–301.

[WC93] David B. Wagner and Brad Calder. “Leapfrogging: A Portable
Technique for Implementing Efficient Futures.” In: PPOPP. ACM,
1993, pp. 208–217.

[WDH10] Ralf Wimmer, Salem Derisavi, and Holger Hermanns. “Symbolic
partition refinement with automatic balancing of time and space.”
In: Perform. Eval. 67.9 (2010), pp. 816–836.

[WHB06] Ralf Wimmer, Marc Herbstritt, and Bernd Becker. “Minimization
of Large State Spaces using Symbolic Branching Bisimulation.”
In: Proceedings of the 9th IEEE Workshop on Design & Diagnostics of
Electronic Circuits & Systems (DDECS 2006), Prague, Czech Republic,
April 18-21, 2006. IEEE Computer Society, 2006, pp. 9–14.

[WHB07] Ralf Wimmer, Marc Herbstritt, and Bernd Becker. “Optimization
techniques for BDD-based bisimulation computation.” In: 17th
GLSVLSI. ACM, 2007, pp. 405–410.

[Wij15] Anton Wijs. “GPU Accelerated Strong and Branching Bisimilarity
Checking.” In: TACAS 2015. Ed. by Christel Baier and Cesare
Tinelli. Vol. 9035. Lecture Notes in Computer Science. Springer,
2015, pp. 368–383.

[Wim+06] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp,
and Bernd Becker. “Sigref- A Symbolic Bisimulation Tool Box.” In:
ATVA. Vol. 4218. LNCS. Springer, 2006, pp. 477–492.

[Wim+07] Ralf Wimmer, Holger Hermanns, Marc Herbstritt, and Bernd
Becker. “Towards Symbolic Stochastic Aggregation.” Tech. rep.
SFB/TR 14 AVACS, 2007.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline:
an insightful visual performance model for multicore architec-
tures.” In: Commun. ACM 52.4 (2009), pp. 65–76.

[YO97] Bwolen Yang and David R. O’Hallaron. “Parallel Breadth-First
BDD Construction.” In: PPOPP. 1997, pp. 145–156.

Summary

Decision diagrams are fundamental in computer science. They are extensively
used in various fields, such as symbolic model checking, logic synthesis, fault
tree analysis, test generation, data mining, Bayesian network analysis and game
theory. Binary decision diagrams, which are the most common type of decision
diagrams, are often used to represent Boolean functions, which are at the core
of computer science.

A particular application that extensively uses decision diagrams is symbolic
model checking. Model checking studies the properties of models, for example
models of software, hardware, communication protocols, automated systems,
and properties such as whether a program is correctly implemented, what the
failure rate of a system is, how long the average person has to wait for a traffic
light, etc. Models typically consist of states and transitions: the system is in
a certain state (such as: all lights are red, or: some lights are green) and can
transition from one state to another state.

A major challenge in model checking is that the computation time and
the amount of memory required to compute interesting properties typically
increases exponentially when the size of the models increases, when models are
combined, or when we want to check more complex properties. One method
to tackle this fundamental challenge is to consider sets of states instead of
individual states, and to use Boolean functions represented by binary decision
diagrams to encode these sets of states. Hence, symbolic model checking often
consists mostly of operations on binary decision diagrams.

A major goal in computing is to perform ever larger calculations and to
improve their performance and efficiency. The processing power of computers
increases according to Moore’s law, but as physical constraints limit the oppor-
tunities for higher clock speeds, the increases in processing power of modern
chips mostly come from parallel processing. Efficient parallel algorithms are
thus required to make effective use of the processing power of modern chips.
Hence, research and development of scalable parallel algorithms is a key aspect
to computing in the 21st century.

151

152
s c Summary

The main contribution of this thesis is the reusable multi-core decision
diagram library Sylvan. Sylvan implements parallelized operations on various
types of decision diagrams, in particular binary decision diagrams, multi-
terminal binary decision diagrams and list decision diagrams. One of its
strengths is that it can replace existing non-parallel decision diagram libraries to
bring the processing power of multi-core machines to non-parallel applications.

In this thesis, we study the design of Sylvan and its two main ingredients,
namely the parallel hash tables that store the decision diagram nodes and the
operation cache, and the parallel framework Lace that we developed, which
executes tasks in parallel using a work-stealing algorithm for load balancing
and a novel double-ended queue to store the tasks of each thread. Furthermore,
we study how Sylvan performs in two applications: state space exploration and
bisimulation minimisation.

We look at state space exploration on a large benchmark set, using the
existing model checking toolset LTSmin with Sylvan as a backend. We first
only use the parallel operations offered by Sylvan in an otherwise sequential
program to obtain a parallel speedup. We then also parallelize the state space
exploration algorithm, exploiting a partitioning of the transition relation in
LTSmin, and obtain an improved parallel speedup.

Bisimulation minimisation computes the smallest equivalent model of some
input model according to some notion of equivalence, such as strong or branch-
ing bisimulation. For this application, we develop two new decision diagram
algorithms for bisimulation minimisation and show that these significantly
improve the efficiency of the minimisation algorithm, on top of the parallelism
obtained by Sylvan.

In the experimental results presented in this thesis, we obtain a good parallel
speedup: up to 29x with 48 threads when purely relying on Sylvan for parallel
execution; up to 38x with 48 threads when the program that uses Sylvan
is also parallelized. In a study that compares Sylvan with popular decision
diagram implementations, we see that Sylvan is competitive with the other
implementations when running single-core (3rd place of 6 implementations),
and faster than the other implementations when more threads are used.

Samenvatting

Beslisbomen zijn een fundamenteel concept in de informatica. Beslisbomen wor-
den gebruikt in verschillende onderzoeksgebieden, zoals het doorrekenen van
(eigenschappen van) systemen, het analyseren van foutbomen, automatische
testgeneratie, en speltheorie. Binaire beslisbomen zijn een van de meestge-
bruikte beslisbomen en worden onder meer gebruikt om Boolse functies te
representeren, die aan de basis van de informatica liggen. Met name voor
het doorrekenen van systemen, zoals software, hardware, communicatieproto-
collen en andere systemen, zijn binaire beslisbomen één van de voornaamste
technieken om de rekentijd en de hoeveelheid geheugen die nodig zijn bij het
doorrekenen van systemen beheersbaar te houden.

De rekenkracht van computers neemt nog steeds toe. Vanwege natuurkun-
dige belemmeringen zit deze toenemende rekenkracht al jaren niet meer in
snellere processoren, maar in het gebruik van een steeds groter aantal rekenker-
nen en processoren. Om van deze toenemende rekenkracht gebruik te maken
is het daarom essentieel om parallele algoritmen te ontwikkelen, die efficient
gebruik maken van de rekenkracht van moderne computers.

De voornaamste bijdrage en onderwerp van dit proefschrift is de pro-
grammabibliotheek Sylvan, die operaties op beslisbomen implementeert voor
computers met meerdere rekenkernen. Een van de voordelen van Sylvan is
dat de operaties op beslisbomen parallel uitgevoerd worden ook als het boven-
liggende algoritme niet parallel is. Dat betekent dat software die gebruik maakt
van beslisbomen, maar zelf niet ontwikkeld is om door meerdere rekenkernen
uitgevoerd te worden, automatisch parallel uitgevoerd wordt wanneer Sylvan
gebruikt wordt voor de implementatie van beslisbomen.

Dit proefschrift behandelt het ontwerp van Sylvan en de twee belangrijk-
ste componenten, allereerst de tabellen die de knopen van de beslisbomen
bevatten en de tussenresultaten van de operaties op beslisbomen, en verder het
onderdeel Lace, dat voor dit proefschrift is ontwikkeld om taken parallel uit
te voeren, waarbij het verdelen van de werklast door middel van “werk stelen”
gebeurt, en waarbij de uit te voeren taken worden opgeslagen in een zoge-

153

154
s c Samenvatting

naamde twee-eindige wachtrij, die ook in dit proefschrift wordt beschreven. We
hebben voor twee toepassingen de snelheid en efficientie van Sylvan bestudeerd:
toestandsruimteverkenning bij het doorrekenen van systemen, en bisimulatie-
minimisatie.

Bij toestandsruimteverkenning (het bepalen van alle toestanden waarin een
systeem zich kan bevinden) maken we gebruik van een verzameling referen-
tiemodellen (de BEEM-verzameling), met behulp van LTSmin, een verzameling
programma’s voor het doorrekenen van systemen. Eerst kijken we naar het
behaalde resultaat indien we enkel Sylvan gebruiken voor binaire beslisbomen
en LTSmin verder ongemoeid laten; vervolgens gebruiken we een partitie van
de toestandovergangsrelatie in LTSmin om ook de toestandsruimteverkenning
zelf, het bovenliggende algoritme dus, parallel uit te voeren. Hierbij zien wij
dat de parallele versnelling verbetert.

Bisimulatieminimisatie berekent het kleinste equivalente model van een
gegeven model, gegeven een bepaalde notie van equivalentie, zoals sterke
of vertakkende bisimulatie. Hiervoor ontwikkelen wij tevens twee nieuwe
operaties op beslisbomen, speciaal voor bisimulatieminimisatie. Deze leveren
een sterke verbetering op voor de efficientie van het algoritme, bovenop de
behaalde parallele versnelling dankzij Sylvan.

De experimenten in dit proefschrift leveren een goede parallele versnelling
op. Enkel het gebruik van Sylvan voor parallele versnelling, waarbij de rest van
het programma dus niet parallel uitgevoerd wordt, levert tot 29x versnelling op
met 48 rekenkernen. Wanneer we ook het bovenliggende programma parallel
uitvoeren zien we tot 38x versnelling, wederom met 48 rekenkernen. In een
studie samen met onder meer de vakgroep ISCAS (China) zien we dat Sylvan
goed meekomt met de concurrentie wanneer slechts één rekenkern beschikbaar
is (3e plek van de 6). Sylvan is sneller dan de concurrentie wanneer meer
rekenkernen beschikbaar zijn.

Titles in the IPA Dissertation Series since 2013

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of
Real-Time Task Systems using Timed
Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presentation.
Faculty of Science, Mathematics and
Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Com-
puter Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for moving
points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of
Science, Mathematics and Computer
Science, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Con-
trol Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-06

J. Winter. Coalgebraic Characteriza-
tions of Automata-Theoretic Classes. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Measures
and Algorithms for Cartographic Schema-

tization. Faculty of Mathematics and
Computer Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Col-
laboration in Online Software Commu-
nities. Faculty of Mathematics and
Computer Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the
Gap between Active Learning and Real-
World Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2014-13

M. Helvensteijn. Abstract Delta Mod-
eling: Software Product Lines and Be-
yond. Faculty of Mathematics and
Natural Sciences, UL. 2014-14

P. Vullers. Efficient Implementa-
tions of Attribute-based Credentials on
Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the
Real World. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibil-
ity and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2015-07

E. Costante. Privacy through-
out the Data Cycle. Faculty of

Mathematics and Computer Science,
TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of propri-
etary cryptography. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in
the analysis of the EMV and TLS se-
curity protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2015-12

J. Bransen. On the Incremental Evalu-
ation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.

Faculty of Science, Mathematics and
Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of
Sciences, Department of Computer
Science, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent programs.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions – A
Formal Notation for DNA. Faculty of
Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2016-03

S. Keshishzadeh. Formal Analy-
sis and Verification of Embedded Sys-
tems for Healthcare. Faculty of
Mathematics and Computer Science,
TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2016-05

Y. Luo. From Conceptual Models to
Safety Assurance – Applying Model-
Based Techniques to Support Safety As-
surance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2016-09

This thesis studies the parallelization of
decision diagrams, a fundamental data-
structure with applications in many fields,
in particular symbolic model checking.
Research into parallel processing is
essential, as multi-core and many-core
computers are ubiquitous. Graph
algorithms such as decision diagram
operations are known to be difficult to
parallelize, as well as difficult to reason
about. This is one of the reasons why
parallelizing symbolic model checking is
difficult.

The main result of this research is the
multi-core decision diagram package
Sylvan. We investigate scalable hash tables,
load balancing via work stealing, using
Sylvan for symbolic state space
exploration and for symbolic bisimulation
minimisation. The experimental results
show high parallel speedup of up to 38x
for benchmarks on a 48-core computer.
Experiments that compare Sylvan to
non-parallel decision diagram packages
show that Sylvan is competitive when run
with a single core, and faster when run
with multiple cores.

	Contents
	Acknowledgements
	Introduction
	Symbolic model checking
	Binary decision diagrams
	Parallelism
	Earlier work in parallel BDDs
	Contributions
	Scalable hash tables with garbage collection
	Work-stealing framework Lace
	Multi-core decision diagram library Sylvan
	Multi-core on-the-fly reachability
	Multi-core symbolic bisimulation minimisation

	Publications
	Overview

	Decision diagrams
	Preliminaries
	Boolean logic and notation
	Binary decision diagrams
	Multi-terminal binary decision diagrams
	Multi-valued decision diagrams
	List decision diagrams

	Parallelizing decision diagrams
	Parallel operations
	Representation of nodes
	Unique table
	Computed table
	Garbage collection framework

	BDD algorithms
	Creating and reading BDD nodes
	Basic operations
	Relational products

	MTBDD algorithms
	LDD algorithms

	Load-balancing tasks with Lace
	Task-based parallelism and work-stealing
	Existing work-stealing deques
	Design of the shared split deque
	Deque algorithms
	Correctness
	Implementation of the framework Lace
	Standard work-stealing functionality
	Interrupting tasks to run a new task tree

	Experimental evaluation
	Benchmarks
	Results
	Extending leapfrogging

	Conclusion and Discussion

	Concurrent nodes table and operation cache
	Scalable data structures
	Unique table
	Original hash table
	Variant 1: Reference counter and tombstones
	Variant 2: Independent locations
	Variant 3: Using bit arrays to manage the data array
	Comparing the three variants

	Operation cache
	Conclusion and Discussion

	Application: State space exploration
	On-the-fly state space exploration in LTSmin
	Parallel operations in a sequential algorithm
	Parallel learning
	Fully parallel on-the-fly symbolic reachability
	Experimental evaluation
	Experimental setup
	Experiment 1: Only parallel LDD operations
	Experiment 2: Parallel learning
	Experiment 3: Fully parallel reachability
	Experiment 4: Comparing nodes table variants 2 and 3
	Experiment 5: Comparing BDDs and LDDs

	Conclusion and Discussion

	Application: Bisimulation minimisation
	Definitions
	Signature-based bisimulation minimisation
	Partition refinement

	Symbolic signature refinement
	Encoding of signature refinement
	The refine algorithm
	Computing inert transitions

	Implementation
	Experimental evaluation
	Experiments
	Results

	Conclusion and Discussion

	Conclusions
	The multi-core decision diagram package Sylvan
	The work-stealing framework Lace
	The symbolic bisimulation minimisation tool SigrefMC
	Future directions
	Scalable data structures
	Other decision diagrams and operations
	Applications
	Formal verification of the algorithms

	Multi-core and beyond

	Bibliography
	Summary
	Samenvatting

