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Abstract
The classic approach to synthesis of reactive systems from
linear temporal logic (LTL) specifications involves the trans-
lation of the specification to a deterministic ω-automaton
and computing a winning strategy for the corresponding
game with an ω-regular winning condition. Unfortunately,
this procedure has an unavoidable double-exponential blow-
up in the worst-case and suffers from the state-explosion
problem. To address this state-explosion problem in practice
we propose an almost-symbolic version of this classic idea
that performs the following steps: (1) normalisation of the
specification into a Boolean combination of “simple” frag-
ment of LTL, (2) translation of each “simple” subformula
into a deterministic automaton, (3) encoding of each au-
tomaton into a binary decision diagram (BDD), (4) construc-
tion of a parity automaton (and thus game) by operations
on the BDD, (5) symbolic computation of a winning strat-
egy, and finally (6) extraction of a symbolic controller. We
prototype this approach in the tool Otus, compare it against
Strix, the winner of SYNTCOMP 2018-2020, on the SYNT-
COMPbenchmarks, and identify several specificationswhere
Otus outperforms Strix.

Keywords: BinaryDecisionDiagram, Linear Temporal Logic,
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1 Introduction
In reactive synthesis, as outlined by [18], we are tasked with
constructing a controller such that all interactions with an
unknown environment satisfy a linear temporal logic (LTL)
specifications. It is shown by [18] that this is 2-EXPTIME-
complete, and the upper bound is established by construct-
ing a deterministic Rabin automaton (DRW).
Due to the inherent state-space explosion problem, vari-

ous ideas were developed that make the task more manage-
able such as: bounded synthesis [9], which tries to find solu-
tions smaller than a fixed bound, or restrictions to less ex-
pressive fragments of LTL, e.g., the GR1-fragment [4], which
has been successfully been applied in practice [10]. We refer
the reader to [2] for in-depth overview.
A few years ago reactive synthesis using deterministic

parity automata (DPW, a subclass of DRW) and parity games
was deemed infeasible in practice. One reason was the lack
of an efficient translation fromLTL to deterministicω-automata,

since at that time, translations obtaining deterministic ω-
automata used non-deterministic BÃĳchi automata (NBW)
as an intermediate step and determinisation of NBW is a
famously hard problem. Despite landmark results, such as
[20], in practice the deterministic automata quickly became
too large. With the rise of direct translations, LTL synthesis
tools such as ltlsynt [16] using [19] and Strix [14] using a
combination of [7, 8] showed that with clever engineering1
explicit state-space techniques are capable of solving a wide
range of specifications and performed better than some of
the previous techniques avoiding DPW. Still, all these tech-
niques need to construct a double-exponentially large state-
space in the worst case. We propose a symbolic variant of
these algorithms to tackle the state explosion problem. This
has been attempted before in [17], where Morgenstern and
Schneider propose to use the safety-progress hierarchy de-
veloped in [6, 15] to obtain a symbolic reactive synthesis
algorithm. This hierarchy shows that every LTL formula is
equivalent to a formula from one of six syntactic classes and
using the notation from [21] these are denoted Σi , Πi , and
∆i for i ∈ {1, 2}. Furthermore, ∆i is the Boolean closure of
Σi and Πi . Thus in order to obtain a symbolic algorithm one
needs to define a symbolic translation from Σi and Πi . At
that time it was unclear how to efficiently compute for an
arbitrary formula an equivalent one in the corresponding
syntactic classes. Thus [17] also needs to resort to a deter-
mination construction. We reexamine this idea, and make
use of the new normalisation result from [21] that translates
every (future) LTL formula to a formula in ∆2.

2 Construction
We now detail the six steps of the construction outlined in
the beginning. For the rest of the section we fix an LTL for-
mula φ over a set of inputs I and outputs O .

Step 1. The formula φ is translated into the ∆2-normal-
form using the normalisation procedure by [21]. While it
is already established in [6] that every formula can be de-
composed into a Boolean combination of persistence (Σ2)
and recurrence (Π2) properties, the constructive proof uses
a sub-procedure with non-elementary complexity. [21] ad-
dresses this and presents a simple and syntactic translation

1Strix for example uses on-the-fly exploration of the parity game to avoid
constructing the whole game.
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to ∆2 with exponential complexity. Further, this translation
is well-behaved in the sense that one still obtains double-
exponential deterministic Rabin automata (DRW), despite
the exponential blow-up incurred by the normalisation in-
between. Let now φ ′ be a formula in disjunctive normal
form from ∆2 that is equivalent to φ.

Step 2. Let ψ1,ψ2, . . . ,ψn be subformulas of φ ′ from Π2
and Σ2. Each subformula ψi is now separately and directly
translated to either a deterministic BÃĳchi (DBW) or co-
BÃĳchi automaton (DCW) using the break-point construc-
tion specifically tailored forΠ2 and Σ2 from [21]. The under-
lying assumption is that in practice the intermediate DBW
and DCW are small, since specifications tend to be large
Boolean combinations of small formulas.

Step 3. We now switch to a symbolic representation and
encode each DBW and DCW in a binary decision diagram
(BDD). For our prototype we use a simple encoding scheme:
We assign each state of the automaton an integer andwe use
the binary representation in the BDD. Thus if an automaton
has n states, we use ⌈log2(n)⌉ variables to encode a state.
Thus storing the transition relation of a single automaton
requires 2 · ⌈log2(n)⌉+ |I |+ |O |+1 variables. The last variable
is used to store if an edge is either accepting or rejecting.
Observe that there might be encoding schemes that yield
smaller BDDs and we leave an investigation of the effect of
better encoding schemes as future work.
In this prototype we use a simple, fixed categorical vari-

able ordering as follows: Atomic propositions are at the top
of the BDD. Next come variables encoding the current state,
then variables encoding the acceptance condition, and fi-
nally variables encoding the successor state. We leave eval-
uating the impact of other fixed orderings or dynamic vari-
able reordering to future work.

Step 4. We obtain a symbolically represented DRW from
Step 3 by union and intersection following the structure of
φ ′. We implement union and intersection of automata by
“and”-operations in the underlying BDD to obtain the prod-
uct automaton. In order to obtain a deterministic parity au-
tomaton (DPW) we apply a symbolic implementation of the
“typeness”-construction from [5]. For thiswe implement the
symbolic SCC-decomposition due to [3] as a sub-procedure.
We rely on two results from [5]: (1) Given a DRW R one can
effectively compute if there exists a parity acceptance con-
dition γ on the structure of R such that the resulting parity
automaton accepts the same language. (2) Let R and S be
a DRW and deterministic Streett automaton (DSW) for the
same language L. Then the algorithm in (1) always finds a
parity acceptance conditionγ on top of the product automa-
ton R×S where we ignore the acceptance condition of S . We
use this construction in the following way: We translate φ
into a DRW R and apply (1). If this succeeds, we continue to
Step 5 with the obtained DPW P . Otherwise, we construct a

DSW S by translating ¬φ to a DRW and then complement-
ing the acceptance condition. We then build the symbolic
product automaton R × S using an “and”-operation in the
underlying BDD, apply (1) again and obtain a DPW P .

Step 5. The symbolic DPW is reinterpreted as a parity
game and we apply the distraction fix-point iteration [23]
to compute a winning strategy for either the environment
or the system. This algorithm has been shown to be com-
petitive and easy to implement symbolically [13].

Step 6. The BDD representing the winning strategy for
the system player (if there is one) is then converted to an
and-inverter graph (AIG) with Mealy semantics. We resolve
potential non-determinism in the symbolic representation,
i.e., “don’t cares”, by preferring to output 0 for don’t cares.
We leave a refinement of this simple heuristic as futurework,
e.g., one could try to find an assignment for the output val-
ues that yield the smallest BDD representing the winning
strategy.

3 Experimental Evaluation
We implement the proposed approach in the tool Otus and
base it on the LTL and ω-automata library Owl [12] and
on the multi-core BDD library Sylvan [22]. We evaluate the
construction using a subset of the specifications of the SYNT-
COMP competition [11] and compare it against Strix (ver-
sion 2020.06-Syntcomp) using the configuration2 that was
ranked at the first place in SYNTCOMP 2020. Since we only
measure the time needed for synthesis and not the quality,
i.e., the size, of the circuits, we disable post-processing using
ABC’s AIGER minimization tool [1] for Strix.
The experiments are run on a cluster of Dell PowerEdge

M610 servers with two Xeon E5520 processors and each run
gets 8 cores and 56 GB memory assigned.
In total we use 421 realizable and 157 unrealizable specifi-

cations from github.com/meyerphi/syntcomp-reference and
filter the specifications as follows: for each specification a
five minute time-budget is allocated and only specifications
that are processed within five minutes by each tool are se-
lected.We thus select 320 realizable and 85 unrealizable spec-
ifications. For selected formulas we repeat the experiment
five times and collect the average execution times. The re-
sults are presented in Figure 1 and 2 for the realizable and
unrealizable specifications, respectively.
We observe that the results are mixed. This is to be ex-

pected, since the goal of our prototype, which skips several
possible optimisations, is to evaluate the feasibility of our
approach and not develop a tool that outperforms Strix.
However, we identify specifications that are challenging for
Strix, but can be solved comparably fast by Otus. Indeed,
for some specifications our construction is over 30× faster.

2We use strix -f "$formula" --ins "$ins" --outs "$outs"
--no-compress-circuit --auto -e pq -c.

github.com/meyerphi/syntcomp-reference
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Figure 1. Execution time comparison of Otus (vertical)
vs. Strix (horizontal) for realizable specifications; different
magnification levels.

Figure 2. Execution time comparison of Otus (vertical) vs.
Strix (horizontal) for unrealizable specifications; different
magnification levels.

This indicates that the symbolic technique is promising to
tackle larger specifications in the future. Formany specifica-
tions, Strix is over 1000× faster than our construction, but
these are often inputs that Strix can solve in just a few sec-
onds. One reason for this is that Strix has several optimiza-
tions, including early termination that avoid computing the
full parity game, which we currently do not do. Further, the
symbolic technique we propose has a certain fixed overhead
that potentially amortises with larger specifications. We list
in Table 1 ten instances, with highest and lowest ratios in
runtime. These are specifications that can be solved by both
our construction and by Strix.

4 Conclusion
We outlined an “almost”-symbolic algorithm for LTL syn-
thesis using parity games, implemented a prototype, and
compared it against the explicit-state, on-the-fly LTL syn-
thesis tool Strix. Although step (2) uses an explicit rep-
resentation and in the subsequent steps we often choose
the simple and naive approaches, e.g., state encoding with a
simple fixed variable ordering, we observe promising results
for a subset of the specifications. This motivates further re-
search into the construction and refinement of each of the
outlined steps. Finally, we expect that we can also reduce
the execution time by better engineering of the tool, e.g.,
reducing the number of variables used in the BDDs.

Table 1. The ten specifications with the highest and lowest
total execution time ratio of the construction over Strix.
Execution times are presented in seconds and are rounded
to two decimals. Ratios are computed using the exact exe-
cution times.

Specification Otus (s) Strix (s) Ratio
collector_v1_5 0.72 24.02 33.19956
amba_decomposed_lock_10 1.86 37.59 20.15616
amba_decomposed_lock_6 0.33 4.24 12.77229
LedMatrix 22.15 224.09 10.11631
amba_decomposed_encode_10 1.28 9.74 7.62835
TwoCounters3 0.67 4.38 6.50238
ltl2dba_beta_5 2.66 14.62 5.48810
lilydemo22 0.24 1.26 5.32375
tictactoe 2.31 12.16 5.27006
amba_decomposed_lock_8 0.54 2.54 4.66618
. . . . . . . . . . . .
ltl2dba_C1_6 27.72 0.11 0.00399
EscalatorSmart 226.97 0.91 0.00399
escalator_smart 232.94 0.90 0.00386
prioritized_arbiter_6 109.24 0.42 0.00385
ltl2dba_C2_5 26.29 0.10 0.00366
detector_5 26.27 0.09 0.00346
ltl2dpa03 81.31 0.16 0.00195
ltl2dba_C1_7 176.54 0.12 0.00066
ltl2dba_C2_6 176.26 0.11 0.00064
detector_6 176.77 0.10 0.00059
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