
IntelliJML: A JML Plugin for IntelliJ IDEA
Steven Monteiro

s.c.monteiro@student.utwente.nl
University of Twente

Enschede, The Netherlands

Erikas Sokolovas
e.sokolovas@student.utwente.nl

University of Twente
Enschede, The Netherlands

Ellen Wittingen
e.m.wittingen@student.utwente.nl

University of Twente
Enschede, The Netherlands

Tom van Dijk
t.vandijk@utwente.nl
University of Twente

Enschede, The Netherlands

Marieke Huisman
m.huisman@utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
Java code can be annotated with formal specifications using the
Java Modelling Language (JML). Previous work has provided IDE
plugins intended to help write JML, but mostly for the Eclipse IDE.
We introduce IntelliJML, a JML plugin for IntelliJ IDEA, with a
focus on ease of use and maintainability. Features such as syntax,
semantic, and type checking, as well as syntax highlighting and
code completion are integrated into the plugin. The plugin can also
be extended in the future to add more features. The source code for
the plugin can be found at https://gitlab.utwente.nl/fmt/intellijml.

CCS CONCEPTS
• Software and its engineering→ Software verification.

KEYWORDS
JML, JavaModelling Language, IntelliJ IDEA, Error checking, Plugin,
Java, IDE, Interactive Development Environment

ACM Reference Format:
StevenMonteiro, Erikas Sokolovas, EllenWittingen, TomvanDijk, andMarieke
Huisman. 2021. IntelliJML: A JML Plugin for IntelliJ IDEA. In Proceedings
of the 23rd ACM International Workshop on Formal Techniques for Java-like
Programs (FTfJP ’21), July 13, 2021, Virtual, Denmark. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3464971.3468423

1 INTRODUCTION
The Java Modelling Language (JML) [10] is a specification language
that is used to specify the intended behaviour of Java programs.
With IntelliJ IDEA [8] recently enjoying high popularity [14, 16],
we identified the need for a plugin for JML that supports IntelliJ.
Previous JML plugins do not provide support for IntelliJ [4, 15] or
only provide a basic wrapper around existing JML tools [6].

To address this need we develop a new JML plugin for IntelliJ
called IntelliJML (Figure 1). It is primarily made as a teaching tool in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FTfJP ’21, July 13, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8543-5/21/07. . . $15.00
https://doi.org/10.1145/3464971.3468423

Table 1: Supported features for each plugin

IntelliJML OpenJML KeY
Syntax, semantic &
type checking ✓1 ✓ ✓

Runtime checking2 × ✓ ✓

Static checking3 × ✓ ✓

Code completion ✓ ∼4 ✓
Syntax highlighting ✓ × ✓

Java versions 8 and up 5 8 8 and up 6

IDE support IntelliJ IDEA Eclipse Eclipse

the Software Systems course at the University of Twente. However,
the plugin could prove a useful tool for anyone working with JML.

The requirements for the plugin are: IntelliJ support, forward
compatibility with future Java versions, extensive error checking,
maintainability and user friendliness. Based on these requirements,
we focus on the user-facing side of JML such as descriptive error
messages and code completion. Most language level 0 features [10]
(page 18-21), the keyword "pure" and quantified expressions are
supported by the plugin. All Java versions starting from version
8 are supported. Our plugin does not provide static or runtime
checking. The requirement of forward Java compatibility proved to
be a unique challenge - necessitating the use of combination lexers
and a manually written parser extension. Because there was limited
time to write the plugin, it is written in such a way that it can be
extended in the future with more features.

2 RELATEDWORK
There already exist several plugins for JML. The most relevant
are OpenJML [3, 4], KeY [1, 15] and an IntelliJ plugin called Open-
JML/ESC [6]. OpenJML and KeY are both Eclipse [5] plugins. Open-
JML only supports Java 8, whereas KeY also supports Java versions
higher than 8. However, the authors of KeY indicate that it does
not support all features of Java, such as generics and lambdas. So
these plugins differ from our plugin in what IDEs and Java versions
are supported. OpenJML/ESC does support IntelliJ. However, it has
not been updated since 2018 and our analysis of the source code

1Supports most language level 0 features, the keyword "pure" and quantified
expressions.
2By means of calling external command-line tools.
3See footnote 2
4Limited keyword completion.
5Lambda’s are allowed but not type checked.
6Does not support all features of Java, such as generics and lambdas.

39

https://gitlab.utwente.nl/fmt/intellijml
https://doi.org/10.1145/3464971.3468423
https://doi.org/10.1145/3464971.3468423
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3464971.3468423&domain=pdf&date_stamp=2021-07-11

FTfJP ’21, July 13, 2021, Virtual, Denmark Steven Monteiro, Erikas Sokolovas, Ellen Wittingen, Tom van Dijk, and Marieke Huisman

Figure 1: A screenshot of the plugin displaying an error in IntelliJ IDEA.

indicates that it is a wrapper around OpenJML and does not offer
syntax highlighting nor code completion like our plugin does.

A short overview of the features of the plugins is given in Table 1.
It should be noted that the KeY and OpenJML plugins use external
command-line tools for runtime and static checking [1, 3, 4, 15].

3 INTELLIJ PLATFORM FEATURES
The IntelliJ platform provides an extensive language development
API. IntelliJ has decoupled language specific logic into plugins
[2] and the platform itself provides a generic abstract syntax tree
(AST) implementation for plugins to work with. This interface is
known as PSI (Program Structure Interface) and provides tools for
implementing syntactic and semantic language features [9]. The
platform also provides features for the construction of the ASTs by
allowing the use of either ANTLR [13] grammars or IntelliJ’s own
grammars using the Grammar-Kit plugin [7].

4 ARCHITECTURE
We illustrate the basic flow of a JML comment through the plugin
in Figure 2.

Lexers ParserJML String

Syntax

Highlighter

Code

Completion

Annotators

Figure 2: The flow of data through the plugin.

When receiving a JML string, it is first passed through several
lexers. These lexers are layered together and split the string into
JML and Java tokens. Layering of multiple lexers was necessary as

IntelliJ’s native Java lexer is invoked for lexing Java expressions
inside JML statements. IntelliJ’s lexer is used to ensure future Java
version compatibility. In the first layer all JML keywords are lexed as
individual JML tokens. Then in the second layer tokens belonging to
a Java expression are merged into a single token that represents that
expression. Afterwards, the next layer splits the Java expression
token into separate Java tokens. Finally, the last lexer replaces
and merges certain Java tokens, this is done to account for JML
keywords that can be mixed with Java expressions. This process is
illustrated in figure 3.

Figure 3: The flow of a JML comment through the lexers.

The output of these lexers is used by the syntax highlighter
and the parser. The syntax highlighter applies colours to all gener-
ated JML tokens. IntelliJ’s native highlighting colours are used for
generated Java tokens.

The parser takes the generated tokens and generates a parse tree.
This parser was generated from a custom grammar in Backus-Naur
form (BNF) [11] describing the relevant subset of the JML syntax.
For Java expressions embedded in JML we have written a parser
extension that recursively generates tree elements for JML inside

40

IntelliJML: A JML Plugin for IntelliJ IDEA FTfJP ’21, July 13, 2021, Virtual, Denmark

the embedded Java expressions and is called by the generated parser
in places where a Java expression is expected.

The generated tree is used by annotators to perform error check-
ing. If an error is encountered, a message will be displayed to the
user. There are several types of messages: syntax checking, seman-
tic checking, and type checking. Type checking also checks whether
references to fields, methods, classes, etc. can be resolved.

To check whether references can be resolved, IntelliJ’s Java API
is used, which returns the closest match to a reference. It is checked
that this match is valid: It should, for example, have the correct
visibility. This visibility checking consists of querying the Java
modifiers of thematch such as "private" and "public".When visibility
is incompatible, JML comments belonging to the match are checked,
to see whether they contain "spec_public" or "spec_protected", as
those change the visibility for JML specifications.

To perform type and semantic checking on JML expressions
embedded in Java such as "\result", "\old()", "\typeof()", etc. replace-
ments are done to convert them to Java code. This Java code is then
checked using IntelliJ’s Java API. For example, "\old(expression)" is
simply replaced with "expression". This is done recursively since the
expression can still contain JML that needs to be replaced. "\result"
is replaced with the default value for primitive types and replaced
with "((RefType) null)" for reference types.

The plugin also performs checks for commonmistakes. For exam-
ple, when a user puts whitespace between the start of the comment
and the first @ character a warning is given, telling the user that
the comment is not valid JML.

The annotators have a hierarchy and run in sequence. If one
annotator finds that an error needs to be displayed for a certain
token, it will stop further annotation for that token. This avoids
confusion for the user as this prevents multiple messages being
displayed for the same token.

Code completion allows for the completion of both JML and Java
expressions for most things a user could write, such as: keywords,
common code boiler plate (e.g. quantified expressions), chained
method calls, etc. All supported JML expressions have proper com-
pletion, but not all Java expressions e.g. lambda expressions. This is
because IntelliJ’s own Java completion service could not be reused
and a custom one had to be written.

5 MAINTAINABILITY
As mentioned in Section 1, maintainability is an important require-
ment for our plugin. The Java programming language is under
constant development [12]. New language features may therefore
be added. We take special care to use the IntelliJ public API to
interact with Java code rather than a custom solution wherever
possible. This aims to ensure that minimal maintenance is required
to the plugin’s code, relying on the support for future versions
being provided by IntelliJ instead. Being a commercial product, we
expect IntelliJ’s support to be adequate.

The plugin has extensive unit tests that achieve 82% class cover-
age, 72% method coverage and 80% line coverage. This increases
maintainability as incompatible behaviour changes made to the
JetBrains API or plugin source code should be caught by unit tests.

We also provide a maintainers’ guide that details the inner work-
ings of the plugin. The source code of the plugin has extensive
Javadoc that explains the functionality of each section of the code.

This extensive documentation should allow developers to more
easily and quickly become familiar with the internals of the plugin,
improving maintainability.

Code decoupling patterns are applied where appropriate to make
changing the source code of the plugin simple, which further con-
tributes to maintainability.

6 FUTUREWORK
We believe it to be relatively straightforward to extend the sup-
ported JML subset, as it would only involve additions to the internal
grammar and the error checkers. For some of the more complex
JML features one might also need to extend our parser extension
and lexers.

A framework was set up for runtime assertion checking which
can transparently insert custom assertions into Java code. It cur-
rently can not generate assertions, but with the current infrastruc-
ture the remaining task is translating JML to valid Java assertions.

A possible feature addition could also be static checking. The
easiest way to add this support would be to write a wrapper around
an existing static checker. Such static checkers can be found in, for
example, OpenJML and KeY.

Code completion could also be expanded on as not all Java syntax
is properly supported, such as lambda expressions or local method
overrides. Additionally, some convenience features could be imple-
mented such as auto-import or expanded code templates.

7 CONCLUSION
We created a new JML plugin for IntelliJ that focuses on maintain-
ability and forward Java compatibility. The plugin supports the core
parts of the JML syntax, which can be expanded upon relatively
easily with the existing code infrastructure. It is currently a Jet-
Brains IDE front-end for JML providing no specification checking
capabilities. Specification checking could be introduced into the
tool by writing a wrapper for an existing command line checker,
e.g. the KeY project’s command line static verifier tool.

ACKNOWLEDGMENTS
We thank the student assistants who provided useful feedback that
improved the quality of our work.

REFERENCES
[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, andM. Ulbrich (Eds.). 2020. Deductive

Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years
of KeY. Lecture Notes in Computer Science, Vol. 12345. Springer. https://doi.org/
10.1007/978-3-030-64354-6

[2] N. Chashikov. 2018. Extract Java support to a separate plugin in IntelliJ IDEA.
https://youtrack.jetbrains.com/issue/IDEA-195719

[3] D. Cok. 2014. OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In Proceedings 1st Workshop on Formal Integrated Development Environ-
ment, F-IDE 2014, Grenoble, France, April 6, 2014 (EPTCS, Vol. 149), C. Dubois, D. Gi-
annakopoulou, and D. Méry (Eds.). 79–92. https://doi.org/10.4204/EPTCS.149.8

[4] D. Cok. 2018. OpenJML. https://www.openjml.org/
[5] Eclipse Foundation. 2021. Eclipse. Eclipse Foundation. https://www.eclipse.org/
[6] S. Gonschorowski. 2018. OpenJML/ESC. https://plugins.jetbrains.com/plugin/

11072-openjml-esc
[7] JetBrains s.r.o. 2021. Implementing a Parser and PSI: IntelliJ Platform Plugin SDK.

JetBrains s.r.o. https://plugins.jetbrains.com/docs/intellij/implementing-parser-
and-psi.html

[8] JetBrains s.r.o. 2021. IntelliJ IDEA. JetBrains s.r.o. https://www.jetbrains.com/
idea/

[9] JetBrains s.r.o. 2021. Program Structure Interface (PSI): IntelliJ Platform Plugin
SDK. JetBrains s.r.o. https://plugins.jetbrains.com/docs/intellij/psi.html

41

https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1007/978-3-030-64354-6
https://youtrack.jetbrains.com/issue/IDEA-195719
https://doi.org/10.4204/EPTCS.149.8
https://www.openjml.org/
https://www.eclipse.org/
https://plugins.jetbrains.com/plugin/11072-openjml-esc
https://plugins.jetbrains.com/plugin/11072-openjml-esc
https://plugins.jetbrains.com/docs/intellij/implementing-parser-and-psi.html
https://plugins.jetbrains.com/docs/intellij/implementing-parser-and-psi.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/docs/intellij/psi.html

FTfJP ’21, July 13, 2021, Virtual, Denmark Steven Monteiro, Erikas Sokolovas, Ellen Wittingen, Tom van Dijk, and Marieke Huisman

[10] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. 2013. JML Reference Manual. https:
//www.cs.ucf.edu/~leavens/JML/refman/jmlrefman.pdf

[11] D. D. McCracken and E. D. Reilly. 2003. Backus-Naur Form (BNF). John Wiley
and Sons Ltd., GBR, 129–131.

[12] Oracle Corporation. 2021. Oracle Java SE Support Roadmap. https://www.oracle.
com/java/technologies/java-se-support-roadmap.html

[13] T. Parr. 2013. The Definitive ANTLR 4 Reference. The Pragmatic Programmers,
LLC.

[14] Stack Overflow. 2019. Stack Overflow Developer Survey 2019. https://insights.
stackoverflow.com/survey/2019

[15] The KeY Project. 2018. Program Verification. https://www.key-project.org/
applications/program-verification/ Accessed at 23th April 2021.

[16] B. Vermeer. 2021. IntelliJ IDEA dominates the IDE market with 62% adoption
among JVM developers. https://snyk.io/blog/intellij-idea-dominates-the-ide-
market-with-62-adoption-among-jvm-developers/

42

https://www.cs.ucf.edu/~leavens/JML/refman/jmlrefman.pdf
https://www.cs.ucf.edu/~leavens/JML/refman/jmlrefman.pdf
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.key-project.org/applications/program-verification/
https://www.key-project.org/applications/program-verification/
https://snyk.io/blog/intellij-idea-dominates-the-ide-market-with-62-adoption-among-jvm-developers/
https://snyk.io/blog/intellij-idea-dominates-the-ide-market-with-62-adoption-among-jvm-developers/

	Abstract
	1 Introduction
	2 Related work
	3 IntelliJ Platform Features
	4 Architecture
	5 Maintainability
	6 Future work
	7 Conclusion
	Acknowledgments
	References

