
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
  Evaluated *

 T
A

C
A

S
 *

 A
rtifact  *  A

E
C

Multi-Core On-The-Fly Saturation

Tom van Dijk1,2∗, Jeroen Meijer1†, and Jaco van de Pol3,1

1 Formal Methods and Tools, University of Twente, the Netherlands
t.vandijk@utwente.nl

2 Formal Models and Verification, Johannes Kepler University, Austria
3 Department of Computer Science, University of Aarhus, Denmark

Abstract. Saturation is an efficient exploration order for computing the
set of reachable states symbolically. Attempts to parallelize saturation
have so far resulted in limited speedup. We demonstrate for the first time
that on-the-fly symbolic saturation can be successfully parallelized at a
large scale. To this end, we implemented saturation in Sylvan’s multi-core
decision diagrams used by the LTSmin model checker.
We report extensive experiments, measuring the speedup of parallel
symbolic saturation on a 48-core machine, and compare it with the
speedup of parallel symbolic BFS and chaining. We find that the parallel
scalability varies from quite modest to excellent. We also compared the
speedup of on-the-fly saturation and saturation for pre-learned transition
relations. Finally, we compared our implementation of saturation with
the existing sequential implementation based on Meddly.
The empirical evaluation uses Petri nets from the model checking contest,
but thanks to the architecture of LTSmin, parallel on-the-fly saturation
is now available to multiple specification languages.

1 Introduction

Model checking is an exhaustive algorithm to verify that a finite model of a
concurrent system satisfies certain temporal properties. The main challenge
is to handle the large state space, resulting from the combination of parallel
components. Symbolic model checking exploits regularities in the set of reachable
states, by storing this set concisely in a decision diagram. In asynchronous
systems, transitions have locality, i.e. they affect only a small part of the state
vector. This locality is exploited in the saturation strategy, which is probably the
most efficient strategy to compute the set of reachable states.

In this paper, we investigate the efficiency and speedup of a new parallel
implementation of saturation, aiming at a multi-core, shared-memory imple-
mentation. The implementation is carried out in the parallel decision diagram
framework Sylvan [16], in the language-independent model checker LTSmin [22].
We empirically evaluate the speedup of parallel saturation on Petri nets from the
Model Checking Contest [24], running the algorithm on up to 48 cores.

∗ Supported by FWF, NFN Grant S11408-N23 (RiSE)
† Supported by STW SUMBAT Grant 13859



1.1 Related Work

The saturation strategy has been developed and improved by Ciardo et al. We
refer to [13] for an extensive description of the algorithm. Saturation derives
its efficiency from firing all local transitions that apply at a certain level of the
decision diagram, before proceeding to the next higher level. An important step
in the development of the saturation algorithm allows on-the-fly generation of
the transition relations, without knowing the cardinality of the state variable
domains in advance [12]. This is essential to implement saturation in LTSmin,
which is based on the PINS interface to discover transitions on-the-fly.

Since saturation obtains its efficiency from a restrictive firing order, it seems
inherently sequential. Yet the problem of parallelising saturation has been studied
intensively. The first attempt, Saturation NOW [9], used a network of PCs. This
version could exploit the collective memory of all PCs, but due to the sequential
procedure, no speedup was achieved. By firing local transitions speculatively (but
with care to avoid memory waste), some speedup has been achieved [10]. More
relevant to our work is the parallelisation of saturation for a shared memory
architecture [20]. The authors used CILK to schedule parallel work originating
from firing multiple transitions at the same level. They reported some speedup
on a dual-core machine, at the expense of a serious memory increase. Their
method also required to precompute the transition relation. An improvement
of the parallel synchronisation mechanism was provided in [31]. They reported
a parallel speedup of 2× on 4 CPUs. Moreover, their implementation supports
learning the transition relation on-the-fly. Still, the successful parallelisation of
saturation remained widely open, as indicated by Ciardo [14]: “Parallel symbolic
state-space exploration is difficult, but what is the alternative?”

For an extensive overview of parallel decision diagrams on various hardware
architectures, see [15]. Here we mention some other approaches to parallel sym-
bolic model checking, different from saturation for reachability analysis. First,
Grumberg and her team [21] designed a parallel BDD package based on vertical
partitioning. Each worker maintains its own sub-BDD. Workers exchange BDD
nodes over the network. They reported some speedup on 32 PCs for BDD based
model checking under the BFS strategy. The Sylvan [16] multi-core decision
diagram package supports symbolic on-the-fly reachability analysis, as well as
bisimulation minimisation [17]. Oortwijn [28] experimented with a heterogeneous
distributed/multi-core architecture, by porting Sylvan’s architecture to RDMA
over MPI, running symbolic reachability on 480 cores spread over 32 PCs and
reporting speedups of BFS symbolic reachability up to 50. Finally, we mention
some applications of saturation beyond reachability, such as model checking
CTL [32] and detecting strongly connected components to detect fair cycles [33].

1.2 Contribution

Here we show that implementing saturation on top of the multi-core decision
diagram framework Sylvan [16] yields a considerable speedup in a shared-memory



setting of up to 32.5× on 48 cores with pre-learned transition relations, and
52.2× with on-the-fly transition learning.

By design decision, our implementation reuses several features provided by
Sylvan, such as: its own fine-grained, work-stealing framework Lace [18], its
implementation of both BDDs (Binary Decision Diagrams) and LDDs (a List-
implementation of Multiway Decision Diagrams), its concurrent unique table and
operations cache, and finally, its parallel operations like set union and relational
product. As a consequence, the pseudocode of the algorithm and additional code
for saturation is quite small, and orthogonal to other BDD features. To improve
orthogonality with the existing decision diagrams, we deviated from the standard
presentation of saturation [13]: we never update BDD nodes in situ, and we
eliminated the mutual recursion between saturation and the BDD operations for
relational product to fire transitions.

The implementation is available in the open-source high-performance model
checking tool LTSmin [22], with its language-agnostic interface, Partitioned
Next-State Interface (PINS) [5, 22, 25]. Here, a specification basically provides a
next-state function equipped with dependency information, from which LTSmin
can derive locality information. We fully support the flexible method of learning
the transition relation on-the-fly during saturation [12]. As a consequence, our
contribution extends the tool LTSmin with saturation for various specification
languages, like Promela, DVE, Petri nets, mCRL2, and languages supported by
the ProB model checker. See section 4 on how to use saturation in LTSmin.

The experiments with saturation in Sylvan are carried out in LTSmin as well.
We used Petri nets from the MCC competition. Our experimental design has
been carefully set up in order to facilitate fair comparisons. Besides learning
the transition relation on-the-fly, we also pre-learned them in order to measure
the overhead of learning, and eliminating its effect in comparisons. It is well
known that the variable ordering has a large effect on the BDD sizes [29]. Hence,
our experiments are based on two of the best static variable orderings known,
Sloan [26] and Force [1]. In particular, our experiments measure and compare:

– The performance of our parallel algorithm with one worker, compared to a
state-of-the art sequential implementation of saturation in Meddly [4].

– The parallel speedup of our algorithm on 16 cores, and for specific examples
up to 48 cores.

– The efficiency and speedup of saturation compared to the BFS and chaining
strategies for reachability analysis.

– The effect of choosing Binary Decision Diagrams or List Decision Diagrams.
– The effect of choosing Sloan or Force to compute static variable orders.

2 Preliminaries

This paper proposes an algorithm for decision diagrams to perform the fixed
point application of multiple transition relations according to the saturation
strategy, combined with on-the-fly transition learning as implemented in LTSmin.
We briefly review these concepts in the following.



2.1 Partitioned transition systems

A transition system (TS) is a tuple (S,→, s0), where S is a set of states, → ⊆
S × S is a transition relation and s0 ∈ S is the initial state. We define →∗
to be the reflexive and transitive closure of →. The set of reachable states is
R = {s ∈ S | s0→∗ s}. The goal of this work is to compute R via a novel
multi-core saturation strategy.

In this paper, we evaluate multi-core saturation using Petri nets. Figure 1
shows an example of a (safe) Petri net. We show its initial marking, which is
the initial state. A Petri net transition can fire if there is a token in each of its
source places. On firing, these tokens are consumed and tokens in each target
place are generated. For example, t1 will produce one token in both p2 and p5, if
there is a token in p4. Transition t6 requires a token in both p3 and p1 to fire.
The markings of this Petri net form the states of the corresponding TS, so here
|S| = 25 = 32. From the initial marking shown, four more markings are reachable,
connected by 10 enabled transition firings. This means |R| = 5, and |→| = 10.

Notice that transitions in Petri nets are quite local; transitions consume from,
and produce into relatively few places. The firing of a Petri net transition is
called an event and the number of involved places is known as the degree of
event locality. This notion is easily defined for other asynchronous specification
languages and can be computed by a simple control flow graph analysis.

To exploit event locality, saturation requires a disjunctive partitioning of the
transition relation →, giving rise to a Partitioned Transition System (PTS). In
a PTS, states are vectors of length N , and → is partitioned as a union of M
transition groups. A natural way to partition a Petri net is by viewing each
transition as a transition group. For Figure 1 this means we have N = 5 and
M = 6. After disjunctive partitioning, each transition group depends on very few
entries of the state vector. This allows for efficiently computing the reachable
state space for the large class of asynchronous specification languages. LTSmin
supports commonly used specification languages, like DVE, mCRL2, Promela,
PNML for Petri nets, and languages supported by ProB.

p4

p2 p5

p3 p1

t1

t3t2 t4 t5

t6

Fig. 1: Example Petri net



0 1 3 5 6

0 2 4 0 1

True

(a) LDD as array

x1 : 0 1 3 5 6

x2 : 0 2 4 0 1

0

0 0

1 1 1 1 1

(b) Same LDD, internal linked-list representation

,

Fig. 2: LDD for {〈0, 0〉,〈0, 2〉,〈0, 4〉,〈1, 0〉,〈1, 2〉,〈1, 4〉,〈3, 2〉,〈3, 4〉,〈5, 0〉,〈5, 1〉,〈6, 1〉}.

2.2 Decision diagrams

Binary decision diagrams (BDDs) are a concise and canonical representation of
Boolean functions BN → B [7]. A BDD is a rooted directed acyclic graph with
leaves 0 and 1. Each internal node v has a variable label xi, denoted by var(v),
and two outgoing edges labeled 0 and 1, denoted by low(v) and high(v). The
efficiency of reduced, ordered BDDs is achieved by minimizing the structure with
some invariants: The BDD may neither contain equivalent nodes, with the same
var(v), low(v) and high(v), nor redundant nodes, with low(v) = high(v). Also,
the variables must occur according to a fixed ordering along each path.

Multi-valued or multiway decision diagrams (MDDs) generalize BDDs to
finite domains (NN → B). Each internal MDD node with variable xi now has ni
outgoing edges, labeled 0 to ni − 1. We use quasi-reduced MDDs with sparse
nodes. In the sparse representation, values with edges to leaf 0 are skipped from
MDD nodes, so outgoing edges must be explicitly labeled with remaining domain
values. Contrary to BDDs, MDDs are usually “quasi-reduced”, meaning that
variables are never skipped. In that case, the variable xi can be derived from the
depth of the MDD, so it is not stored.

A variation of MDDs are list decision diagrams (LDDs) [5, 16], where sparse
MDD nodes are represented as a linked list. See Figure 2 for two visual represen-
tations of the same LDD. Each LDD node contains a value, a “down” edge for
the corresponding child, and a “right” edge pointing to the next element in the
list. Each list ends with the leaf 0 and each path from the root downwards ends
with the leaf 1. The values in an LDD are strictly ordered, i.e., the values must
increase to the “right”.

LDD nodes have the advantage that common suffixes can be shared: The
MDD for Figure 2a requires two more nodes, one for [2, 4] and one for [1], because
edges can only point to an entire MDD node. LDDs suffer from an increased
memory footprint and inferior memory locality, but their memory management
is simpler, since each LDD node has a fixed small size.





p1 p2 p3 p4 p5

t1 0 1 0 1 1
t2 0 1 1 0 0
t3 0 1 1 0 0
t4 1 0 0 0 1
t5 1 0 0 0 1
t6 1 0 1 1 0


(a) Natural order



p2 p3 p4 p5 p1

t2 1 1 0 0 0
t3 1 1 0 0 0
t1 1 0 1 1 0
t6 0 1 1 0 1
t4 0 0 0 1 1
t5 0 0 0 1 1


(b) Optimized order

Fig. 3: Dependency matrices of Figure 1.

2.3 Variable orders and event locality

Good variable orders are crucial for efficient operations on decision diagrams.
The syntactic variable order from the specification is often inadequate for the
saturation algorithm to perform well. Hence, finding a good variable order is
necessary. Variable reordering algorithms use heuristics based on event locality.
The locality of events can be illustrated with dependency matrices. The size of
those matrices is M ×N , where M is the number of transition groups, and N
is the length of the state vector. The order of columns in dependency matrices
determines the order of variables in the DD. Figure 3a shows the natural order
on places in Figure 1. A measure of event locality is called event span [29]. Lower
event span is correlated to a lower number of nodes in decision diagrams. This
can be seen in LDDs in Figures 4a and 4b that are ordered according to columns
in Figures 3a and 3b respectively.

p1

p2

p3

p4

p5

0 1

0 1 0 1

0 1 0 1 0

1 0

01

True

0

(a) Natural order

p2

p3

p4

p5

p1

0 1

0 1 0

1 0

0 0 1

0

True

1

(b) Optimized order

Fig. 4: Reachable states as LDDs with different orders on places



Event span is defined as the sum over all rows of the distance from the leftmost
non-zero column to the rightmost non-zero column. The event span of Figure 3a
is 22 (= 4 + 2 + 2 + 5 + 5 + 4); the event span of Figure 3b is 16, which is better.
Optimizing the event span and thus variable order of DDs is NP-complete [6], yet
there are heuristic approaches that run in subquadratic time and provide good
enough orders. Commonly used algorithms are Noack [27], Force [1] and Sloan
[30]. Noack creates a permutation of variables by iteratively minimizing some
objective function. The Force algorithm acts as if there are springs in between
nonzeros in the dependency matrix, and tries to minimize the average tension
among them. Sloan tries to minimize the profile of matrices. In short, profile
is the symmetric counterpart to event span. For a more detailed overview of
these algorithms see [3]. In our empirical evaluation we use both Sloan and Force,
because these have been shown to give the best results [2, 26].

2.4 The Saturation strategy

The saturation strategy for reachability analysis, i.e., the transitive closure of
transition relations applied to some set of states, was first proposed by Ciardo
et al. See for an overview [11, 13]. Saturation was combined with on-the-fly
transition learning in [12]. Besides reachability, saturation has also been applied
to CTL model checking [32] and in checking fairness constraints with strongly
connected components [33].

Saturation is well-studied. The core idea is to always fire enabled transitions
at the lower levels in the decision diagram, before proceeding to the next level.
This tends to keep the intermediate BDD sizes much smaller than for instance the
breadth-first exploration strategy. This is in particular the case for asynchronous
systems, where transitions exhibit locality. There is also a major influence from
the variable reordering: if the variables involved in a transition are grouped
together, then this transition only affects adjacent levels in the decision diagram.

We refer to [13] for a precise description of saturation. Our implementation
deviates from the standard presentation in three ways. First, we implemented
saturation for LDDs and BDDs, instead of MDDs. Next, we never update nodes
in the LDD forest in situ; instead, we always create new nodes. Finally, the
standard representation has a mutual recursion between saturation and firing
transitions. Instead, we fire transition using the existing function for relational
product, which is called from our saturation algorithm. As a consequence, the
extension with saturation becomes more orthogonal to the specific decision
diagram implementation. We refer to Section 3 for a detailed description of our
algorithm. We show in Section 5 that these design decisions do not introduce
computational overhead.

3 Multi-core saturation algorithm

To access the three elements of an LDD node x, Sylvan [16] provides the functions
value(x), down(x), right(x). To create or retrieve a unique LDD node using the
hash table, Sylvan provides LookupLDDNode(value, down, right).



Furthermore, Sylvan provides several operations on LDDs that we use to
implement reachability algorithms, such as union(A,B) to compute the set union
A ∪ B and minus(A,B) to compute the set difference A \ B. For transition
relations, Sylvan provides an operation relprod(S,R) to compute the successors
of S with transition relation R, and an operation relprodunion(S,R) that
computes union(S, relprod(S,R)), i.e., computing the successors and adding
them to the given set of states, in one operation. All these operations are internally
parallelized, as described in [16].

We implement multi-core saturation as in Algorithm 1. We have a transition
relation disjunctively partitioned into M relations R0 . . . RM−1. These relations
are sorted by the level (depth) of the decision diagram where they are applied,
which is the first level touched by the relation. We say that relation Ri is applied
at depth di. We identify the current next relation with a number k, 0 ≤ k ≤M ,
where k = M denotes “no next relation”. Decision diagram levels are sequentially
numbered with 0 for the root level.

The saturate algorithm is given the initial set of states S and the initial
next transition relation k = 0 and the initial decision diagram level d = 0. The
algorithm is a straightforward implementation of saturation. First we check the
easy cases where we reach either the end of an LDD list, where S = 0, or the
bottom of the decision diagram, where S = 1. If there are no more transition
relations to apply, then k = M and we can simply return S. When we arrive at
line 4, the operation is not trivial and we consult the operation cache.

global :M transition relations R0 . . . RM−1 starting at depths d0 . . . dM−1

1 def saturate(S, k, d):
2 if S = 0 ∨ S = 1 : return S
3 if k = M : return S
4 if result ← cache[(S, k, d)] : return result
5 if d = dk :
6 k′ ← next relation k < k′ < M where dk′ 6= d, or M
7 while S changes :
8 S ← saturate(S, k′, d)
9 for i ∈ [k, k′) : S ← relprodunion(S, Ri)

10 result ← S

11 else:
12 do in parallel:
13 right ← saturate(right(S), k, d)
14 down ← saturate(down(S), k, d + 1)

15 result ← LookupLDDNode(value(S), down, right)

16 cache[(S, k, d)]← result
17 return result

Algorithm 1: The multi-core saturation algorithm, which, given a set of
states S and next transition relation k and current decision diagram depth d,
exhaustively applies all transition relations Rk . . . RM−1 using the saturation
strategy.



If the result of this operation was not already in the cache, then we check
whether we have relations at the current level. Since the relations are sorted by
the level where they must be applied, we compare the current level d with the
level dk of the next relation k. If we have relations at the current level, then we
perform the fixed point computation where we first saturate S for the remaining
relations, starting at relation k′, which is the first relation that must be applied
on a deeper level than d, and then apply the relations of the current level, that
is, all Ri where k ≤ i < k′. If no relations match the current level, then we
compute in parallel the results of the suboperations for the LDD of successor
“right” and for the LDD of successor “down”. After obtaining these sub results,
we use LookupLDDNode to compute the final result for this LDD node. Finally,
we store this result in the operation cache and return it.

The do in parallel keyword is implemented with the work-stealing framework
Lace [18], which is embedded in Sylvan [16] and offers the primitives spawn and
sync to create subtasks and wait for their completion. The implementation using
spawn and sync of lines 12–14 is as follows.

12 spawn(saturate(right(S), k, d))
13 down ← saturate(down(S), k, d + 1)
14 right ← sync()

The implementation of multi-core saturation for BDDs is identical, except
that we parallelize on the “then” and “else” successors of a BDD node, instead
of on the “down” and “right” successors of an LDD node.

To add on-the-fly transition relation learning to this algorithm, we simply
modify the loop at line 9 as follows:

9 for i ∈ [k, k′) :
10 learn-transitions(S, i, d)
11 S ← relprodunion(S, Ri)

The learn-transitions function provided by LTSmin updates relation i
given a set of states S. The function first restricts S to so-called short states Si,
which is the projection of S on the state variables that are touched by relation i.
Then it calls the next-state function of the PINS interface for each new short
state and it updates Ri with the new transitions.

Updating transition relations from multiple threads is not completely trivial.
LTSmin solves this using lock-free programming with the compare-and-swap
operation. After collecting all new transitions, LTSmin computes the union with
the known transitions and uses compare-and-swap to update the global relation;
if this fails, the union is repeated with the new known transitions.

4 Contributed tools

We present several new tools and extensions to existing tools produced in this
work. The new tools support experiments and comparisons between various DD
formats. The extension to Sylvan and LTSmin provides end-users with multi-core
saturation for reachability analysis.



4.1 Tools for experimental purposes

For the empirical evaluation, we need to isolate the reachability analysis of a
given LDD (or BDD or MDD). To that end, we implemented three small tools
that only compute the set of reachable states, namely lddmc for LDDs, bddmc

for BDDs and medmc for MDDs using the library Meddly. These tools are given
an input file representing the model, compute the set of reachable states, and
report the number of states and the required time to compute all reachable states.
Additionally we provide the tools ldd2bdd and ldd2meddly that convert an
LDD file to a BDD file and to an MDD file. The LDD input files are generated
using LTSmin (see below). These tools can all be found online4.

4.2 Tools for on-the-fly multi-core saturation

On-the-fly multi-core saturation is implemented in the LTSmin toolset, which can
be found online5. The examples in this section are also online6. On-the-fly multi-
core saturation for Petri nets is available in LTSmin’s tool pnml2lts-sym. This
tool computes all reachable markings with parallel saturation. The command line
to run it on Figure 1 is pnml2lts-sym pnml/example.pnml --saturation=sat.
The tool reports: pnml2lts-sym: state space has 5 states, 16 nodes. Additionally,
it appears the final LDD has 16 nodes.

Here the syntactic variable order of the places in pnml/example.pnml is used.
To use a better variable order, the option -r is added to the command line. For
instance adding -rf runs Force, while -rbs runs Sloan’s algorithm (as implemented
in the well-known Boost library). Running pnml2lts-sym pnml/example.pnml

--saturation=sat -rf reports that the final LDD has only 12 nodes.
The naming convention of LTSmin’s binaries follows the Partitioned Next-

State Interface (PINS) architecture [5, 22, 25]. PINS forms a bridge between
several language front-ends and algorithmic back-ends. Consequently, besides
pnml2lts-sym, LTSmin also provides {pnml,dve,prom}2lts-{dist,mc,sym} and
several other combinations. These binaries generate the state space for the
languages PNML, DVE and Promela, by means of distributed explicit-state, multi-
core explicit-state and multi-core symbolic algorithms, respectively. Additionally,
LTSmin supports checking for deadlocks and invariants, and verifying LTL
properties and µ-calculus formulas. In this work we focus on state space generation
with the symbolic back-end only.

We now demonstrate multi-core saturation for Promela models. Consider the
file Promela/garp 1b2a.prm which is an implementation of the GARP proto-
col [23]. To compute the reachable state space with the proposed algorithm and
Force order, run: prom2lts-sym --saturation=sat Promela/garp 1b2a.prm -rf.
On a consumer laptop with 8 hardware threads, LTSmin reports 385,000,995,634
reachable states within 1 minute. To run the example with a single worker, run

4 https://github.com/trolando/sylvan
5 https://github.com/utwente-fmt/ltsmin
6 https://github.com/trolando/ParallelSaturationExperiments

https://github.com/trolando/sylvan
https://github.com/utwente-fmt/ltsmin
https://github.com/trolando/ParallelSaturationExperiments


prom2lts-sym –saturation=sat Promela/garp 1b2a.prm -rf --lace-workers=1.
On the same laptop, the algorithm runs in 4 minutes with 1 worker. We thus have
a speedup of 4× with 8 workers for symbolic saturation on a Promela model.

5 Empirical Evaluation

Our goal with the empirical study is five-fold. First, we compare our parallel
implementation with only 1 core to the purely sequential implementation of the
MDD library Meddly [4], in order to determine whether our implementation is
competitive with the state-of-the-art. Second, we study parallel scalability up
to 16 cores for all models and up to 48 cores with a small selection of models.
Third, we compare parallel saturation with LDDs to parallel saturation with
ordinary BDDs, to see if we get similar results with BDDs. Fourth, we compare
parallel saturation without on-the-fly transition learning to on-the-fly parallel
saturation, to see the effects of on-the-fly transition learning on the performance
of the algorithm. Fifth, we compare parallel saturation with other reachability
strategies, namely chaining and BFS, to confirm whether saturation is indeed a
better strategy than chaining and BFS.

To perform this evaluation, we use the P/T Petri net benchmarks obtained
from the Model Checking Contest 2016 [24]. These are 491 models in total, stored
in PNML files. We use parallel on-the-fly saturation (in LTSmin) with a generous
timeout of 1 hour to obtain LDD files of the models, using the Force variable
ordering and using the Sloan variable ordering. In total, 413 of potentially 982
LDD files were generated. These LDD files simply store the list decision diagrams
of the initial states and of all transition relations. We convert the LDD files to
BDD files (binary decision diagrams) with an optimal number of binary variables.
We also convert the LDD files to MDD files for the experiments using Meddly.
This ensures that all solvers have the same input model with the same variable
order.

See Table 1 for the list of solving methods. As described in Sec. 4, we imple-
ment the tools lddmc, bddmc and medmc to isolate reachability computation for the
purposes of this comparison, using respectively the LDDs and BDDs of Sylvan and
the MDDs of Meddly. The on-the-fly parallel saturation using LDDs is performed

Method Tool Description Input Parallel OTF

otf-ldd-sat pnml2lts-sym saturation PNML X X
ldd-sat lddmc saturation LDD X
ldd-chaining lddmc chaining LDD X
ldd-bfs lddmc BFS LDD X
bdd-sat bddmc saturation BDD X
mdd-sat medmc saturation in Meddly MDD

Table 1: The six solving methods that we use in the empirical evaluation. Five
methods are parallelized and one method is on-the-fly.



Method Number of solved models with # workers
1 2 4 8 16 Any

otf-ldd-sat 387 397 399 404 407 408
ldd-sat 388 393 399 402 402 404
ldd-chaining 351 354 360 367 371 371
ldd-bfs 325 331 347 360 362 362
bdd-sat 395 396 401 402 403 405
mdd-sat 375 – – – – 375

Table 2: Number of benchmarks (out of 413) solved within 20 minutes with each
method with the given number of workers.

with the pnml2lts-sym tool of LTSmin. We use the command line pnml2lts-sym
ORDER --lace-workers=WORKERS --saturation=sat FILE, where ORDER is -rf
for Force and -rbs for Sloan and WORKERS is a number from the set {1, 2, 4, 8, 16}.

All experimental scripts, input files and log files are available online6. The
experiments are performed on a cluster of Dell PowerEdge M610 servers with
two Xeon E5520 processors and 24 GB internal memory each. The tools are
compiled with gcc 5.4.0 on Ubuntu 16.04. The experiments for up to 48 cores are
performed on a single computer with 4 AMD Opteron 6168 processors with 12
cores each and 128 GB internal memory.

When reporting on parallel executions, we use the number of workers for how
many hardware threads (cores) were used.

Overview After running all experiments, we obtain the results for 413 models
in total, of which 196 models with the Force variable ordering and 217 models
with the Sloan variable ordering. In the remainder of this section, we study these
413 benchmarks. See Table 2, which shows the number of models for which each
method could compute the set of reachable states within 20 minutes.

To correctly compare all runtimes, we restrict the set of models to those where
all methods finish within 20 minutes with any number of workers. We retain in
total 301 models where no solver hit the timeout. See Table 3 for the cumulative
times for each method and number of workers and the parallel speedup. Notice
that this is the speedup for the entire set of 301 models and not for individual
models.

Comparing LDD saturation with Meddly’s saturation We evaluate how ldd-sat
with just 1 worker compares to the sequential saturation of Meddly. The goal is
not to directly measure whether there is a parallel overhead from using parallelism
in Sylvan, as the algorithm in lddmc is fundamentally different because it uses
LDDs instead of MDDs and the algorithm does not in-place saturate nodes,
as also explained in Sec. 3. The low parallel overheads of Sylvan are already
demonstrated elsewhere [15, 16, 18]. Rather, the goal is to see how our version of
saturation compares to the state-of-the-art.



Method Order Total time (sec) with # workers Total speedup
1 2 4 8 16 2 4 8 16

otf-ldd-sat Sloan 1850 1546 698 398 313 1.2 2.7 4.6 5.9
ldd-sat Sloan 932 609 311 194 151 1.5 3.0 4.8 6.2
ldd-chaining Sloan 4156 3019 1916 1121 863 1.4 2.2 3.7 4.8
ldd-bfs Sloan 9030 5585 2990 1652 1219 1.6 3.0 5.5 7.4
bdd-sat Sloan 708 419 212 139 115 1.7 3.3 5.1 6.1
mdd-sat Sloan 572 – – – – – – – –

otf-ldd-sat Force 2704 1162 712 401 343 2.3 3.8 6.8 7.9
ldd-sat Force 856 602 348 216 180 1.4 2.5 4.0 4.7
ldd-chaining Force 3149 2560 1835 1160 1024 1.2 1.7 2.7 3.1
ldd-bfs Force 4696 2951 1556 859 633 1.6 3.0 5.5 7.4
bdd-sat Force 1041 733 384 253 206 1.4 2.7 4.1 5.1
mdd-sat Force 1738 – – – – – – – –

Table 3: Cumulative time and parallel speedups for each method-#workers
combination on the models where all methods solved the model in time. These
are 301 models in total: 151 models with Force, 150 models with Sloan.

Table 2 shows that Meddly’s implementation (mdd-sat) and our implementa-
tion (ldd-sat 1) are quite similar in the number of solved models. Meddly solves
375 benchmarks and our implementation solves 388 within 20 minutes.

See Table 3 for a comparison of runtimes. Meddly solves the 150 models with
Sloan almost 2× as fast as our implementation in Sylvan, but is slower than our
implementation for the 151 models with Force. We observe for individual models
that the difference between the two solvers is within an order of magnitude for
most models, although there are some exceptions. Our implementation quickly
overtakes Meddly with additional workers.

Parallel Scalability As shown in Table 3, using 16 workers, we obtain a modest
parallel speedup for saturation of 6.2× (with Sloan) and 4.7× (with Force). On
individual models, the differences are large. The average speedup of the individual
benchmarks is only 1.8× with 16 workers, but there are many slowdowns for
models that take less than a second with 1 worker. We take an arbitrary selection
of models with a high parallel speedup and run these on a dedicated 48-core
machine. Table 4 shows that even up to 48 cores, parallel speedup keeps improving.
We even see a speedup of 52.2×. For this superlinear speedup we have two possible
explanations. One is that there is some nondeterminism inherent in any parallel
computation; another is already noted in [20] and is related to the “chaining” in
saturation, see further [20].

Comparing LDD saturation with BDD saturation As Table 3 shows, the ldd-sat
and bdd-sat method have a similar performance and similar parallel speedups.



Model (with ldd-sat) Order Time (sec) Speedup
1 24 48 24 48

Dekker-PT-015 Sloan 77.3 4.7 2.4 16.3 32.5
PhilosophersDyn-PT-10 Force 273.8 16.8 12.4 16.3 22.1
Angiogenesis-PT-10 Sloan 333.2 28.5 16.5 11.7 20.2
SwimmingPool-PT-02 Force 25.0 2.1 1.4 11.6 17.8
BridgeAndVehicles-PT-V20P10N20 Force 1035.8 101.8 60.7 10.2 17.1

Model (with otf-ldd-sat)

Dekker-PT-015 Sloan 174.5 7.4 3.3 23.6 52.2
SwimmingPool-PT-07 Sloan 1008.0 69.2 42.0 14.6 24.0
SmallOperatingSystem-PT-MT0256DC0064 Sloan 957.3 52.9 40.0 18.1 23.9
Kanban-PT-0050 Sloan 940.6 78.7 48.9 11.9 19.2
TCPcondis-PT-10 Force 68.4 5.7 3.8 11.9 17.8

Table 4: Parallel speedup for a selection of benchmarks on the 48-core machine
(only top 5 shown)

On-the-fly LDD saturation Comparing the performance of offline saturation with
on-the-fly saturation, we observe the same scalability with the Sloan variable
order, but on-the-fly saturation requires roughly 2× as much time. With the
Force variable order, on-the-fly saturation is slower but has a higher parallel
speedup of 7.9×.

Comparing saturation, chaining and BFS We also compare the saturation al-
gorithm with other popular strategies to compute the set of reachable states,
namely standard (parallelized) BFS and chaining, given in Figure 5. As Table 2
and Table 3 show, chaining is significantly faster than BFS and saturation is
again significantly faster than chaining. In terms of parallel scalability, we see that
parallelized BFS scales better than the others, because it can already parallelize
in the main loop by computing successors for all relations in parallel, which
chaining and saturation cannot do. For the entire set of benchmarks, saturation
is the superior method, however there are individual differences and for some
models, saturation is not the fastest method.

6 Conclusion

We presented a multi-core implementation of saturation for the efficient com-
putation of the set of reachable states. Based on Sylvan’s multi-core decision
diagram framework, the design of the saturation algorithm is mostly orthogonal
to the type of decision diagram. We showed the implementation for BDDs and
LDDs; the translation relation can be learned on-the-fly. The functionality is
accessible through the LTSmin high-performance model checker. This makes
parallel saturation available for a whole collection of asynchronous specification



global :N transition relations R0 . . . RM−1

1 def bfs(S):
2 U ← S
3 while U 6= ∅ :
4 U ← par-next(U , 0, M)

5 U ← minus(U , S)
6 S ← union(U , S)

7 return S

8 def par-next(S, i, k):
9 if k = 1 : return relprod(S, Ri)

10 do in parallel:
11 left ← par-next(S, i, k/2)
12 right ← par-next(S, i + k/2, k − k/2)

13 return union(left, right)

1 def chaining(S):
2 U ← S
3 while U 6= ∅ :
4 for i ∈ [0,M) :
5 U ← relprodunion(U , Ri)

6 U ← minus(U , S)
7 S ← union(U , S)

8 return S

Fig. 5: Algorithms bfs and chaining implement the Parallel BFS and Chaining
strategies for reachability.

languages. We demonstrated multi-core saturation for Promela and for Petri nets
in PNML representation.

We carried out extensive experiments on a benchmark of Petri nets from the
Model Checking Contest. The total speedup of on-the-fly saturation is 5.9× on 16
cores with the Sloan variable ordering and 7.9× with the Force variable ordering.
However, there are many small models (computed in less than a second) in this
benchmark. For some larger models we showed an impressive 52× speedup on a
48-core machine. From our measurements, we further conclude that the efficiency
and parallel speedup for the BDD variant is just as good as the speedup for
LDDs. We compared efficiency and speedup of saturation versus other popular
exploration strategies, BFS and chaining. As expected, saturation is significantly
faster than chaining, which is faster than BFS; this trend is maintained in the
parallel setting. Our measurements show that the variable ordering (Sloan versus
Force), and the model representation (pre-computed transition relations versus
learned on-the-fly) do have an impact on efficiency and speedup. Parallel speedup
should not come at the price of reduced efficiency. To this end, we compared our
parallel saturation algorithm for one worker to saturation in Meddly. Meddly
solves fewer models within the timeout, but is slightly faster in other cases, but
parallel saturation quickly overtakes Meddly with multiple workers.

Future work could include the study of parallel saturation on exciting new
BDD types, like tagged BDDs and chained BDDs [8, 19]. The results on tagged
BDDs showed a significant speedup compared to ordinary BDDs on experiments
in LTSmin with the BEEM benchmark database. Another direction would be to
investigate the efficiency and speedup of parallel saturation in other applications,
like CTL model checking, SCC decomposition, and bisimulation reduction.



Bibliography

[1] Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-
implement variable-ordering heuristic. In: VLSI 2003. pp. 116–119. ACM
(2003)

[2] Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering
of decision diagrams for systems with structural units. In: ATVA. Lecture
Notes in Computer Science, vol. 10482, pp. 184–200. Springer (2017)

[3] Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.S.: Decision
diagrams for Petri nets: Which variable ordering? In: PNSE @ Petri Nets.
CEUR Workshop Proceedings, vol. 1846, pp. 31–50. CEUR-WS.org (2017)

[4] Babar, J., Miner, A.S.: Meddly: Multi-terminal and edge-valued decision
diagram library. In: QEST. pp. 195–196. IEEE Computer Society (2010)

[5] Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and Symbolic
Reachability. In: CAV. LNCS, vol. 6174, pp. 354–359. Springer (2010)

[6] Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. Computers 45(9), 993–1002 (1996)

[7] Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Computers C-35(8), 677–691 (8 1986)

[8] Bryant, R.E.: Chain reduction for binary and zero-suppressed decision
diagrams. In: TACAS (1). Lecture Notes in Computer Science, vol. 10805,
pp. 81–98. Springer (2018)

[9] Chung, M., Ciardo, G.: Saturation NOW. In: QEST. pp. 272–281. IEEE
Computer Society (2004)

[10] Chung, M., Ciardo, G.: Speculative image computation for distributed
symbolic reachability analysis. J. Log. Comput. 21(1), 63–83 (2011)

[11] Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration
strategy for symbolic state-space generation. In: TACAS. Lecture Notes in
Computer Science, vol. 2031, pp. 328–342. Springer (2001)

[12] Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: Saturation unbound. In:
TACAS. Lecture Notes in Computer Science, vol. 2619, pp. 379–393. Springer
(2003)

[13] Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm
for symbolic state-space exploration. STTT 8(1), 4–25 (2006)

[14] Ciardo, G., Zhao, Y., Jin, X.: Parallel symbolic state-space exploration is
difficult, but what is the alternative? In: PDMC. EPTCS, vol. 14, pp. 1–17
(2009)

[15] van Dijk, T.: Sylvan: Multi-core Decision Diagrams. Ph.D. thesis, University
of Twente (July 2016)

[16] van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision
diagrams. STTT 19(6), 675–696 (2017)

[17] van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation.
STTT 20(2), 157–177 (2018)



[18] van Dijk, T., van de Pol, J.C.: Lace: Non-blocking split deque for work-
stealing. In: Euro-Par 2014: Parallel Processing Workshops Part II. pp.
206–217 (2014)

[19] van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction
rules from different decision diagram types. In: FMCAD. pp. 108–115. IEEE
(2017)

[20] Ezekiel, J., Lüttgen, G., Ciardo, G.: Parallelising symbolic state-space gener-
ators. In: CAV. Lecture Notes in Computer Science, vol. 4590, pp. 268–280.
Springer (2007)

[21] Heyman, T., Geist, D., Grumberg, O., Schuster, A.: A scalable parallel
algorithm for reachability analysis of very large circuits. Formal Methods in
System Design 21(3), 317–338 (2002)

[22] Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk,
T.: LTSmin: High-Performance Language-Independent Model Checking. In:
TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer (2015)

[23] Konnov, I., Letichevsky, O.: Model checking GARP protocol using Spin and
VRS. In: IW on Automata, Algorithms, and Information Techn. (2010)

[24] Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez,
A., Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D.,
Rodriguez, C., Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., Wolf, K.:
Complete Results for the 2016 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2016/results.php (June 2016)

[25] Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, Write and Copy
Dependencies for Symbolic Model Checking. In: HVC. pp. 204–219 (2014)

[26] Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction for static
variable ordering in symbolic reachability analysis. In: NFM. Lecture Notes
in Computer Science, vol. 9690, pp. 255–271. Springer (2016)

[27] Noack, A.: A ZBDD package for efficient model checking of Petri nets.
Forschungsbericht, Branderburgische Technische Uinversität Cottbus (1999)

[28] Oortwijn, W., van Dijk, T., van de Pol, J.: Distributed binary decision
diagrams for symbolic reachability. In: 24th ACM SIGSOFT Intl. SPIN
Symposium on Model Checking of Software. pp. 21–30 (2017)

[29] Siminiceanu, R., Ciardo, G.: New metrics for static variable ordering in
decision diagrams. In: TACAS. Lecture Notes in Computer Science, vol.
3920, pp. 90–104. Springer (2006)

[30] Sloan, S.W.: A FORTRAN program for profile and wavefront reduction.
International Journal for Numerical Methods in Engineering 28(11), 2651–
2679 (1989)

[31] Vörös, A., Szabó, T., Jámbor, A., Darvas, D., Horváth, Á., Bartha, T.:
Parallel saturation based model checking. In: ISPDC. pp. 94–101. IEEE
Computer Society (2011)

[32] Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems
using constrained saturation. In: ATVA. LNCS, vol. 5799, pp. 368–381.
Springer (2009)

[33] Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected compo-
nents and fair cycles using saturation. ISSE 7(2), 141–150 (2011)


	Multi-Core On-The-Fly Saturation

