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Overview

• Two papers...
• Fixed-point algorithms for solving parity games
• An exponential counterexample to attractor-based solvers

• One talk...
• Goal: understanding parity game algorithms
• Tangles in parity game algorithms
• Distractions in parity game algorithms
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Overview

Fixed-point algorithms for solving parity games
• State of the art:

• (BFL) Via µ-calculus translation of Zielonka’s recursive algorithm
• Encoding to µ-calculus: Walukiewicz, 1996
• As parity game solver: Bruse, Falk, Lange, 2014

Has complicated method to compute winning strategies!
• (APT) Via weak alternating automata

• Encoding to weak alternating automata: Kupfermann, Vardi, 1998
• As parity game solver: Di Stasio, Murano, Perelli, Vardi, 2016

Does not give winning strategies!
• Contributions

• We show that BFL and APT are equivalent
• We propose a novel interpretation based on distractions
• We find easy strategy derivation
• Simple to implement and fastest for model-checking parity games
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Overview

A Parity Game Tale of Two Counters
• Context

• Broad goal: develop polynomial parity games solution
• Using concepts like tangles, distractions
• Many types of algorithms that deal with distractions differently
• If not polynomial, deepen understanding with strong counterexamples

• Contributions
• Parameterized parity game family for:

• Recursive algorithm (Zielonka)
• Priority promotion & variations
• Tangle learning

All attractor-based algorithms that recognize a distraction by finding that
the opponent can attract the distraction

• Based on two interleaved binary counters of N bits
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Parity Games

• Context of parity games: formal verification of systems
• Verify if a system implements the specification
• Synthesize a controller that follows the specification

• Verification and synthesis as a game
• player 0 wants to prove (or synthesize)
• player 1 wants to refute
• players make choices (player 0: ∃,∨, , player 1: ∀,∧, )

• Interesting systems often “run forever” (reactive systems)
• when a car arrives, eventually the traffic light turns green
• the reset button always works
• “X is true until Y is true”
• “X never happens before Y”

Hence: properties about infinite runs of finite-state systems
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Parity Games

Why do we want to solve parity games?

• Expressive power of nested least and greatest fixpoint operators
• Linear equivalence with modal µ-calculus model-checking

(CTL, LTL, CTL*, ...)
• Backend for LTL model checking and LTL synthesis

Important industrial applications (PSL, SVA)

Open question: Is solving parity games in P?
• It is in NP ∩ co-NP and in UP ∩ co-UP
• Hot topic! Recently new quasi-polynomial algorithms and even

quasi-polynomial lower bounds for many algorithms!
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Parity Games

(Incomplete list of) algorithms
McNaughton/Zielonka O(e ·nd), O(2n) 1998
Small Progress Measures O(d ·e · (n/d)d/2) 1998
Strategy Improvement O(n ·e ·2e) 2000
Dominion Decomposition O(n

√
n) 2006

Big Step O(e ·nd/3) 2007
Fixed Point: APT, BFL, DFI O(nd) 2014 – 2019
Priority Promotion Ω(2

√
n) 2016

Quasi-Polynomial (several) O(n6+logd) 2016 – 2018
Tangle Learning Ω(2

√
n) 2018

Recursive Tangle Learning Ω(2
√

n) ongoing
Progressive Tangle Learning Ω(2

√
n) (!) ongoing
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Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d}
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even
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Parity Games

Basic facts of parity games

• Partition into W (won by Even) and W (won by Odd)
• The winner α has a positional strategy σα : Vα→ V

• All plays consistent in Wα with σα are won by α
That is: player α wins all cycles in Wα[σα]

Solving a parity game

• Compute the winning regions W and W

• Compute the winning strategies σ and σ
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Parity Games

Attractor computation

• “Reachability but in a game”
• Compute all vertices from which player α ∈ { , } can ensure arrival in

a given target set
• Start with the target set Z, then iteratively add:

• all vertices of α that can play to Z
• all vertices of α that can only play to Z
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Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Initial set: {a}
Can attract: d but not b
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Example of attractor computation

Computing the -attractor to a

a

b c

d e
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Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Current set: {a,b,d}
Can attract: neither c nor e
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Parity Game Algorithms

Roughly two types

• Attractor-based
Based on properties of sets of vertices computed with attractors.
• McNaughton/Zielonka’s recursive algorithm
• Priority promotion
• Tangle learning

• Local value improvement
Based on locally improving/updating the value of individual vertices by
looking at their successors.
• Monotonic values:

• small progress measures
• succinct progress measures (quasi-polynomial)
• ordered progress measures (quasi-polynomial)

• Semi/non-monotonic values:
• strategy iteration and many variations
• nested fixed points iteration
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Parity Game Algorithms

Attractor-based algorithms

• Partition the game into regions using attractors.
• Start with the highest priority (top-down).
• Each region is tentatively won by one player.

• All plays that stay in the region are won by that player, and the
opponent must leave the region either to a higher region of the same
player, or via the “top” vertex of the region.

• Refine winning regions until dominion found.
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Parity Game Algorithms

Zielonka’s recursive algorithm (1998)
Attract, in a strict order, from higher regions to lower opponent regions.
After each change, recompute lower regions of the loser.

Priority promotion (2016)
Merge regions upwards when the region is closed (in the subgame).
Attract to the merged region, then recompute lower regions.

Tangle learning (2018)
The attractor now also attracts using tangles.
Every iteration of tangle learning finds new tangles that refine the partition.
Standard implementation: every closed region contains new tangles.
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Parity Game Algorithms

Local value improvement

• Every vertex has some value (from the perspective of one player)
• Intuition: how good is the best game we currently know from there
• Important feature: value increases/decreases along paths backwards
• Locally improve each vertex based on the successors.
• Intuition: playing the game backwards
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Parity Game Algorithms

Strategy iteration (2000)
Players take turns improving their strategy until a fixed point. One player
maximally improves the strategy. Then the other player improves once,
ensuring monotonic progress after each time the first player maximally
improves their strategy.

Progress measures (1998, 2016, 2017)
Players play the game backwards w.r.t. how good the optimal game so far is
for one of the players. The difference between the progress measures
variations is in how they measure value.
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Tangles

Definition
A tangle is
• a pair T = (U,σ) where

• U ⊆ V is a nonempty set of vertices
• σ : Uα→ U is a strategy for player α := pr(U) mod 2

such that
• the induced subgame ⅁[U,σ] is strongly connected
• player α wins all cycles in the induced subgame ⅁[U,σ]
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Tangles

Tangle
A tangle is a strongly connected subgame for which one player has a
strategy to win all cycles in the subgame.

5

b

6

a

1

d

3

e

2

c

A 5-dominion with a 5-tangle and a 3-tangle
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Tangles

Tangle
A tangle is a strongly connected subgame for which one player has a
strategy to win all cycles in the subgame.

Properties

• Player α must escape (or lose inside the tangle)
• Player α can reach all vertices of the tangle

(and can thus choose which escape to take)
• Can view a tangle as “you must choose one of the escapes”
• Tangles can be nested (subtangles when player α can avoid vertices)

Tangles vs dominions (winning regions)

• A closed tangle (no escapes) is a dominion
• Every dominion decomposes into a hierarchy of tangles
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Tangles

Role of tangles
• Tangles affect every algorithm

1 The opponent avoids some high value region
2 Then discovers that the low value region is terrible
3 Must choose one of the escapes
4 Chooses the lowest (least bad) escape

• Every algorithm MUST reason about how the winner forces the loser to
play to certain high value vertices, or, how the loser has no choice but
to play to certain high value vertices: tangles!
• Recursive algorithm: the lower regions won by the opponent
• Priority promotion: the closed regions contain tangles
• Strategy iteration: “best response” stays in tangles
• Progress measures: slowly increase value until an escape is taken

Often algorithms explore the same tangle many times!
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Distractions

0

a

4

b

1

c

5

d

• The entire game is won by player Even.
Determine the winning strategy?!
• A random vertex inside the winning region?

If you play from c to c you lose.
• Always play to the highest reachable even vertex?

If you play from a to b you lose.
• Vertex b is a distraction for player Even
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Distractions

0

a

2

b

1

c

3

d

0

e

4

f

1

g

3

h

• To solve the above game, you need to avoid the distractions.
• Example: tangle learning:

1 First round: tangle {c} (attracts distraction b)
2 Second round: tangle {a,e} (attracts distraction h)
3 Third round: tangle {g} (dominion)
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Distractions

Intuition
A distraction for α is a “high value vertex” v with an α-priority that player
α can win if player α always tries to visit it. Some distractions are actually
won by player α as long as some distracted vertices avoid the distraction.

Definition
A distraction for player α is a vertex v with an α-priority p, such that if
player α always plays to reach v along paths of priorities ≤ p, then player α
wins v and all vertices that reach v.
(Along these paths to v, player α either must or chooses to play to v.)

Underlying structure
If vertex v is a distraction for player α, then player α can attract vertex v
(directly or via tangles) to either higher α-priority vertices, or to an
α-dominion.
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Distractions

Distraction
A distraction for player α is a vertex v with an α-priority p, such that if
player α always plays to reach v along paths of priorities ≤ p, then player α
wins v and all vertices that reach v.

Two cases
1 Player α can attract v to vertices with higher α-priorities.

Every play that infinitely often visits v, also infinitely often visits a
vertex with a higher α-priority (or stays in a losing tangle).

2 Player α can attract v to an α-dominion.
Every play that visits v reaches the α-dominion.

23 / 43



Distractions

Distraction
A distraction for α is a high value vertex v with an α-priority that player α
can win if player α always tries to visit it.

Types

• Trivial distractions
The opponent attract v to higher α-priority vertices directly
• Non-trivial distractions

The opponent attracts v to higher α-priority vertices via tangles
• Devious distractions

A distraction for α that is actually in the winning region of α

Player α must sometimes avoid v.
• Fatal distractions

Player α must always avoid v.
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Distractions

3 18 1 2 16 5 4 17

• 3 is a trivial distraction
• 17 is a non-trivial, fatal distraction
• 16 is a non-trivial, devious distraction
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Distractions

Two fundamentally different approaches
All algorithms fundamentally must deal with distracting high value vertices.

Attractor-based algorithms identify distractions when the opponent attracts.

But we can keep attractor-based algorithms distracted for a very long time.
(Two Counters game)

Progress-based algorithms and strategy iteration ignore vertices that make
no progress. Because “good’ vertices along the path to the distraction get a
higher value than the distraction. Eventually non-distractions (the “top” of
tangles) obtain a higher value than the distractions.

But progress-based algorithms cannot see that the opponent attracts the
vertex, even if the distraction is trivial.
(SPM/SI use different progressive values than quasipolynomial solvers)
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Fixed point iteration

Core idea
• We can solve µ-calculus model checking...

• with naive fixed point iteration
• with “smarter” parity game solving algorithms

• We could also solve parity games with a fixed point iteration

Methods
• (BFL) Via µ-calculus translation of Zielonka’s recursive algorithm

• Encoding to µ-calculus: Walukiewicz, 1996
• As parity game solver: Bruse, Falk, Lange, 2014

Has complicated method to compute winning strategies!
• (APT) Via weak alternating automata

• Encoding to weak alternating automata: Kupfermann, Vardi, 1998
• As parity game solver: Di Stasio, Murano, Perelli, Vardi, 2016

Does not give winning strategies!
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Fixed point iteration

Distraction Fixed-point Iteration (DFI)

• “Update whether vertices are distractions by looking 1 step ahead”
• A vertex is a distraction if:

• it has even priority and is won by Odd in 1 step
• it has odd priority and is won by Even in 1 step

• Record “distraction sets” Zp ⊆ Vp (Vp = {v | pr(v) = p})
• Initially assume no vertex is a distraction.
• Nested fixed points: monotonically update Z0, then Z1, etc.
• After adding vertices to Zp, reset all Z<p to ∅ and recompute
• In fixed point: Z contains exactly all fatal distractions

28 / 43



Fixed point iteration

Given some set of distracting vertices Z = Z0∪Z1∪·· ·∪Zd,

winner(v,Z) :=
{

pr(v) mod 2 v /∈ Z

1− (pr(v) mod 2) v ∈ Z

onestep(v,Z) :=


0 v ∈ V ∧∃u ∈ E(v) : winner(u,Z) = 0
1 v ∈ V ∧∀u ∈ E(v) : winner(u,Z) = 1
1 v ∈ V ∧∃u ∈ E(v) : winner(u,Z) = 1
0 v ∈ V ∧∀u ∈ E(v) : winner(u,Z) = 0

OnestepDistraction(Z) := {v | onestep(v,Z) ̸= pr(v) mod 2}

µZd . . .µZ1 . µZ0 . OnestepDistraction
(∨d

p=0(Vp∧Zp)
)
)
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Fixed point iteration

1 def fpi(⅁):
2 Z←∅ // start with no distractions
3 p← 0 // start with lowest priority
4 while p≤ d : // while ≤ highest priority
5 α← p mod 2 // current parity
6 Y ←{v ∈ Vp \Z | onestep(v,Z) ̸= α} // new distractions
7 if Y ̸= ∅ :
8 Z← Z ∪Y // update current fixed point Zp

9 Z← Z \{v | pr(v) < p} // reset all lower fixed points
10 p← 0 // restart with lowest priority

11 else:
12 p← p+1 // fixed point, continue higher

13 return W ,W where W ← {v | winner(v,Z) = 0}, W ← V \W

Note: algorithm does not give a strategy!
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Fixed point iteration

0

a

2

b

7

c

1

d

5

e

8

f

6

g

2

h

3

i

a? d? b? h! a? d? b? i? e? g! (reset h)
a? d? b? h! a? d? b? i? e? c! (reset h, g)
a? d? b? h! a? d? b? i? e? g! (reset h)
a? d? b? h! a? d? b? i? e? f! (reset h, g, c)
a? d? b! h! a! d? i? e? g! (reset b, h, a)
a? d? b! h! a! d? i? e? c?

Final: Z := {a,b,h,g, f}
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Proof

What is a correct solution?
We have two winning regions W and W , such that:

1 Player α must win in Wα

That is: there must exist a winning strategy σα : (Vα∩Wα)→Wα,
such that all cycles in Wα[σα] are won by α

2 Player α must not be able to leave Wα

Approach
Prove by induction that the property holds after each fixed point Zp.
Then it is true after Zd (entire game).
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Proof

Proof by induction

• Lemma is trivially true for the empty game.
• Assume it is true after computing Zp−1.

• So there exist winning strategies σ and σ for the subgame < p

• Prove for Zp by induction on each step of the fixed point computation
by constructing strategies σ and σ for the subgame ≤ p
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Proof

Lemma
After computing the fixpoint of Zp, player α ∈ { , } has a winning region
Wα ≡Won(α)≤p and a strategy σα for all v ∈ Vα∩Wα, such that
• player α never plays from Wα to Won(α)
• player α cannot play from Wα to Won(α)
• all cycles consistent with σα in Wα are won by α
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Proof
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Implementation

Implementation notes
• Idea: do not recompute whether vertices won by α in the subgame < p

are a distraction
• Vertices in Z0 · · ·Zp−1 of player α stay distractions
• Vertices not in Z0 · · ·Zp−1 of player α stay non-distractions

• “Frozen” sets F0 · · ·Fd record which vertices are frozen
• After finishing a fixed-point Zp, set Fp := ∅.
• Now obtaining the winning strategy is trivial.
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Evaluation

equivalence checking model-checking reactive synthesis

priorities 2 1–4 3–12
count 216 313 223

mean max mean max mean max
# vertices 3,288,890 40,556,396 866,289 27,876,961 921,484 31,457,288
# edges 10,121,422 167,527,601 2,904,500 80,830,465 1,693,544 59,978,691
outdegree 2.35 5.09 2.75 6.14 1.68 2.00

Table: Statistics of the three benchmark sets used for the empirical evaluation.

Dataset with preprocessing without preprocessing
fpi zlk pp tl si fpi zlk pp tl si

equivalence 401 381 389 455 6218 970 470 444 570 19568
model-checking 59 73 82 166 292 156 79 93 182 2045
synthesis 62 52 57 59 158 64 51 70 67 175

Table: Cumulative time in seconds (average of five runs) spent to solve all games in each set of benchmarks, with a
timeout of 1800 seconds. We record 1800 seconds when the computation timed out.
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Summary

• Distraction Fixed-point Iteration: compute via nested fixed-points
which vertices are distractions, then infer the winning regions
• Using frozen sets, we trivially obtain the winning strategy
• DFI, BFL, APT are equivalent (not in the slides)
• DFI is simple to implement
• Very nice benchmark results: DFI is surprisingly fast for model-checking
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Overview

A Parity Game Tale of Two Counters
• Context

• Broad goal: develop polynomial parity games solution
• Using concepts like tangles, distractions
• Many types of algorithms that deal with distractions differently
• If not polynomial, deepen understanding with strong counterexamples

• Contributions
• Parameterized parity game family for:

• Recursive algorithm (Zielonka)
• Priority promotion & variations
• Tangle learning

All attractor-based algorithms that recognize a distraction by finding that
the opponent can attract the distraction

• Based on two interleaved binary counters of N bits
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A bit in the game

iα(2)

th

a(0)

b(0)

a(1)

b(1)

z

iα(2)

iα(3)

iα(4)

iα(0) iα(0) iα(1) iα(1)

iα(1)

• iα has opponent’s (α’s) priority, rest α’s priority
• If the tangle is learned, iα is attracted to a higher α priority
• The tangle is not learned until z plays to t instead of the distractions

That is: first learn lower bits of the opponent counter
• The tangle is “disabled” when higher bits ()of opponent) are set.

That is: learning a bit resets all lower bits of the opponent counter
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Example 3-bit Game

151

8

014 2

7

1

131

6

0
0

0
012 2

5

1
1

1
1

111

4

0
0

0
0

0

0
010 2

3

1
1

1
1

1

1
1
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Summary

Reflections
• Defeats all algorithms that rely only on opponent attraction to identify

distractions.
• Until opponent attraction, the player is distracted and cannot find the

distracted tangles.

• Other method: play to the best path, not just the best endpoint
This is like progressive path values in progress measures
• “Recursive tangle learning” and “progressive tangle learning”

(unpublished) use this method to identify distractions and can even use
both methods to find distracted tangles.

BUT VULNERABLE! (to a different version of the TC game)!
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Tangles and distractions

Quasi-polynomial algorithms and distractions

• Look at “how many times α dominates beyond this vertex”
• Similar to “distance to opponent region”
• Also a path-progressive measure, but stronger

Shortcomings of the quasi-polynomial progress-based algorithms

• They are not aware of tangles (!!)
• They are short-sighted, not aware of even trivial distractions.

(they do not identify distractions based on opponent attraction)
• They seem to involve a LOT of repetition
• They solve the entire game, instead of returning a dominion.
• So there is still hope!
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