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Abstract Parity games have important practical applications in formal
verification and synthesis, especially for problems related to linear tem-
poral logic and to the modal mu-calculus. The problem is believed to admit
a solution in polynomial time, motivating researchers to find candidates
for such an algorithm and to defeat these algorithms.
We present a parameterized parity game called the Two Counters game,
which provides an exponential lower bound for a wide range of parity
game solving algorithms. We are the first to provide an exponential lower
bound to priority promotion with the delayed promotion policy, and the
first to provide such a lower bound to tangle learning.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the game
is determined by the parity of the highest priority that is encountered infinitely
often. Player Odd wins if this parity is odd; otherwise, player Even wins.

Parity games play a central role in several popular domains in theoretical
computer science. Their study has been motivated by their relation to many
problems in formal verification and synthesis that can be reduced to the problem
of solving parity games, as parity games capture the expressive power of nested
least and greatest fixpoint operators [13]. Deciding the winner of a parity game is
polynomial-time equivalent to checking non-emptiness of non-deterministic parity
tree automata [31], and to the explicit model-checking problem of the modal
µ-calculus [11,26,30]. Synthesis problems ask whether an implementation of a
system exists that satisfies the desired properties. Solving the related parity game
either results in such an implementation or in a counterexample demonstrating
how an adversary can make the property fail.

Parity games are also interesting in complexity theory, as the problem of
determining the winner of a parity game is known to lie in UP ∩ co-UP [27],
which is contained in NP ∩ co-NP [11]. This problem is therefore unlikely to be
NP-complete and it is widely believed that a polynomial solution exists.

Recent work proposes novel parity game solving algorithms based on the notion
of a tangle [8]. A tangle is a strongly connected subgraph of a parity game for
? The author is supported by FWF, NFN Grant S11408-N23 (RiSE)
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which one of the players has a strategy to win all cycles in the subgraph. Tangles
play a fundamental role in various parity game algorithms, but most algorithms
are not explicitly aware of tangles and can explore the same tangles repeatedly,
especially in the presence of nested tangles [8]. The algorithms proposed in [8]
solve parity games by explicitly computing tangles using attractor computation.

Tangles are similar to snares [12] and quasi-dominions [4], with the critical
difference that tangles are strongly connected whereas snares and quasi-dominions
may be composed of multiple tangles. Thus it is an obvious question whether
the superpolynomial counterexample of Friedmann [22] to Fearnley’s snare-based
algorithm [12] can be adapted for tangle learning. We show that this is possible.

We propose a parameterized parity game based on binary counters. The goal
is to trick the algorithms to explore the progression of the counters, only solving
the game when all bits are set. The critical ingredient to make these games
difficult for attractor-based algorithms is to use two intertwined binary counters,
one for each player, that progress together. We show empirically that these games
are difficult for a wide range of algorithms, in particular for those based on
attractor computation, such as priority promotion [4,6] and its variations [2,3],
tangle learning [8], the recursive algorithm by Zielonka [32,34], and the APT
algorithm [33]. For these, we provide the exponential lower bound of Ω(2

√
n).

Notice that we are the first to provide an exponential lower bound for the
delayed promotion policy of priority promotion and for tangle learning.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V,E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity of
the highest priority that occurs infinitely often along the play.

More formally, a parity game a is a tuple (V , V ,E, pr) where V = V ∪ V
is a set of vertices partitioned into the sets V controlled by player Even and V
controlled by player Odd, and E ⊆ V ×V is a left-total binary relation describing
all moves, i.e., every vertex has at least one successor. We also write E(u) for
all successors of u and u→ v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V ) for the highest priority
of vertices V and pr(a) for the highest priority in the game a. Furthermore, we
write pr−1(i) for all vertices with the priority i. A path π = v0v1 . . . is a sequence
of vertices consistent with E, i.e., vi → vi+1 for all successive vertices. A play
is an infinite path. We denote with inf(π) the vertices in π that occur infinitely
many times in π. Player Even wins a play π if pr(inf(π)) is even; player Odd wins
if pr(inf(π)) is odd. We write Plays(v) to denote all plays starting at vertex v.
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A strategy σ : V → V is a partial function that assigns to each vertex in its
domain a single successor in E, i.e., σ ⊆ E. We refer to a strategy of player α
to restrict the domain of σ to Vα. In the remainder, all strategies σ are of a
player α. We write Plays(v, σ) for the set of plays from v consistent with σ, and
Plays(V, σ) for {π ∈ Plays(v, σ) | v ∈ V }.

A fundamental result for parity games is that they are memoryless determ-
ined [10], i.e., each vertex is either winning for player Even or for player Odd, and
both players have a strategy for their winning vertices. Player α wins vertex v if
they have a strategy σ such that all plays in Plays(v, σ) are winning for player α.

A dominion D is a set of vertices for which player α has a strategy σ such
that all plays consistent with σ stay in D and are winning for player α. That
is, all cycles in the induced subgame of σ are won by player α. We also write a
p-dominion for a dominion where p is the highest priority encountered infinitely
often in plays consistent with σ, i.e., p := max{ pr(inf(π)) | π ∈ Plays(D,σ) }.

Several algorithms for solving parity games employ attractor computation.
Given a set of vertices A, the attractor of A for a player α represents those
vertices from which player α can ensure arrival in A. We write Attraα(A) to
attract vertices in a to A as player α, i.e.,

µZ .A ∪ { v ∈ Vα | E(v) ∩ Z 6= ∅ } ∪ { v ∈ Vα | E(v) ⊆ Z }

Informally, we compute the α-attractor of A with a backward search from A,
initially setting Z := A and iteratively adding α-vertices with a successor in Z
and α-vertices with no successors outside Z.

Attractors are often used to attract to a set A := pr−1(pr(a)) for the player
that wins priority pr(a), i.e., the highest priority vertices in a. By repeatedly
computing this attractor and removing it from the game, the game is decomposed
into regions. The recursive algorithm investigates whether lower regions attract
vertices from higher regions of the opponent. Priority promotion merges suitable
lower regions with higher regions. Tangle learning analyses suitable regions to
compute tangles which improve the decomposition.

3 Tangle Learning

Earlier work introduced tangles as substructures of parity games [8]. Tangles
are strongly connected subgraphs of a parity game for which one player has
a strategy to win all cycles in the subgraph. The losing player must therefore
escape the tangle, so we extend attractor computation to simultaneously attract
all vertices in a tangle when the losing player must escape to the attracting set.
This leads to the tangle learning algorithm, which computes new tangles along
the top-down decomposition of the game, computed using the extended attractor.
The algorithm solves parity games by finding tangles that are dominions.

Definition 1. A p-tangle is a nonempty set of vertices U ⊆ V with p = pr(U),
for which player α ≡2 p has a strategy σ : Uα → U , such that the graph (U,E′),
with E′ := E ∩

(
σ ∪ (Uα×U)

)
, is strongly connected and player α wins all cycles

in (U,E′).
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We have several basic observations related to tangles [8].

1. A p-tangle from which player α cannot leave is a p-dominion.
2. Every p-dominion contains one or more p-tangles.
3. Tangles may contain tangles of a lower priority.
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Figure 1. A 5-dominion with a 5-
tangle and a 3-tangle

We can find a hierarchy of tangles in
any dominion D with winning strategy σ
by computing the set of winning priorities
{ pr(inf(π)) | π ∈ Plays(D,σ) }. There is a
p-tangle in D for every p in this set. Tangles
are thus a natural substructure of dominions.
One can find all tangles in a dominion D by
computing { inf(π) | π ∈ Plays(D,σ) }.

See for example Figure 1. Player Odd wins
with highest priority 5 and strategy {d →
e }. Player Even can also avoid priority 5 and
then loses with priority 3. The 5-dominion
{a,b, c,d, e } contains the 5-tangle {b, c,d, e } and the 3-tangle { c, e }.

As described in [8], tangles play a central role for various parity game solving
algorithms, as they implicitly explore tangles and may explore the same tangles
repeatedly, especially when tangles are nested. This motivates algorithms that
explicitly target tangles, such as the “snare memoization” extension to strategy
improvement [12] and the “tangle attractor” approach of tangle learning [8].

Tangle learning is based on the tangle attractor. We write ET (t) for the edges
from α-vertices in the tangle t to the rest of the game: ET (t) := { v | u→ v∧u ∈
t∩Vα∧v ∈ V \ t }. We extend attractor computation to attract vertices of tangles
won by player α where the losing player must play to the attracting set, writing
TAttra,Tα (A) to attract vertices in a and vertices of tangles in the set T that are
in a to A as player α, i.e.,

µZ .A ∪ { v ∈ Vα | E(v) ∩ Z 6= ∅ } ∪ { v ∈ Vα | E(v) ⊆ Z }
∪ { v ∈ t | t ∈ T ∧ t ⊆ V ∧ pr(t) ≡2 α ∧ ET (t) ⊆ Z }

The tangle learning algorithm repeatedly decomposes the game with the
tangle attractor. By computing the bottom strongly connected components of
the regions, new tangles are obtained and added to the set of tangles. Each
iteration of this algorithm adds new tangles to this set, resulting in a different
decomposition each time. Tangles without escapes are dominions, which are then
maximized using the attractor and removed from the game.

4 Priority Promotion

Priority promotion was proposed in [4,6] and improved in [2,3]. Priority promo-
tion computes a top-down α-maximal decomposition of the game into regions
associated with a so-called measure, which is the highest priority in the region.
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These regions have the property that all plays that stay in the region are won
by player α. Regions are closed when all vertices of player α have a successor in
the region and no vertices of player α have successors in lower regions. Closed
regions can be merged with the lowest higher region to which player α can escape,
after which the decomposition of the game is refined by attracting to this merged
region and recomputing the decomposition of the lower regions. This is called
promoting, as the measure of the lower region is “promoted” to the measure of the
higher region. Notice that a closed α-region is essentially a collection of (possibly
unconnected) tangles and vertices that are attracted to these tangles.

The original priority promotion algorithm [4] resets all lower regions after
promotion by recomputing the decomposition. The decomposition of lower regions
is affected when the merged region attracts vertices from lower regions that were
not attracted before. The problem here is that the lower regions might be the
result of earlier promotions and these steps are often repeated after recomputing
the decomposition. The PP+ extension [2] only resets lower regions of player α,
since promoting regions of player α can only potentially “break” regions of player
α. The DP extension (also [2]) uses a heuristic to delay certain promotions. If
a promotion might affect a merged region, then this promotion is delayed. The
delayed promotions are instead performed on a copy of the decomposition. When
no more normal promotions can be performed, the delayed promotions of one
player are applied from this copy, where this player is the one that wins the
highest merged region in the copy. The region restoration (RR) extension [3]
further improves on PP+ by only resetting lower regions of either player if the
original attractor strategy of the player for the vertices that are still in the
original region now leaves this region to a higher region (of the opponent).

5 A Tale of Two Counters

The design of our parameterized parity game is loosely inspired upon earlier
work by Friedmann [22], which provides a superpolynomial lower bound for the
non-oblivious strategy improvement algorithm [12]. This algorithm is a variation
of strategy improvement that learns snares, which are related to tangles. However,
attractor-based algorithms require a different approach, because attractor-based
algorithms trivially solve these counterexamples.

Each bit k of our counter is a substructure of 4 + 3k many vertices that
contains 2k many tangles. A bit is set by learning one of these tangles and
attracting an “input” vertex. We use two counters, one for each player, that are
intertwined and progress together. The bits are connected to the input vertices
of other bits such that this tangle is no longer attracted when the higher bits
change, thus resetting the bit. Furthermore, if lower bits are not set, then the
tangle cannot be found because the player is distracted by a higher priority.

See Fig. 2 for bit 2 of some player α in a 5-bit counter. The highest bit is bit
0 and the lowest bit is bit 4. Vertex i is the “input” vertex and has a high priority
of player α’s parity. Vertex h is the “high” vertex and has a high priority of player
α’s parity. Vertex t is the “tangle” vertex and has a low priority of player α’s
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iα(0) iα(0) iα(1) iα(1)

iα(1)

Figure 2. Bit 2 of a 5-bit Two Counters game. We use diamonds for vertices of player
α and boxes for vertices of player α.

Player Bit t i h Edge z(b) → iα(b)?

Even bit 0 2 13 20 yes
Odd bit 0 3 12 19 no
Even bit 1 4 11 18 yes
Odd bit 1 5 10 17 no
Even bit 2 6 9 16 yes
Odd bit 2 7 8 15 no

Table 1. Instantiation of a Two Counters game with N = 3, where player Odd starts.

parity. Vertices h and i of higher bits have higher priorities, while vertices t of
higher bits have lower priorities. All other vertices have priority 0.

Vertex t is the highest priority vertex of the tangles. When the bit is set by
learning a tangle, this tangle is attracted to vertex h and attracts input i to h.
Thus, vertex i is in a region of player α if the bit is set, and in a region of player
α if the bit is not set. That is, vertex i is good for player α if the bit is set, and
for player α otherwise. Vertex h has an edge to the input of the next higher bit,
except vertex h of the highest bit has an edge to the input of the lowest bit.

To find a tangle, player α must force their opponent to play from t to z such
that they can only escape to h or to higher regions of player α. Each tangle in
the bit uses a different path from t to z, depending on the state of the higher
bits. If the two counters progress together, then either iα(0) is good for α and
iα(0) is bad for α, or vice versa. In Fig. 2, if bit 0 is set and bit 1 is unset, then
the path via a(0) and b(1) forces the opponent to stay in the tangle, whereas
they could play to their own region via b(0) and a(1). Furthermore, player α
must choose to play from z to t. When lower α-bits are not set, the iα vertices
are in a region of player α higher than t and are thus more attractive to play to.
Finally, we introduce an asymmetry, since one player starts counting first having
the lowest priority i and h vertices. We only have the edge from vertex z to the
matching vertex iα for the bits of the second player. This forces the second player
to wait until the first player sets the corresponding bit.
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Figure 3. The 3-bit Two Counters game. The unlabeled vertices have priority 0.
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See Table 1 for an example with 3 bits, and Fig. 3 for the full 3-bit Two
Counters game. Player Odd is the first to set bit 2, followed by player Even.
When all bits are set, both players have a dominion consisting of their entire
counter via the blue edges.

The number of vertices for a Two Counters game with N bits for both players
is 3N2 + 5N and the number of edges is 7N2 + 4N .

6 Empirical evaluation

To assess the runtime complexity of solving N -bit Two Counters games with
different algorithms, we solve them and obtain a relevant statistic that is indicative
of the runtime. We support the claim that Two Counters games require time
exponential in the parameter N for these solvers based on this statistic. Although
this is a weaker basis than a full complexity proof, a full complexity proof is
more difficult to produce and to understand, while the exponential behavior is
clear from the empirical data presented in this section and in Section 7.

To solve the games we use the implementation in the parity game solver
Oink [9], but we have also confirmed the results with implementations in PG-
Solver [24]. Apart from the earlier described algorithms, we consider the APT
algorithm [33], the small progress measures algorithm [28] (SPM), and we also
look at recent quasi-polynomial algorithms, namely the first idea by Calude et
al. [7] as implemented as ordered progress measures by Fearnley et al. [14] (QPT)
and the algorithm based on universal trees called succinct progress measures by
Jurdziński et al. [29] (SSPM).

We report the following statistic for each solver:
– number of tangles for (alternating) tangle learning (TL, ATL)
– number of promotions for priority promotion (PP, RR, DP, RRDP)
– number of recursive calls for Zielonka’s recursive algorithm (ZLK)
– number of iterations (lower resets) for the APT algorithm
– number of lifts for progress measures algorithms (SPM, SSPM, QPT)
See Table 2. This table shows that the relevant statistic doubles with each

higher number of bits, which supports that the runtime is exponential in the
number of bits. The number of non-dominion tangles for ATL and TL is the same
as the number of promotions for RR and RRDP, namely 2× (2N − 1) tangles to
set all bits. Since the number of vertices and edges increases quadratically, we
conclude that the Two Counters games provide an exponential lower bound to
these algorithms, namely Ω(2

√
n). We also investigated whether inflation and

compression [9] had any effect and this was not the case. See further Section 7
for a closer look at how these algorithms solve the Two Counters games.

For the algorithms in Table 3, we use compression to obtain the lowest
numbers. We do not investigate strategy iteration, as for every game there is a
variation of the strategy iteration algorithm that will solve it in a linear number
of steps [18, Lemma 4.2] and therefore designing a parity game that is difficult
for every variation of strategy iteration is not possible. We also tried with the
succinct progress measures where we restrict the size of the used universal tree,
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bits n ATL TL PP DP RR RRDP ZLK
tangles promotions calls

1 8 2 2 2 2 2 2 8
2 22 6 6 9 7 6 6 21
3 42 14 14 23 18 14 14 45
4 68 30 30 52 43 30 30 91
5 100 62 62 112 97 62 62 181
6 138 126 126 235 210 126 126 359
7 182 254 254 485 442 254 254 713
8 232 510 510 990 913 510 510 1,419
9 288 1,022 1,022 2,006 1,863 1,022 1,022 2,829
10 350 2,046 2,046 4,045 3,772 2,046 2,046 5,647
15 750 65,534 65,534 130,961 122,742 65,534 65,534 180,249
20 1,300 2,097,150 2,097,150 4,194,108 3,931,927 2,097,150 2,097,150 5,767,203

Table 2. Solving the Two Counters games with different algorithms. We report the
relevant statistic that represents the runtime for each algorithm.

bits n APT SPM SSPM QPT SSPM QPT
iterations lifts lifts lifts k=2 k=3

1 8 8 31 137 76 49 44
2 22 44 221 20,506 7,776 342 259
3 42 172 842 590,341 563,160 973 670
4 68 1,058 3,407 14,783,111 3,196,795 2,375 1,534
5 100 5,776 11,011 61,722,742 206,491,344 4,490 2,860
6 138 20,392 40,051 757,953,011 8,363 5,292
7 182 114,752 145,683 13,328 8,355
8 232 608,736 557,040 20,897 12,815
9 288 1,748,160 2,172,283 30,607 18,231
10 350 19,546,240 8,577,454 43,842 25,353

Table 3. Solving the Two Counters games with different algorithms. We report the
relevant statistic that represents the runtime for each algorithm.
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Figure 4. Vertex a is a distraction. The distraction is removed by the opponent’s tangle
{d }. We can then learn tangle {b, c }. Similarly, vertex f distracts tangle {d, e }.

that is, we use 2-bounded adaptive counters, and with the ordered progress
measures where we restrict the tuples to 3 components. We then successfully
solve the games rather quickly. Without this modification, the algorithms did
not finish within an hour for larger instances.

7 Analysis

We study how the three attractor-based algorithms and the APT algorithm solve
a Two Counters game consisting of 3 bits.

7.1 Distractions

We introduce the notion of a distraction as a way to understand parity game
solving algorithms. Assume that we are running an attractor-based algorithm
and computed the attractor set Z to the highest vertices of a (sub)game a.

A distraction is a vertex v with the highest priority of region Z, where the
opponent’s winning region in a \ Z directly attracts v. This means that the
opponent has a tangle in a\Z that attracts v and this tangle is either a dominion
or it is necessarily attracted to a higher region of the opponent. Initially player
α believes they should play to v, but after solving the subgame or finding the
attracting tangle in the subgame, playing to v is actually good for the opponent.

We say that a distraction v distracts a tangle t, with v /∈ t, if there is some
distracted vertex w ∈ t, that is attracted by v, but that can also avoid v to be part
of tangle t, such that the tangle avoids v. The player α that wins the distracted
tangle also controls the distracted vertex and v has a higher priority of α’s parity.
In order to learn the distracted tangle, the solver first needs to “remove” the
distraction. As argued in [8], tangle learning removes distractions by learning the
opponent’s tangle that attracts the distraction. See for example Fig. 4. Vertices
a and f are distractions, as they lead to tangles won by the opponent.

Zielonka’s recursive algorithm and priority promotion also rely on this mechan-
ism to remove distractions. This is most explicit in Zielonka’s recursive algorithm
as described in [9], as the second recursive call is only done if the opponent
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attracts from the current player’s region, which is precisely when there is a
distraction. Thus, distractions make the recursive algorithm slow, especially when
the game is such that lower distractions must be removed in both recursive
subgames of a higher distraction, i.e., in the first subgame to remove the higher
distraction and in the second subgame after the distraction has been removed. If
there are no distractions in the game, then a second recursive subgame is never
solved and the recursive algorithm would run in at most n recursive calls.

7.2 Recursive algorithm

We refer to [9] for a full description of the recursive algorithm. As argued in
Section 7.1, the recursive algorithm runs in exponential time if there are many
distractions, and if they are both distracting before and after removing a higher
distraction. The input vertices iα(b) are distractions for vertices z of higher bits;
whenever a solved subgame attracts a vertex i to a region of the opponent, i.e.,
a bit is set, then many distractions of lower regions distract again. We can see
this clearly from a trace of the recursive algorithm on the 3-bit TC game, which
records the following timeline of removed distractions:

i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(1) ⇒ i0(1) ⇒ i1(1) ⇒
i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(0) ⇒ i0(0) ⇒ i1(0) ⇒
i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(1) ⇒ i0(1) ⇒ i1(1) ⇒
i1(2) ⇒ i0(2) ⇒ i1(2)

The pattern is clearer when displayed as a tree. Notice that this tree is similar
to the recursive calls of the algorithm.

i0(0)

i1(0)

i0(1)

i1(1)

i0(2)

i1(2) i1(2)

–

i1(1)

– i0(2)

i1(2) i1(2)

–

i1(0)

– i0(1)

i1(1)

i0(2)

i1(2) i1(2)

–

i1(1)

– i0(2)

i1(2) i1(2)

From the above tree it is clear that lower bits are set repeatedly by the
algorithm and that the input vertices are repeatedly distracting as described.

Furthermore, as removing each distraction attracts a vertex from each lower bit
and stops attracting a vertex from each opponent’s lower bits, all subgames before
and after removing the distraction are different. There are thus exponentially
many distinct subgames to be solved.
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7.3 Tangle learning

As explained in Section 5, the idea is that tangle learning follows the progression
of the counters. When solving the 3-bit TC game with tangle learning, we see
that the following tangles are learned in the 15 iterations:

1. Odd bit 2 2. Even bit 2
3. Odd bit 1 4. Even bit 1
5. Odd bit 2 6. Even bit 2
7. Odd bit 0 8. Even bit 0
8. Odd bit 2 10. Even bit 2
11. Odd bit 1 12. Even bit 1
13. Odd bit 2 14. Odd dominion, Even bit 2
15. Even dominion

.

Tangle learning thus solves the Two Counters games as expected.

7.4 Priority promotion

In priority promotion, a bit is set when the region of tangle vertex t is closed,
promotes to a higher region and attracts input vertex i. This resets lower regions.
When solving the 3-bit TC game with the delayed promotion policy, we see the
following sequence of promotions:

Promotion Bit Counter state (DP) Delayed Recovered
odd even

1 7 to 11 Odd 2 1 0
2 6 to 10 Even 2 1 1
3 5 to 13 Odd 1 3 0 yes
4 4 to 12 Even 1 2 2
5 7 to 13 Odd 2 3 0 yes
6 4 to 12 Even 1 3 2 yes
7 6 to 12 Even 2 3 3
8 3 to 19 Odd 0 7 0 yes
9 2 to 20 Even 0 0 4
10 3 to 19 Odd 0 4 4 yes
11 7 to 11 Odd 2 5 4
12 6 to 10 Even 2 5 5
13 5 to 19 Odd 1 7 4 yes
14 4 to 20 Even 1 0 6
15 3 to 19 Odd 0 4 6 yes
16 5 to 19 Odd 1 6 6 yes
17 7 to 19 Odd 2 > 6
18 6 to 20 Even 2 > >

We record the state of the two counters after each promotion with the DP
solver. Notice that the counter for player Odd increases first. Setting odd bits
never resets lower odd bits, but they are reset with the promotion of the next even
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bit. We denote with > that the dominion is found. The “recovered” promotions
do not occur in the RR and RRDP algorithms, as their regions are recovered.
All delayed promotions are immediately applied. Thus the delayed promotion
policy is not useful here. We do see that region recovery is useful. Both PP and
DP (based on PP+) perform additional promotions that are not necessary with
region recovery. For the 3-bit TC game, PP requires 23 promotions, DP requires
18 promotions, RR requires 14 promotions and RRDP requires 14 promotions.

7.5 APT

See [33] for a description of the APT algorithm and the source code of Oink [9]
for an efficient implementation in a single loop. The APT algorithm is described
as a nested fixed point computation that refines “Avoiding” and “Visiting” sets.
These two sets essentially encode the current knowledge of whether vertices
with an odd priority are winning for odd and vertices with an even priority are
winning for even, that is, whether vertices are distractions. Initially no vertex is
considered a distraction. Each time some vertices of priority p are now considered
a distraction, all vertices with a lower priority than p are reset. We look at the
trace of how often the algorithm determines that a distraction in the 3-bit TC
game must be avoided. This happens 31× in the following sequence:

i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(1)⇒ i1(2) ⇒ i0(1)⇒ i0(2) ⇒ i1(1) ⇒

i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(0)⇒ i1(2)⇒ i1(1)⇒ i1(2) ⇒ i0(0)⇒ i0(2)⇒ i0(1)⇒ i0(2) ⇒ i1(0) ⇒

i1(2) ⇒ i0(2) ⇒ i1(2) ⇒
i1(1)⇒ i1(2) ⇒ i0(1)⇒ i0(2) ⇒ i1(1) ⇒

i1(2) ⇒ i0(2) ⇒ i1(2)

This is clearly similar to the timeline of the recursive algorithm.

8 Discussion

Since solving parity games is known to lie in UP ∩ co-UP, it is widely believed
to admit a polynomial solution. Researchers have been studying this problem for
several decades. For some time, the focus was on variations of strategy iteration
algorithms, where a suitable improvement rule could lead to a polynomial solution.
Friedmann et al. provided superpolynomial or exponential lower bounds for many
of such rules [1,16,17,20,21,22,23], as well as Fearnley and Savani recently [15].

For a long time, the main attractor-based algorithm was the recursive al-
gorithm by McNaughton [32] and Zielonka [34], for which Friedmann also showed
an exponential lower bound [19] and later Gazda and Willemse [25] improved
upon this lower bound. These lower bounds are resistant against techniques
like inflation, compression and SCC decomposition, even when applied to each
recursive call. Observing that the lower bound of Friedmann can be defeated
using memoization, since the number of distinct solved subgames is polynomial,
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Benerecetti et al. proposed a lower bound [5] that is resilient against memoization
as well as the other techniques. Their priority promotion algorithm [4] solves
these three lower bounds in polynomial time, although this requires inflation for
Gazda’s lower bound. For the original algorithm, two exponential lower bounds
are known [5,6]. For the variations of priority promotion, in particular for the
delayed promotion policy [5], no lower bound has been published in the literature.
Tangle learning [8] solves all these lower bound examples in polynomial time.

We presented the parameterized Two Counters game and showed that this
provides an exponential lower bound for the recursive algorithm, for priority
promotion, in particular with the delayed promotion policy, for tangle learning,
and for the APT algorithm. An N -bit Two Counters game has size n = 3N2+5N
and requires at least 2× (2N − 1) steps, thus providing a lower bound of Ω(2

√
n).

We are investigating variations of tangle learning that can effectively solve Two
Counters games and whether we can defeat these variations is future work.

The Two Counters game is implemented in Oink [9] and is available online
via https://www.github.com/trolando/oink.
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