

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

How do we determine who wins a play?

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

- Each vertex has a priority $\{0,1,2, \ldots, d\}$
- Highest priority seen infinitely often determines winner
- Player Even wins if this number is even

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

How do we determine who wins a vertex?

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

A player wins a vertex if it has a strategy to win all plays from that vertex

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Which vertices are won by which player?

Parity Games

- A parity game is played on a directed graph
- Two players: Even O and Odd \square
- The players move a token along the edges of the graph
- Each vertex is owned by one player who chooses a successor

Player Odd wins all vertices with strategy $\{\mathbf{d} \rightarrow \mathbf{e}\}$

Parity Games

Known facts of parity games

- Some vertices are won by Even, some vertices are won by Odd
- The winner has a memoryless strategy to win

Memoryless strategy
"If I always play from v to w, then I win all plays from v "

Parity Games

Known facts of parity games

- Some vertices are won by Even, some vertices are won by Odd
- The winner has a memoryless strategy to win

- Memoryless strategy

"If I always play from v to w, then I win all plays from v "

Solving a parity game

- Determine the winner of each vertex
- Compute the strategy for each player

Parity Games

Why do we want to solve parity games?

- As expressive as nested least and greatest fixpoint operators
- Polynomial-time equivalent to:
- modal μ-calculus model-checking
- solving Boolean Equation Systems
- Backend for LTL model checking and LTL synthesis

Parity Games

Why do we want to solve parity games?

- As expressive as nested least and greatest fixpoint operators
- Polynomial-time equivalent to:
- modal μ-calculus model-checking
- solving Boolean Equation Systems
- Backend for LTL model checking and LTL synthesis

Open question: Is solving parity games in \mathbf{P} ?

- The problem is in NP \cap co-NP
- The problem is in UP \cap co-UP
- It is believed a polynomial solution exists

Parity Games

(Incomplete list of) published algorithms		
McNaughton/Zielonka	$\mathcal{O}\left(e \cdot n^{d}\right), \mathcal{O}\left(2^{n}\right)$	1998
Small Progress Measures	$\mathcal{O}\left(d \cdot e \cdot(n / d)^{d / 2}\right)$	1998
Strategy Improvement	$\mathcal{O}\left(n \cdot e \cdot 2^{e}\right)$	2000
Dominion Decomposition	$\mathcal{O}\left(n^{\sqrt{n}}\right)$	2006
Big Step	$\mathcal{O}\left(e \cdot n^{d / 3}\right)$	2007
APT	$\mathcal{O}\left(n^{d}\right)$	2016
Priority Promotion	Exponential	2016
Quasi-Polynomial (multiple)	$\mathcal{O}\left(n^{6+\log d}\right)$	$2016-2018$
Tangle Learning	(tbd)	2018

Parity Games

Attractor computation

Compute all vertices from which player α can ensure arrival in a target set

Start with the target set A, then iteratively add vertices to A :

- All vertices of α with an edge to A
- All vertices of $\bar{\alpha}$ with only edges to A

Parity Games

Example of attractor computation

Computing the \square-attractor to a

Initial set: $\{\mathbf{a}\}$
Can attract: d but not b

Parity Games

Example of attractor computation

Computing the \square-attractor to a

Parity Games

Example of attractor computation

Computing the \square-attractor to a

Contributions

The notion of a tangle

- A tangle is a strongly connected subgraph, such that all plays that stay in the tangle are won by one player
- Therefore the other player must leave the subgraph

Contributions

The notion of a tangle

- A tangle is a strongly connected subgraph, such that all plays that stay in the tangle are won by one player
- Therefore the other player must leave the subgraph

The role of tangles in parity game solving algorithms

- Many algorithms implicitly explore tangles
- They often explore the same tangles over and over again
- This leads to an exponential number of steps

Contributions

Main contribution

Tangles can be used with attractor computation! The loser must leave the tangle Thus we can attract vertices of a tangle together

Contributions

Tangle learning

- Extend attractor computation to attract tangles
- Use extended attractor computation to decompose the game
- Compute attractor set to highest priority
- Remove this attractor set from the game
- Analyse decomposition to compute new tangles
- Refine decomposition with new tangles
- Repeat this until the game is solved

Empirical evaluation

- Evaluated using Oink (TACAS 2018)
- Benchmarks
- Model checking and equivalence checking games [Keiren 2015]
- Random games
- Random games with max out-degree 2
- Runtimes in seconds, timeout 20 minutes

Solver	MC\&EC time	Random time	Random (low degree) time	timeouts

Empirical evaluation

Conclusions

- Fast moving field with great progress in the last few years
- Existing algorithms implicitly explore tangles repeatedly
- Tangles can be used with attractor computation
- Tangle learning explicitly remembers tangles
- See for yourself: https://www.github.com/trolando/oink

Solver	MC\&EC time	Random time	Random (low degree) time	timeouts

