
Attracting Tangles to Solve Parity Games
Tom van Dijk (JKU Linz)
CAV, 17 July 2018



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

a

b c

d e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1

How do we determine who wins a play?



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6
a 5

b
2
c

1
d

3
e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6
a 5

b
2
c

1
d

3
e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1

How do we determine who wins a vertex?



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6
a 5

b
2
c

1
d

3
e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1

A player wins a vertex if it has a strategy
to win all plays from that vertex



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6
a 5

b
2
c

1
d

3
e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1

Which vertices are won by which player?



Parity Games

• A parity game is played on a directed graph
• Two players: Even and Odd
• The players move a token along the edges of the graph
• Each vertex is owned by one player who chooses a successor

6
a 5

b
2
c

1
d

3
e

• Each vertex has a priority {0,1,2, . . . ,d }
• Highest priority seen infinitely often determines winner
• Player Even wins if this number is even

1 / 1

Player Odd wins all vertices with strategy {d→ e}



Parity Games

Known facts of parity games

• Some vertices are won by Even, some vertices are won by Odd
• The winner has a memoryless strategy to win

“If I always play from v to w , then I win all plays from v”

Memoryless strategy

Solving a parity game

• Determine the winner of each vertex
• Compute the strategy for each player

2 / 1



Parity Games

Known facts of parity games

• Some vertices are won by Even, some vertices are won by Odd
• The winner has a memoryless strategy to win

“If I always play from v to w , then I win all plays from v”

Memoryless strategy

Solving a parity game

• Determine the winner of each vertex
• Compute the strategy for each player

2 / 1



Parity Games

Why do we want to solve parity games?

• As expressive as nested least and greatest fixpoint operators
• Polynomial-time equivalent to:

• modal µ-calculus model-checking
• solving Boolean Equation Systems

• Backend for LTL model checking and LTL synthesis

Open question: Is solving parity games in P?
• The problem is in NP ∩ co-NP
• The problem is in UP ∩ co-UP
• It is believed a polynomial solution exists

3 / 1



Parity Games

Why do we want to solve parity games?

• As expressive as nested least and greatest fixpoint operators
• Polynomial-time equivalent to:

• modal µ-calculus model-checking
• solving Boolean Equation Systems

• Backend for LTL model checking and LTL synthesis

Open question: Is solving parity games in P?
• The problem is in NP ∩ co-NP
• The problem is in UP ∩ co-UP
• It is believed a polynomial solution exists

3 / 1



Parity Games

(Incomplete list of) published algorithms
McNaughton/Zielonka O(e ·nd), O(2n) 1998
Small Progress Measures O(d · e · (n/d)d/2) 1998
Strategy Improvement O(n · e ·2e) 2000
Dominion Decomposition O(n

√
n) 2006

Big Step O(e ·nd/3) 2007
APT O(nd) 2016
Priority Promotion Exponential 2016
Quasi-Polynomial (multiple) O(n6+logd) 2016 – 2018
Tangle Learning (tbd) 2018

4 / 1



Parity Games

Attractor computation
Compute all vertices from which player α can ensure arrival in a
target set

Start with the target set A, then iteratively add vertices to A:
• All vertices of α with an edge to A
• All vertices of α with only edges to A

5 / 1



Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Initial set: {a}
Can attract: d but not b

6 / 1



Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Current set: {a,d}
Can attract: b but not e

6 / 1



Parity Games

Example of attractor computation

Computing the -attractor to a

a

b c

d e

Current set: {a,b,d}
Can attract: neither c nor e

6 / 1



Contributions

The notion of a tangle

• A tangle is a strongly connected subgraph, such that all plays
that stay in the tangle are won by one player
• Therefore the other player must leave the subgraph

The role of tangles in parity game solving algorithms

• Many algorithms implicitly explore tangles
• They often explore the same tangles over and over again
• This leads to an exponential number of steps

7 / 1

6

5 2

1 3



Contributions

The notion of a tangle

• A tangle is a strongly connected subgraph, such that all plays
that stay in the tangle are won by one player
• Therefore the other player must leave the subgraph

The role of tangles in parity game solving algorithms

• Many algorithms implicitly explore tangles
• They often explore the same tangles over and over again
• This leads to an exponential number of steps

7 / 1



Contributions

Main contribution

Tangles can be used with attractor computation!
The loser must leave the tangle
Thus we can attract vertices of a tangle together

8 / 1



Contributions

Tangle learning

• Extend attractor computation to attract tangles
• Use extended attractor computation to decompose the game

• Compute attractor set to highest priority
• Remove this attractor set from the game

• Analyse decomposition to compute new tangles
• Refine decomposition with new tangles
• Repeat this until the game is solved

9 / 1



Empirical evaluation

• Evaluated using Oink (TACAS 2018)
• Benchmarks

• Model checking and equivalence checking games [Keiren 2015]
• Random games
• Random games with max out-degree 2

• Runtimes in seconds, timeout 20 minutes

Solver MC&EC Random Random (low degree)
time time time timeouts

priority promotion 503 21 12770 6
recursive 576 21 23119 13
tangle learning 808 21 2281 0

10 / 1



Empirical evaluation

0

20

40

60

80

0

250

500

750

1000

1250

500 510 520 530

140 150 160 170 180

Number of MC&EC games

Number of low out-degree random games

Ti
m
e
(s
ec
)

Ti
m
e
(s
ec
)

Solver
priority promotion
recursive
tangle learning

11 / 1



Conclusions

• Fast moving field with great progress in the last few years
• Existing algorithms implicitly explore tangles repeatedly
• Tangles can be used with attractor computation
• Tangle learning explicitly remembers tangles
• See for yourself: https://www.github.com/trolando/oink

Solver MC&EC Random Random (low degree)
time time time timeouts

priority promotion 503 21 12770 6
recursive 576 21 23119 13
tangle learning 808 21 2281 0

12 / 1

https://www.github.com/trolando/oink

