
Attracting Tangles to Solve Parity Games

Tom van Dijk(B)

Formal Models and Verification,
Johannes Kepler University, Linz, Austria

tom.vandijk@jku.at

Abstract. Parity games have important practical applications in formal
verification and synthesis, especially to solve the model-checking problem
of the modal mu-calculus. They are also interesting from the theory
perspective, because they are widely believed to admit a polynomial
solution, but so far no such algorithm is known.

We propose a new algorithm to solve parity games based on learning
tangles, which are strongly connected subgraphs for which one player has
a strategy to win all cycles in the subgraph. We argue that tangles play
a fundamental role in the prominent parity game solving algorithms. We
show that tangle learning is competitive in practice and the fastest solver
for large random games.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the
game is determined by the parity of the highest priority that is encountered
infinitely often. Player Odd wins if this parity is odd; otherwise, player Even
wins.

Parity games are interesting both for their practical applications and for
complexity theoretic reasons. Their study has been motivated by their relation
to many problems in formal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture the expressive power
of nested least and greatest fixpoint operators [11]. In particular, deciding the
winner of a parity game is polynomial-time equivalent to checking non-emptiness
of non-deterministic parity tree automata [21], and to the explicit model-checking
problem of the modal μ-calculus [9,15,20].

Parity games are interesting in complexity theory, as the problem of deter-
mining the winner of a parity game is known to lie in UP ∩ co-UP [16], which
is contained in NP ∩ co-NP [9]. This problem is therefore unlikely to be NP-
complete and it is widely believed that a polynomial solution exists. Despite
much effort, such an algorithm has not been found yet.

T. van Dijk—The author is supported by the FWF, NFN Grant S11408-N23 (RiSE).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 198–215, 2018.
https://doi.org/10.1007/978-3-319-96142-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_14&domain=pdf

Attracting Tangles to Solve Parity Games 199

The main contribution of this paper is based on the notion of a tangle.
A tangle is a strongly connected subgraph of a parity game for which one of
the players has a strategy to win all cycles in the subgraph. We propose this
notion and its relation to dominions and cycles in a parity game. Tangles are
related to snares [10] and quasi-dominions [3], with the critical difference that
tangles are strongly connected, whereas snares and quasi-dominions may be
unconnected as well as contain vertices that are not in any cycles. We argue
that tangles play a fundamental role in various parity game algorithms, in par-
ticular in priority promotion [3,5], Zielonka’s recursive algorithm [25], strategy
improvement [10,11,24], small progress measures [17], and in the recently pro-
posed quasi-polynomial time progress measures [6,12].

The core insight of this paper is that tangles can be used to attract sets
of vertices at once, since the losing player is forced to escape a tangle. This
leads to a novel algorithm to solve parity games called tangle learning, which
is based on searching for tangles along a top-down α-maximal decomposition of
the parity game. New tangles are then attracted in the next decomposition. This
naturally leads to learning nested tangles and, eventually, finding dominions. We
prove that tangle learning solves parity games and present several extensions to
the core algorithm, including alternating tangle learning, where the two players
take turns maximally searching for tangles in their regions, and on-the-fly tangle
learning, where newly learned tangles immediately refine the decomposition.

We relate the complexity of tangle learning to the number of learned tangles
before finding a dominion, which is related to how often the solver is distracted
by paths to higher winning priorities that are not suitable strategies.

We evaluate tangle learning in a comparison based on the parity game solver
Oink [7], using the benchmarks of Keiren [19] as well as random parity games
of various sizes. We compare tangle learning to priority promotion [3,5] and to
Zielonka’s recursive algorithm [25] as implemented in Oink.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V,E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity
of the highest priority that occurs infinitely often along the play.

More formally, a parity game � is a tuple (V , V ,E, pr) where V = V ∪ V
is a set of vertices partitioned into the sets V controlled by player Even and V
controlled by player Odd, and E ⊆ V ×V is a left-total binary relation describing
all moves, i.e., every vertex has at least one successor. We also write E(u) for
all successors of u and u → v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V) for the highest priority
of vertices V and pr(�) for the highest priority in the game �. Furthermore, we

200 T. van Dijk

write pr−1(i) for all vertices with the priority i. A path π = v0v1 . . . is a sequence
of vertices consistent with E, i.e., vi → vi+1 for all successive vertices. A play
is an infinite path. We denote with inf(π) the vertices in π that occur infinitely
many times in π. Player Even wins a play π if pr(inf(π)) is even; player Odd wins
if pr(inf(π)) is odd. We write Plays(v) to denote all plays starting at vertex v.

A strategy σ : V → V is a partial function that assigns to each vertex in its
domain a single successor in E, i.e., σ ⊆ E. We refer to a strategy of player
α to restrict the domain of σ to Vα. In the remainder, all strategies σ are of a
player α. We write Plays(v, σ) for the set of plays from v consistent with σ, and
Plays(V, σ) for {π ∈ Plays(v, σ) | v ∈ V }.

A fundamental result for parity games is that they are memoryless deter-
mined [8], i.e., each vertex is either winning for player Even or for player Odd,
and both players have a strategy for their winning vertices. Player α wins vertex
v if they have a strategy σ such that all plays in Plays(v, σ) are winning for
player α.

Several algorithms for solving parity games employ attractor computation.
Given a set of vertices A, the attractor of A for a player α represents those
vertices from which player α can force a play to visit A. We write Attr�

α(A) to
attract vertices in � to A as player α, i.e.,

μZ .A ∪ {v ∈ Vα | E(v) ∩ Z �= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}

Informally, we compute the α-attractor of A with a backward search from A,
initially setting Z := A and iteratively adding α-vertices with a successor in Z
and α-vertices with no successors outside Z. We also obtain a strategy σ for
player α, starting with an empty strategy, by selecting a successor in Z when we
attract vertices of player α and when the backward search finds a successor in Z
for the α-vertices in A. We call a set of vertices A α-maximal if A = Attr�

α(A).
A dominion D is a set of vertices for which player α has a strategy σ such that

all plays consistent with σ stay in D and are winning for player α. We also write a
p-dominion for a dominion where p is the highest priority encountered infinitely
often in plays consistent with σ, i.e., p := max{pr(inf(π)) | π ∈ Plays(D,σ)}.

3 Tangles

Definition 1. A p-tangle is a nonempty set of vertices U ⊆ V with p = pr(U),
for which player α ≡2 p has a strategy σ : Uα → U , such that the graph (U,E′),
with E′ := E ∩(

σ ∪ (Uα ×U)
)
, is strongly connected and player α wins all cycles

in (U,E′).

Informally, a tangle is a set of vertices for which player α has a strategy to
win all cycles inside the tangle. Thus, player α loses all plays that stay in U and
is therefore forced to escape the tangle. The highest priority by which player α
wins a play in (U,E′) is p. We make several basic observations related to tangles.

Attracting Tangles to Solve Parity Games 201

1. A p-tangle from which player α cannot leave is a p-dominion.
2. Every p-dominion contains one or more p-tangles.
3. Tangles may contain tangles of a lower priority.

Observation 1 follows by definition. Observation 2 follows from the fact that
dominions won by player α with some strategy σ must contain strongly connected
subgraphs where all cycles are won by player α and the highest winning priority
is p. For observation 3, consider a p-tangle for which player α has a strategy
that avoids priority p while staying in the tangle. Then there is a p′-tangle with
p′ < p in which player α also loses.

Fig. 1. A 5-dominion with a
5-tangle and a 3-tangle

We can in fact find a hierarchy of tan-
gles in any dominion D with winning strategy
σ by computing the set of winning priorities
{pr(inf(π)) | π ∈ Plays(D,σ)}. There is a p-
tangle in D for every p in this set. Tangles are
thus a natural substructure of dominions.

See for example Fig. 1. Player Odd wins
this dominion with highest priority 5 and strat-
egy {d → e}. Player Even can also avoid pri-
ority 5 and then loses with priority 3. The
5-dominion {a,b, c,d, e} contains the 5-tangle
{b, c,d, e} and the 3-tangle {c, e}.

4 Solving by Learning Tangles

Since player α must escape tangles won by player α, we can treat a tangle as an
abstract vertex controlled by player α that can be attracted by player α, thus
attracting all vertices of the tangle. This section proposes the tangle learning
algorithm, which searches for tangles along a top-down α-maximal decomposi-
tion of the game. We extend the attractor to attract all vertices in a tangle when
player α is forced to play from the tangle to the attracting set. After extracting
new tangles from regions in the decomposition, we iteratively repeat the pro-
cedure until a dominion is found. We show that tangle learning solves parity
games.

4.1 Attracting Tangles

Given a tangle t, we denote its vertices simply by t and its witness strategy by
σT (t). We write ET (t) for the edges from α-vertices in the tangle to the rest of
the game: ET (t) := {v | u → v ∧ u ∈ t ∩ Vα ∧ v ∈ V \ t}. We write T for all
tangles where pr(t) is odd (won by player Odd) and T for all tangles where pr(t)
is even. We write TAttr�,T

α (A) to attract vertices in � and vertices of tangles in
T to A as player α, i.e.,

μZ .A ∪ {v ∈ Vα | E(v) ∩ Z �= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}
∪ {v ∈ t | t ∈ Tα ∧ ET (t) �= ∅ ∧ ET (t) ⊆ Z}

202 T. van Dijk

1 def solve(�):
2 W ← ∅, W ← ∅, σ ← ∅, σ ← ∅, T ← ∅
3 while � �= ∅ :
4 T, d ← search(�, T)

5 α ← pr(d) mod 2

6 D, σ ← Attr�
α(d)

7 Wα ← Wα ∪ D, σα ← σα ∪ σT (d) ∪ σ
8 � ← � \ D, T ← T ∩ (� \ D)

9 return W , W , σ , σ

Algorithm 1. The solve algorithm which computes the winning regions and
winning strategies for both players of a given parity game.

This approach is not the same as the subset construction. Indeed, we do not
add the tangle itself but rather add all its vertices together. Notice that this
attractor does not guarantee arrival in A, as player α can stay in the added
tangle, but then player α loses.

To compute a witness strategy σ for player α, as with Attr�

α, we select a
successor in Z when attracting single vertices of player α and when we find a
successor in Z for the α-vertices in A. When we attract vertices of a tangle, we
update σ for each tangle t sequentially, by updating σ with the strategy in σT (t)
of those α-vertices in the tangle for which we do not yet have a strategy in σ,
i.e., {(u, v) ∈ σT (t) | u /∈ dom(σ)}. This is important since tangles can overlap.

In the following, we call a set of vertices A α-maximal if A = TAttr�,T
α (A).

Given a game � and a set of vertices U , we write �∩U for the subgame �′ where
V ′ := V ∩U and E′ := E∩(V ′×V ′). Given a set of tangles T and a set of vertices
U , we write T ∩U for all tangles with all vertices in U , i.e., {t ∈ T | t ⊆ U}, and
we extend this notation to T ∩ �′ for the tangles in the game �′, i.e., T ∩ V ′.

4.2 The solve Algorithm

We solve parity games by iteratively searching and removing a dominion of the
game, as in [3,18,22]. See Algorithm 1. The search algorithm (described below)
is given a game and a set of tangles and returns an updated set of tangles and a
tangle d that is a dominion. Since the dominion d is a tangle, we derive the winner
α from the highest priority (line 5) and use standard attractor computation to
compute a dominion D (line 6). We add the dominion to the winning region
of player α (line 7). We also update the winning strategy of player α using the
witness strategy of the tangle d plus the strategy σ obtained during attractor
computation. To solve the remainder, we remove all solved vertices from the
game and we remove all tangles that contain solved vertices (line 8). When the
entire game is solved, we return the winning regions and winning strategies of
both players (lines 9). Reusing the (pruned) set of tangles for the next search
call is optional; if search is always called with an empty set of tangles, the
“forgotten” tangles would be found again.

Attracting Tangles to Solve Parity Games 203

1 def search(�, T):
2 while true :
3 r ← ∅, Y ← ∅
4 while � \ r �= ∅ :
5 �

′ ← � \ r, T ′ ← T ∩ (� \ r)
6 p ← pr(�′), α ← pr(�′) mod 2

7 Z, σ ← TAttr�
′,T ′

α

({v ∈ �
′ | pr(v) = p})

8 A ← extract-tangles(Z, σ)
9 if ∃ t ∈ A : ET (t) = ∅ : return T ∪ Y , t

10 r ← r ∪ (
Z 	→ p

)
, Y ← Y ∪ A

11 T ← T ∪ Y

Algorithm 2. The search algorithm which, given a game and a set of tangles,
returns the updated set of tangles and a tangle that is a dominion.

4.3 The search Algorithm

The search algorithm is given in Algorithm 2. The algorithm iteratively com-
putes a top-down decomposition of � into sets of vertices called regions such
that each region is α-maximal for the player α who wins the highest priority
in the region. Each next region in the remaining subgame �′ is obtained by
taking all vertices with the highest priority p in �′ and computing the tangle
attractor set of these vertices for the player that wins that priority, i.e., player
α ≡2 p. As every next region has a lower priority, each region is associated with
a unique priority p. We record the current region of each vertex in an auxiliary
partial function r : V → {0, 1, . . . , d} called the region function. We record the
new tangles found during each decomposition in the set Y .

In each iteration of the decomposition, we first obtain the current subgame
�′ (line 5) and the top priority p in �′ (line 6). We compute the next region by
attracting (with tangles) to the vertices of priority p in �′ (line 7). We use the
procedure extract-tangles (described below) to obtain new tangles from the
computed region (line 8). For each new tangle, we check if the set of outgoing
edges to the full game ET (t) is empty. If ET (t) is empty, then we have a dominion
and we terminate the procedure (line 9). If no dominions are found, then we add
the new tangles to Y and update r (line 10). After fully decomposing the game
into regions, we add all new tangles to T (line 11) and restart the procedure.

4.4 Extracting Tangles from a Region

To search for tangles in a given region A of player α with strategy σ, we first
remove all vertices where player α can play to lower regions (in �′) while player
α is constrained to σ, i.e.,

νZ .A ∩ ({v ∈ Vα | E′(v) ⊆ Z} ∪ {v ∈ Vα | σ(v) ∈ Z})

This procedure can be implemented efficiently with a backward search, start-
ing from all vertices of priority p that escape to lower regions. Since there can

204 T. van Dijk

be multiple vertices of priority p, the reduced region may consist of multiple
unconnected tangles. We compute all nontrivial bottom SCCs of the reduced
region, restricted by the strategy σ. Every such SCC is a unique p-tangle.

4.5 Tangle Learning Solves Parity Games

We now prove properties of the proposed algorithm.

Lemma 1. All regions recorded in r in Algorithm 2 are α-maximal in their
subgame.

Proof. This is vacuously true at the beginning of the search. Every region Z is
α-maximal as Z is computed with TAttr (line 7). Therefore the lemma remains
true when r is updated at line 10. New tangles are only added to T at line 11,
after which r is reset to ∅. ��
Lemma 2. All plays consistent with σ that stay in a region are won by player
α.

Proof. Based on how the attractor computes the region, we show that all cycles
(consistent with σ) in the region are won by player α. Initially, Z only contains
vertices with priority p; therefore, any cycles in Z are won by player α. We
consider two cases: (a) When attracting a single vertex v, any new cycles must
involve vertices with priority p from the initial set A, since all other α-vertices in
Z already have a strategy in Z and all other α-vertices in Z have only successors
in Z, otherwise they would not be attracted to Z. Since p is the highest priority
in the region, every new cycle is won by player α. (b) When attracting vertices of
a tangle, we set the strategy for all attracted vertices of player α to the witness
strategy of the tangle. Any new cycles either involve vertices with priority p (as
above) or are cycles inside the tangle that are won by player α. ��
Lemma 3. Player α can reach a vertex with the highest priority p from every
vertex in the region, via a path in the region that is consistent with strategy σ.

Proof. The proof is based on how the attractor computes the region. This prop-
erty is trivially true for the initial set of vertices with priority p. We consider
again two cases: (a) When attracting a single vertex v, v is either an α-vertex
with a strategy to play to Z, or an α-vertex whose successors are all in Z.
Therefore, the property holds for v. (b) Tangles are strongly connected w.r.t.
their witness strategy. Therefore player α can reach every vertex of the tangle
and since the tangle is attracted to Z, at least one α-vertex can play to Z.
Therefore, the property holds for all attracted vertices of a tangle. ��
Lemma 4. For each new tangle t, all successors of t are in higher α-regions.

Proof. For every bottom SCC B (computed in extract-tangles), E′(v) ⊆ B
for all α-vertices v ∈ B, otherwise player α could leave B and B would not be a
bottom SCC. Recall that E′(v) is restricted to edges in the subgame �′ = � \ r.

Attracting Tangles to Solve Parity Games 205

Therefore E(v) ⊆ dom(r) ∪ B in the full game for all α-vertices v ∈ B. Recall
that ET (t) for a tangle t refers to all successors for player α that leave the tangle.
Hence, ET (t) ⊆ dom(r) for every tangle t := B. Due to Lemma 1, no α-vertex
in B can escape to a higher α-region. Thus ET (t) only contains vertices from
higher α-regions when the new tangle is found by extract-tangles. ��
Lemma 5. Every nontrivial bottom SCC B of the reduced region restricted by
witness strategy σ is a unique p-tangle.

Proof. All α-vertices v in B have a strategy σ(v) ∈ B, since B is a bottom SCC
when restricted by σ. B is strongly connected by definition. Per Lemma 2, player
α wins all plays consistent with σ in the region and therefore also in B. Thus,
B is a tangle. Per Lemma 3, player α can always reach a vertex of priority p,
therefore any bottom SCC must include a vertex of priority p. Since p is the
highest priority in the subgame, B is a p-tangle. Furthermore, the tangle must
be unique. If the tangle was found before, then per Lemmas 1 and 4, it would
have been attracted to a higher α-region. ��
Lemma 6. The lowest region in the decomposition always contains a tangle.

Proof. The lowest region is always nonempty after reduction in extract-
tangles, as there are no lower regions. Furthermore, this region contains non-
trivial bottom SCCs, since every vertex must have a successor in the region due
to Lemma 1. ��
Lemma 7. A tangle t is a dominion if and only if ET (t) = ∅
Proof. If the tangle is a dominion, then player α cannot leave it, therefore
ET (t) = ∅. If ET (t) = ∅, then player α cannot leave the tangle and since
all plays consistent with σ in the tangle are won by player α, the tangle is a
dominion. ��
Lemma 8. ET (t) = ∅ for every tangle t found in the highest region of player α.

Proof. Per Lemma 4, ET (t) ⊆ {v ∈ dom(r) | r(v) ≡2 p} when the tangle is found.
There are no higher regions of player α, therefore ET (t) = ∅. ��
Lemma 9. The search algorithm terminates by finding a dominion.

Proof. There is always a highest region of one of the players that is not empty.
If a tangle is found in this region, then it is a dominion (Lemmas 7 and 8) and
Algorithm 2 terminates (line 9). If no tangle is found in this region, then the
opponent can escape to a lower region. Thus, if no dominion is found in a highest
region, then there is a lower region that contains a tangle (Lemma 6) that must
be unique (Lemma 5). As there are only finitely many unique tangles, eventually
a dominion must be found. ��
Lemma 10. The solve algorithm solves parity games.

206 T. van Dijk

Proof. Every invocation of search returns a dominion of the game (Lemma 9).
The α-attractor of a dominion won by player α is also a dominion of player α.
Thus all vertices in D are won by player α. The winning strategy is derived as
the witness strategy of d with the strategy obtained by the attractor at line 6.
At the end of solve every vertex of the game is either in W or W . ��

4.6 Variations of Tangle Learning

We propose three different variations of tangle learning that can be combined.
The first variation is alternating tangle learning, where players take turns to

maximally learn tangles, i.e., in a turn of player Even, we only search for tangles
in regions of player Even, until no more tangles are found. Then we search only
for tangles in regions of player Odd, until no more tangles are found. When
changing players, the last decomposition can be reused.

The second variation is on-the-fly tangle learning, where new tangles immedi-
ately refine the decomposition. When new tangles are found, the decomposition
procedure is reset to the highest region that attracts one of the new tangles,
such that all regions in the top-down decomposition remain α-maximal. This is
the region with priority p := max{min{r(v) | v ∈ ET (t)} | t ∈ A}.

A third variation skips the reduction step in extract-tangles and only
extracts tangles from regions where none of the vertices of priority p can escape
to lower regions. This still terminates finding a dominion, as Lemma 6 still
applies, i.e., we always extract tangles from the lowest region. Similar variations
are also conceivable, such as only learning tangles from the lowest region.

5 Complexity

We establish a relation between the time complexity of tangle learning and the
number of learned tangles.

Lemma 11. Computing the top-down α-maximal decomposition of a parity
game runs in time O(dm + dn|T |) given a parity game with d priorities, n
vertices and m edges, and a set of tangles T .

Proof. The attractor Attr�

α runs in time O(n + m), if we record the number of
remaining outgoing edges for each vertex [23]. The attractor TAttr�,T

α runs in
time O(n + m + |T | + n|T |), if implemented in a similar style. As m ≥ n, we
simplify to O(m + n|T |). Since the decomposition computes at most d regions,
the decomposition runs in time O(dm + dn|T |). ��
Lemma 12. Searching for tangles in the decomposition runs in time O(dm).

Proof. The extract-tangles procedure consists of a backward search, which
runs in O(n + m), and an SCC search based on Tarjan’s algorithm, which also
runs in O(n+m). This procedure is performed at most d times (for each region).
As m ≥ n, we simplify to O(dm). ��

Attracting Tangles to Solve Parity Games 207

Lemma 13. Tangle learning runs in time O(dnm|T | + dn2|T |2) for a parity
game with d priorities, n vertices, m edges, and |T | learned tangles.

Proof. Given Lemmas 11 and 12, each iteration in search runs in time O(dm +
dn|T |). The number of iterations is at most |T |, since we learn at least 1 tangle
per iteration. Then search runs in time O(dm|T | + dn|T |2). Since each found
dominion is then removed from the game, there are at most n calls to search.
Thus tangle learning runs in time O(dnm|T | + dn2|T |2). ��

Fig. 2. A parity game that requires several turns to find a dominion.

The complexity of tangle learning follows from the number of tangles that
are learned before each dominion is found. Often not all tangles in a game need
to be learned to solve the game, only certain tangles. Whether this number can
be exponential in the worst case is an open question. These tangles often serve
to remove distractions that prevent the other player from finding better tangles.
This concept is illustrated by the example in Fig. 2, which requires multiple turns
before a dominion is found. The game contains 4 tangles: {c}, {g} (a dominion),
{a,b, c,d} and {a, e}. The vertices {e, f,g,h} do not form a tangle, since the
opponent wins the loop of vertex g. The tangle {a,b, c,d} is a dominion in the
remaining game after Attr�({g}) has been removed.

The tangle {g} is not found at first, as player Odd is distracted by h, i.e.,
prefers to play from g to h. Thus vertex h must first be attracted by the oppo-
nent. This occurs when player Even learns the tangle {a, e}, which is then
attracted to f, which then attracts h. However, the tangle {a, e} is blocked,
as player Even is distracted by b. Vertex b is attracted by player Odd when
they learn the tangle {c}, which is attracted to d, which then attracts b. So
player Odd must learn tangle {c} so player Even can learn tangle {a, e}, which
player Even must learn so player Odd can learn tangle {g} and win the dominion
{e, f,g,h}, after which player Odd also learns {a,b, c,d} and wins the entire
game.

One can also understand the algorithm as the players learning that their
opponent can now play from some vertex v via the learned tangle to a higher
vertex w that is won by the opponent. In the example, we first learn that b
actually leads to d via the learned tangle {c}. Now b is no longer safe for player

208 T. van Dijk

Even. However, player Even can now play from both d and h via the learned
0-tangle {a, e} to f, so d and h are no longer interesting for player Odd and
vertex b is again safe for player Even.

6 Implementation

We implement four variations of tangle learning in the parity game solver
Oink [7]. Oink is a modern implementation of parity game algorithms writ-
ten in C++. Oink implements priority promotion [3], Zielonka’s recursive algo-
rithm [25], strategy improvement [11], small progress measures [17], and quasi-
polynomial time progress measures [12]. Oink also implements self-loop solving
and winner-controlled winning cycle detection, as proposed in [23]. The imple-
mentation is publicly available via https://www.github.com/trolando/oink.

We implement the following variations of tangle learning: standard tan-
gle learning (tl), alternating tangle learning (atl), on-the-fly tangle learning
(otftl) and on-the-fly alternating tangle learning (otfatl). The implementa-
tion mainly differs from the presented algorithm in the following ways. We com-
bine the solve and search algorithms in one loop. We remember the highest
region that attracts a new tangle and reset the decomposition to that region
instead of recomputing the full decomposition. In extract-tangles, we do not
compute bottom SCCs for the highest region of a player, instead we return the
entire reduced region as a single dominion (see also Lemma 8).

7 Empirical Evaluation

The goal of the empirical evaluation is to study tangle learning and its variations
on real-world examples and random games. Due to space limitations, we do not
report in detail on crafted benchmark families (generated by PGSolver [13]),
except that none of these games is difficult in runtime or number of tangles.

We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [19] that are publicly available online. These are 313
model checking and 216 equivalence checking games. We also consider random
games, in part because the literature on parity games tends to favor studying the
behavior of algorithms on random games. We include two classes of self-loop-free
random games generated by PGSolver [13] with a fixed number of vertices:

– fully random games (randomgame N N 1 N x)
N ∈ {1000, 2000, 4000, 7000}

– large low out-degree random games (randomgame N N 1 2 x)
N ∈ {10000, 20000, 40000, 70000, 100000, 200000, 400000, 700000, 1000000}
We generate 20 games for each parameter N , in total 80 fully random games

and 180 low out-degree games. All random games have N vertices and up to
N distinct priorities. We include low out-degree games, since algorithms may
behave differently on games where all vertices have few available moves, as also

https://www.github.com/trolando/oink

Attracting Tangles to Solve Parity Games 209

suggested in [3]. In fact, as we see in the evaluation, fully random games appear
trivial to solve, whereas games with few moves per vertex are more challenging.
Furthermore, the fully random games have fewer vertices but require more disk
space (40 MB per compressed file for N = 7000) than large low out-degree games
(11 MB per compressed file for N = 1000000).

We compare four variations of tangle learning to the implementations of
Zielonka’s recursive algorithm (optimized version of Oink) and of priority pro-
motion (implemented in Oink by the authors of [3]). The motivation for this
choice is that [7] shows that these are the fastest parity game solving algorithms.

In the following, we also use cactus plots to compare the algorithms. Cac-
tus plots show that an algorithm solved X input games within Y seconds
individually.

Table 1. Runtimes in sec. and number of timeouts (20 min) of the solvers Zielonka
(zlk), priority promotion (pp), and tangle learning (tl, atl, otftl, otfatl).

Solver MC&EC Random Random (large)

Time Time Time Timeouts

pp 503 21 12770 6

zlk 576 21 23119 13

otfatl 808 21 2281 0

atl 817 21 2404 0

otftl 825 21 2238 0

tl 825 21 2312 0

All experimental scripts and log files are available online via https://www.
github.com/trolando/tl-experiments. The experiments were performed on a clus-
ter of Dell PowerEdge M610 servers with two Xeon E5520 processors and 24 GB
internal memory each. The tools were compiled with gcc 5.4.0.

7.1 Overall Results

Table 1 shows the cumulative runtimes of the six algorithms. For the runs that
timed out, we simply used the timeout value of 1200 s, but this underestimates
the actual runtime.

7.2 Model Checking and Equivalence Checking Games

See Fig. 3 for the cactus plot of the six solvers on model checking and equivalence
checking games. This graph suggests that for most games, tangle learning is only
slightly slower than the other algorithms. The tangle learning algorithms require
at most 2× as much time for 12 of the 529 games. There is no significant difference
between the four variations of tangle learning.

https://www.github.com/trolando/tl-experiments
https://www.github.com/trolando/tl-experiments

210 T. van Dijk

Fig. 3. Cactus plots of the solvers Zielonka (zlk), priority promotion (pp) and tangle
learning (tl, atl, otftl, otfatl). The plot shows how many MC&EC games (top) or
large random games (bottom) are (individually) solved within the given time.

The 529 games have on average 1.86 million vertices and 5.85 million edges,
and at most 40.6 million vertices and 167.5 million edges. All equivalence check-
ing games have 2 priorities, so every tangle is a dominion. The model checking
games have 2 to 4 priorities. Tangle learning learns non-dominion tangles for
only 30 games, and more than 1 tangle only for the 22 games that check the
infinitely often read write property. The most extreme case is 1,572,864
tangles for a game with 19,550,209 vertices. These are all 0-tangles that are then
attracted to become part of 2-dominions.

That priority promotion and Zielonka’s algorithm perform well is no surprise.
See also Sect. 8.4. Solving these parity games requires few iterations for all algo-
rithms, but tangle learning spends more time learning and attracting individual
tangles, which the other algorithms do not do. Zielonka requires at most 27
iterations, priority promotion at most 28 queries and 9 promotions. Alternating
tangle learning requires at most 2 turns. We conclude that these games are not
complex and that their difficulty is related to their sheer size.

7.3 Random Games

Table 1 shows no differences between the algorithms for the fully random games.
Tangle learning learns no tangles except dominions for any of these games. This

Attracting Tangles to Solve Parity Games 211

agrees with the intuition that the vast number of edges in these games lets
attractor-based algorithms quickly attract large portions of the game.

See Fig. 3 for a cactus plot of the solvers on the larger random games. Only
167 games were solved within 20 min each by Zielonka’s algorithm and only 174
games by priority promotion. See Table 2 for details of the slowest 10 random
games for alternating tangle learning. There is a clear correlation between the
runtime, the number of tangles and the number of turns. One game is particularly
interesting, as it requires significantly more time than the other games.

The presence of one game that is much more difficult is a feature of using
random games. It is likely that if we generated a new set of random games, we
would obtain different results. This could be ameliorated by experimenting on
thousands of random games and even then it is still a game of chance whether
some of these random games are significantly more difficult than the others.

Table 2. The 10 hardest random games for the atl algorithm, with time in seconds
and size in number of vertices.

Time 543 148 121 118 110 83 81 73 68 52

Tangles 4,018 1,219 737 560 939 337 493 309 229 384

Turns 91 56 23 25 30 12 18 10 10 18

Size 1M 1M 700K 1M 700K 1M 1M 1M 1M 1M

8 Tangles in Other Algorithms

We argue that tangles play a fundamental role in various other parity game
solving algorithms. We refer to [7] for descriptions of these algorithms.

8.1 Small Progress Measures

The small progress measures algorithm [17] iteratively performs local updates
to vertices until a fixed point is reached. Each vertex is equipped with some
measure that records a statistic of the best game either player knows that they
can play from that vertex so far. By updating measures based on the successors,
they essentially play the game backwards. When they can no longer perform
updates, the final measures indicate the winning player of each vertex.

The measures in small progress measures record how often each even priority
is encountered along the most optimal play (so far) until a higher priority is
encountered. As argued in [7,14], player Even tries to visit vertices with even
priorities as often as possible, while prioritizing plays with more higher even
priorities. This often resets progress for lower priorities. Player Odd has the
opposite goal, i.e., player Odd prefers to play to a lower even priority to avoid
a higher even priority, even if the lower priority is visited infinitely often. When
the measures record a play from some vertex that visits more vertices with some

212 T. van Dijk

even priority than exist in the game, this indicates that player Even can force
player Odd into a cycle, unless they concede and play to a higher even priority. A
mechanism called cap-and-carryover [7] ensures via slowly rising measures that
the opponent is forced to play to a higher even priority.

We argue that when small progress measures finds cycles of some priority p,
this is due to the presence of a p-tangle, namely precisely those vertices whose
measures increase beyond the number of vertices with priority p, since these
measures can only increase so far in the presence of cycles out of which the
opponent cannot escape except by playing to vertices with a higher even priority.

One can now understand small progress measures as follows. The algorithm
indirectly searches for tangles of player Even, and then searches for the best
escape for player Odd by playing to the lowest higher even priority. If no such
escape exists for a tangle, then the measures eventually rise to �, indicating that
player Even has a dominion. Whereas tangle learning is affected by distractions,
small progress measures is driven by the dual notion of aversions, i.e., high even
vertices that player Odd initially tries to avoid. The small progress measures
algorithm tends to find tangles repeatedly, especially when they are nested.

8.2 Quasi-polynomial Time Progress Measures

The quasi-polynomial time progress measures algorithm [12] is similar to small
progress measures. This algorithm records the number of dominating even ver-
tices along a play, i.e., such that every two such vertices are higher than all
intermediate vertices. For example, in the path 1213142321563212, all vertices
are dominated by each pair of underlined vertices of even priority. Higher even
vertices are preferred, even if this (partially) resets progress on lower priorities.

Tangles play a similar role as with small progress measures. The presence of
a tangle lets the value iteration procedure increase the measure up to the point
where the other player “escapes” the tangle via a vertex outside of the tangle.
This algorithm has a similar weakness to nested tangles, but it is less severe
as progress on lower priorities is often retained. In fact, the lower bound game
in [12], for which the quasi-polynomial time algorithm is slow, is precisely based
on nested tangles and is easily solved by tangle learning.

8.3 Strategy Improvement

As argued by Fearnley [10], tangles play a fundamental role in the behavior of
strategy improvement. Fearnley writes that instead of viewing strategy improve-
ment as a process that tries to increase valuations, one can view it as a process
that tries to force “consistency with snares” [10, Sect. 6], i.e., as a process that
searches for escapes from tangles.

8.4 Priority Promotion

Priority promotion [3,5] computes a top-down α-maximal decomposition and
identifies “closed α-regions”, i.e., regions where the losing player cannot escape to

Attracting Tangles to Solve Parity Games 213

lower regions. A closed α-region is essentially a collection of possibly unconnected
tangles and vertices that are attracted to these tangles. Priority promotion then
promotes the closed region to the lowest higher region that the losing player can
play to, i.e., the lowest region that would attract one of the tangles in the region.
Promoting is different from attracting, as tangles in a region can be promoted
to a priority that they are not attracted to. Furthermore, priority promotion has
no mechanism to remember tangles, so the same tangle can be discovered many
times. This is somewhat ameliorated in extensions such as region recovery [2] and
delayed promotion [1], which aim to decrease how often regions are recomputed.

Priority promotion has a good practical performance for games where com-
puting and attracting individual tangles is not necessary, e.g., when tangles are
only attracted once and all tangles in a closed region are attracted to the same
higher region, as is the case with the benchmark games of [19].

8.5 Zielonka’s Recursive Algorithm

Zielonka’s recursive algorithm [25] also computes a top-down α-maximal decom-
position, but instead of attracting from lower regions to higher regions, the algo-
rithm attracts from higher regions to tangles in the subgame. Essentially, the
algorithm starts with the tangles in the lowest region and attracts from higher
regions to these tangles. When vertices from a higher α-region are attracted to
tangles of player α, progress for player α is reset. Zielonka’s algorithm also has
no mechanism to store tangles and games that are exponential for Zielonka’s
algorithm, such as in [4], are trivially solved by tangle learning.

9 Conclusions

We introduced the notion of a tangle as a subgraph of the game where one
player knows how to win all cycles. We showed how tangles and nested tangles
play a fundamental role in various parity game algorithms. These algorithms
are not explicitly aware of tangles and can thus repeatedly explore the same
tangles. We proposed a novel algorithm called tangle learning, which identifies
tangles in a parity game and then uses these tangles to attract sets of vertices
at once. The key insight is that tangles can be used with the attractor to form
bigger (nested) tangles and, eventually, dominions. We evaluated tangle learning
in a comparison with priority promotion and Zielonka’s recursive algorithm and
showed that tangle learning is competitive for model checking and equivalence
checking games, and outperforms other solvers for large random games.

We repeat Fearnley’s assertion [10] that “a thorough and complete under-
standing of how snares arise in a game is a necessary condition for devising a
polynomial time algorithm for these games”. Fearnley also formulated the chal-
lenge to give a clear formulation of how the structure of tangles in a given game
affects the difficulty of solving it. We propose that a difficult game for tangle
learning must be one that causes alternating tangle learning to have many turns
before a dominion is found.

214 T. van Dijk

Acknowledgements. We thank the anonymous referees for their helpful comments,
Jaco van de Pol for the use of the computer cluster, and Armin Biere for generously
supporting this research.

References

1. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. In: GandALF 2016, EPTCS, vol. 226, pp. 30–45 (2016)

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for
parity games. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp.
117–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 8

3. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
270–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 15

4. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Robust exponential worst cases for
divide-et-impera algorithms for parity games. In: GandALF, EPTCS, vol. 256, pp.
121–135 (2017)

5. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. Formal Methods Syst. Des. 52, 193–226 (2018)

6. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252–263. ACM (2017)

7. van Dijk, T.: Oink: an implementation and evaluation of modern parity game
solvers. In: TACAS (2018). https://arxiv.org/pdf/1801.03859

8. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: FOCS, pp. 368–377. IEEE Computer Society (1991)

9. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the mu-calculus
and its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

10. Fearnley, J.: Non-oblivious strategy improvement. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 212–230. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17511-4 13

11. Fearnley, J.: Efficient parallel strategy improvement for parity games. In: Majum-
dar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 137–154. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 8

12. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: SPIN,
pp. 112–121. ACM (2017)

13. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04761-9 15

14. Gazda, M., Willemse, T.A.C.: Improvement in small progress measures. In: Gan-
dALF, EPTCS, vol. 193, pp. 158–171 (2015)

15. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

16. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

17. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 24

https://doi.org/10.1007/978-3-319-49052-6_8
https://doi.org/10.1007/978-3-319-41540-6_15
https://arxiv.org/pdf/1801.03859
https://doi.org/10.1007/978-3-642-17511-4_13
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/3-540-46541-3_24

Attracting Tangles to Solve Parity Games 215

18. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

19. Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.)
FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24644-4 9

20. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

21. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-
ness. In: STOC, pp. 224–233. ACM (1998)

22. Schewe, S.: Solving parity games in big steps. J. Comput. Syst. Sci. 84, 243–262
(2017)

23. Verver, M.: Practical improvements to parity game solving. Master’s thesis, Uni-
versity of Twente (2013)

24. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 18

25. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/10722167_18
http://creativecommons.org/licenses/by/4.0/

	Attracting Tangles to Solve Parity Games
	1 Introduction
	2 Preliminaries
	3 Tangles
	4 Solving by Learning Tangles
	4.1 Attracting Tangles
	4.2 The solve Algorithm
	4.3 The search Algorithm
	4.4 Extracting Tangles from a Region
	4.5 Tangle Learning Solves Parity Games
	4.6 Variations of Tangle Learning

	5 Complexity
	6 Implementation
	7 Empirical Evaluation
	7.1 Overall Results
	7.2 Model Checking and Equivalence Checking Games
	7.3 Random Games

	8 Tangles in Other Algorithms
	8.1 Small Progress Measures
	8.2 Quasi-polynomial Time Progress Measures
	8.3 Strategy Improvement
	8.4 Priority Promotion
	8.5 Zielonka's Recursive Algorithm

	9 Conclusions
	References

