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Abstract We introduce parallel symbolic algorithms for
bisimulationminimisation, to combat the combinatorial state
space explosion along three different paths. Bisimulation
minimisation reduces a transition system to the small-
est system with equivalent behaviour. We consider strong
and branching bisimilarity for interactive Markov chains,
which combine labelled transition systems and continuous-
time Markov chains. Large state spaces can be represented
concisely by symbolic techniques, based on binary deci-
sion diagrams. We present specialised BDD operations to
compute the maximal bisimulation using signature-based
partition refinement. We also study the symbolic representa-
tion of the quotient system and suggest an encoding based
on representative states, rather than block numbers. Our
implementation extends the parallel, shared memory, BDD
library Sylvan, to obtain a significant speedup on multi-core
machines. We propose the usage of partial signatures and
of disjunctively partitioned transition relations, to increase
the parallelisation opportunities. Also our new parallel data
structure for block assignments increases scalability.We pro-
vide SigrefMC, a versatile tool that can be customised for
bisimulation minimisation in various contexts. In particu-
lar, it supports models generated by the high-performance
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model checker LTSmin, providing access to specifications in
multiple formalisms, including process algebra. The exten-
sive experimental evaluation is based on various benchmarks
from the literature. We demonstrate a speedup up to 95× for
computing the maximal bisimulation on one processor. In
addition, we find parallel speedups on a 48-core machine of
another 17× for partition refinement and 24× for quotient
computation. Our new encoding of the reduced state space
leads to smaller BDD representations, with up to a 5162-fold
reduction.

Keywords Bisimulation minimisation · Interactive Markov
chains · Binary decision diagrams · Parallel algorithms

1 Introduction

One of the main challenges for model checking is that the
space and time requirements of model checking algorithms
increase exponentially in the size of the models. This paper
combines state space reduction, symbolic representation, and
parallel computation, to alleviate the state space explosion.

As input models, we consider interactive Markov chains
(IMC). These provide a compositional framework to study
functionality, performance, and dependability of reactive
systems. IMCs inherit non-deterministic choice and commu-
nication from labelled transition systems, and probabilistic
timed (Markovian) transitions from continuous-timeMarkov
chains.

A state space reduction computes the smallest “equiva-
lent”model.Weconsider strongbisimilarity,whichpreserves
all behaviour, and branching bisimilarity, which abstracts
from internal behaviour (represented by τ -steps) and only
preserves the observable behaviour. Note that branching
bisimulation preserves the branching structure of an LTS,
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thus preserving all properties expressible in CTL*-X [14].
These notions correspond to strong and branching lumping
for IMCs.

The reduced state space consists of (representatives of) the
equivalence classes in the largest bisimulation, which is typ-
ically computed using partition refinement. Starting with the
initial partition, in which all states are equivalent, the current
partition is refined until the states in any equivalence class
can no longer be distinguished. Blom et al. [5] introduced
a signature-based method, which defines the equivalence
classes according to the characterising signature of a state.

Another important technique to handle large state spaces
is symbolic representation. Sets of states are represented
by characteristic functions, which are efficiently stored in
binary decision diagrams (BDDs). In the literature, symbolic
methods have been applied to bisimulation minimisation in
several ways. Bouali and De Simone [8] refine the equiv-
alence relation R ⊆ S × S, by iteratively removing all
“bad” pairs from R, i.e., pairs of states that are no longer
equivalent. For strong bisimulation,Mumme andCiardo [32]
apply saturation-based methods to compute R. Wimmer
et al. [40,41] use signatures to refine the partition, repre-
sented by the assignment to equivalence classes P : S → C .
Symbolic bisimulation based on signatures has also been
applied to Markov chains by Derisavi [16] and Wimmer et
al. [38,39].

The symbolic representation of the reduced state space
tends to be much larger than the original model. One particu-
lar application of symbolic bisimulation minimisation is as a
bridge between symbolical models and explicit-state analy-
sis algorithms. Symbolical models can have very large state
spaces that are efficiently encoded using BDDs. The min-
imised model has often a sufficiently small number of states,
so it can be further analysed efficiently using explicit-state
algorithms.

Symbolic techniques mainly reduce the memory require-
ments of model checking. To speed up the computation,
developing scalable parallel algorithms is the way forward,
since it takes advantage of multi-core computer systems.
In [17,18,20], we implemented the multi-core BDD pack-
age Sylvan, providing parallel BDD operations to symbolic
model checking.

Parallelisation had been applied to explicit-state bisimu-
lation minimisation before. Blom et al. [4,5] introduced dis-
tributed signature-based bisimulation reduction. Also, [29]
proposed a concurrent algorithm for bisimulation minimisa-
tion which combines signatures with the approach by Paige
and Tarjan [33]. Recently,Wijs [37] implemented highly par-
allel strong and branching bisimilarity checking onGPGPUs.
As far as we are aware, no earlier work combines symbolic
bisimulation minimisation and parallelism. This paper is an
extended version of [21]. There, we demonstrated that spe-
cialised BDD operations for signature refinement provide a

major speedup of the sequential algorithm, and scale across
multiple processors.

We extend [21] by four new results. First, we investigate
how to compute the reduced state space, i.e., the quotient of
the original system with respect to the maximal bisimulation
obtained by signature refinement. Traditionally, the quotient
is computed by a sequence of standard BDD operations.
Similar to computing the partition, we find that quotient com-
putation benefits from specialised BDD operations. Second,
we study the representation of the quotient. Traditionally,
its states are encoded by using the assigned block number
as state identifier. We improve the encoding by choosing
one representative state from each block. This considerably
reduces the size of the resulting BDD representation. Third,
we refine our algorithm. Instead of using a monolithic tran-
sition relation, we now support a disjunctive partitioning
of the transition relation. This appears to be more efficient
than a monolithic transition relation and provides further
parallelisation opportunities when computing the maximal
bisimulation. Finally, we link the tool SigrefMC presented
in [21] to LTSmin, by supporting the partitioned transition
systems generated by the symbolic backend of the LTSmin
toolset [6,28,31]. Since LTSmin supports various input lan-
guages, including the specification language mCRL2 [13]
for process algebra, this allows us to carry out a considerably
larger set of experiments, generated from various specifica-
tion languages.

Outline This paper presents the following contributions.
We recapitulate the notion of partition refinementwith partial
signatures in Sect. 3. Section 4 discusses how we extended
Sylvan to parallelise signature-based partition refinement. In
particular, we develop three specialised BDD algorithms: the
refine algorithm refines a partition according to a signa-
ture, but maximally reuses the block number assignment of
the previous partition (Sect. 4.3). This algorithm improves
the operation cache usage for the computation of the signa-
tures of stable blocks and enables partition refinement with
partial signatures. The inert algorithm removes all transi-
tions that are not inert (Sect. 4.4). This algorithm avoids an
expensive intermediate result reported in the literature [41].
We discuss the new quotient computation in Sect. 5. Spe-
cialised BDD algorithms significantly speed up the quotient
computation for the interactive transition relation (Sect. 5.1)
and for theMarkovian transition relation (Sect. 5.2). The new
encoding of the quotient space is explained in Sect. 5.3. Sec-
tion 6 presents the implementation of these algorithms as a
versatile tool that can be customised for bisimulation min-
imisation in various contexts, including support for transition
systems generated by the model checking toolset LTSmin
(Sect. 6.1). Section 7 discusses experimental data based on
benchmarks from the literature. For partition refinement, we
demonstrate a speedup of up to 95× sequentially. In addition,
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we find parallel speedups of up to 17× due to parallelisation
with 48 cores. For quotient computation, we find a speedup
of 2–10× by using specialised operations, and we find sig-
nificantly smaller BDDs (up to 5162× smaller) when using
a representative state rather than the block number to encode
the new transition system.

2 Preliminaries

We recall the basic definitions of partitions, of labelled
transition systems, of continuous-time Markov chains, of
interactive Markov chains, and of various bisimulations as
in [5,26,40–42].

2.1 Partitions

Definition 1 Given a set S, a partition π of S is a subset
π ⊆ 2S such that

⋃

C∈π

C = S and ∀C,C ′ ∈ π : (
C = C ′ ∨ C ∩ C ′ = ∅)

.

The elements ofπ are called equivalence classes or blocks.
If π ′ and π are two partitions, then π ′ is a refinement of π ,
written π ′ 
 π , if each block of π ′ is contained in a block of
π . Each equivalence relation ≡ is associated with a partition
π = S/≡. In this paper, we use π and ≡ interchangeably.

2.2 Transition systems

Definition 2 A labelled transition system (LTS) is a tuple
(S,Act, T ), consisting of a set of states S, a set of labels
Act, which may contain the non-observable action τ , and
transitions T ⊆ S × Act × S.

We write s
a→ t for (s, a, t) ∈ T and s

τ
� when s has

no outgoing τ -transitions. We use
a∗→ to denote the transitive

reflexive closure of
a→. Given an equivalence relation ≡,

we write
a→≡ for

a→∩≡, i.e., transitions between equivalent
states, called inert transitions. We use

a∗→≡ for the transitive
reflexive closure of

a→≡ .

Definition 3 A continuous-time Markov chain (CTMC) is a
tuple (S,R), consisting of a set of states S and Markovian
transitions R : S → S → R≥0.

We write s
λ⇒ t for R(s)(t) = λ. The interpretation of

s
λ⇒ t is that the CTMC can switch from s to t within d time

units with probability 1−e−λ·d . For a state s, we denote with
R(s)(C) = ∑

s′∈C R(s)(s′) the cumulative rate to reach a set
of states C ⊆ S from state s in one transition.

Definition 4 An interactive Markov chain (IMC) is a tuple
(S,Act, T,R), consisting of a set of states S, a set of labels
Act that may contain the non-observable action τ , transitions
T ⊆ S ×Act× S, and Markovian transitions R : S → S →
R≥0.

An IMC basically combines the features of an LTS and a
CTMC [25,26]. One feature of IMCs is themaximal progress
assumption. Internal interactive transitions, i.e., τ -transitions,
can be assumed to take place immediately, while the prob-
ability that a Markovian transition executes immediately is
zero. Therefore, we may remove all Markovian transitions
from states that have outgoing τ -transitions: s

τ→ implies
R(s)(S) = 0. We call IMCs to which this operation has been
applied maximal-progress-cut (mp-cut) IMCs. In the rest of
this paper, we implicitly assume that IMCs are mp-cut.

2.3 Bisimulation

We recall strong and branching bisimulation. All discussed
bisimulations are equivalence relations on the states of a tran-
sition system. Two states are bisimilar if and only if there is a
bisimulation that relates them. So the maximal bisimulation
relates two states if and only if they are bisimilar. For LTSs,
we define strong and branching bisimulation as follows [41]:

Definition 5 A strong bisimulation on an LTS is an equiva-
lence relation ≡S such that for all states s, t, s′ with s ≡S t
and s

a→ s′, there is a state t ′ with t a→ t ′ and s′ ≡S t ′.

Definition 6 A branching bisimulation on an LTS is an
equivalence relation ≡B such that for all states s, t, s′ with
s ≡B t and s

a→ s′, either

– a = τ and s′ ≡B t , or
– there are states t ′, t ′′ with t

τ∗→ t ′ a→ t ′′ and t ≡B t ′ and
s′ ≡B t ′′.

For CTMCs, we define strong bisimulation as follows [16,
38]:

Definition 7 A strong bisimulation on a CTMC is an equiv-
alence relation ≡S such that for all (s, t) ∈ ≡S and for all
classes C ∈ S/≡S , R(s)(C) = R(t)(C).

For mp-cut IMCs, we define strong and branching bisim-
ulation as follows [26,42]:

Definition 8 A strong bisimulation on an mp-cut IMC is an
equivalence relation ≡S such that for all (s, t) ∈ ≡S and for
all classes C ∈ S/≡S ,

– s
a→ s′ for some s′ ∈ C implies t

a→ t ′ for some t ′ ∈ C
– R(s)(C) = R(t)(C)
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Definition 9 A branching bisimulation on an mp-cut IMC is
an equivalence relation ≡B such that for all (s, t) ∈ ≡B and
for all classes C ∈ S/≡B ,

– s
a→ s′ for some s′ ∈ C implies

• a = τ and (s, s′) ∈≡B , or
• there are states t ′, t ′′ ∈ S with t

τ∗→ t ′ a→ t ′′ and
(t, t ′) ∈≡B and t ′′ ∈ C .

– R(s)(C) > 0 implies

• R(s)(C) = R(t ′)(C) for some t ′ ∈ S such that t
τ∗→

t ′ τ
� and (t, t ′) ∈≡B .

– s
τ
� implies t

τ∗→ t ′ τ
� for some t ′

As we compare our work to [41,42], we consider
divergence-sensitive branchingbisimulation for IMCs,which
distinguishes deadlock states (without successors) from
states that only have self-looping transitions.

3 Signature-based bisimulation minimisation

Blom and Orzan [5] introduced a signature-based approach
to compute the maximal bisimulation of an LTS, which was
further developed into a symbolic method by Wimmer et
al. [41]. Each state is characterised by a signature, which
is the same for all equivalent states in a bisimulation. These
signatures are used to refine a partition of the state space until
a fixed point is reached, which is the maximal bisimulation.

In the literature, multiple signatures are sometimes used
that together fully characterise states, for example based on
the state labels, based on the rates of continuous-time tran-
sitions, and based on the enabled interactive transitions. We
consider these multiple signatures as elements of a single
signature that fully characterises each state.

Definition 10 A signature σ(π)(s) is a tuple of functions
fi (π)(s), that together characterise each state s with respect
to a partition π . Two signatures σ(π)(s) and σ(π)(t) are
equivalent, if and only if for all fi , fi (π)(s) = fi (π)(t).

The signatures of the five bisimulations from Sect. 2.3
are known from the literature. First, we define for all actions
a ∈ Act and equivalence classes C ∈ π :

– T(π)(s) = {(a,C) | ∃s′ ∈ C : s a→ s′}
– B(π)(s) = {(a,C) | ∃s′ ∈ C : s τ∗→

π

a→ s′ ∧ ¬(a =
τ ∧ s ∈ C)}

– Rs(π)(s) = C �→ R(s)(C)

– Rb(π)(s) = C �→ max({R(s′)(C) | ∃s′ : s τ∗→
π
s′ τ

�})

The five bisimulations are associated with the following sig-
natures:

Strong bisimulation for LTS (T) [41]
Branching bisimulation for LTS (B) [41]
Strong bisimulation for CTMC (Rs) [38]
Strong bisimulation for IMC (T,Rs) [42]
Branching bisimulation for IMC (B,Rb, s

τ∗→ τ
�) [42]

FunctionsT andB assign to each state s all pairs of actions
a and equivalence classes C ∈ π , such that state s can reach
C by an action a either directly (T) or via any number of inert
τ -steps (B). Furthermore, inert τ -steps are removed from B.
Rs equalsR but with the domain restricted to the equivalence
classes C ∈ π and represents the cumulative rate with which
each state s can go to states inC .Rb equalsRs for states s

τ
�

and takes the highest “reachable rate” for states with inert τ -
transitions. In branching bisimulation for mp-cut IMCs, the
“highest reachable rate” is by definition the rate that all states
s

τ
� inC have. The element s

τ∗→ τ
� distinguishes time conver-

gent states from time divergent states [42] and is independent
of the partition.

For the bisimulations of Definitions 5–9, we state:

Lemma 1 A partition π is a bisimulation, iff for all s and t
that are equivalent in π , σ(π)(s) = σ(π)(t).

For the above definitions, it is fairly straightforward to
prove that they are equivalent to the classical definitions
of bisimulation. See [5,41] for the bisimulations on LTSs
and [42] for the bisimulations on IMCs.

3.1 Signature-based partition refinement

As discussed above, signatures can consist of multiple ele-
ments. We first define partition refinement using the full
signature. We then define partition refinement with partial
signatures, i.e., using the elements of the signature, and dis-
cuss advantages of this approach.

Definition 11 (Partition refinement with full signatures)

sigref(π, σ ) := {{t ∈ S | σ(π)(s) = σ(π)(t)} | s ∈ S}

For a given signature σ , we define the series of partition
refinements:

π0 := {S}
πn+1 := sigref(πn, σ )

The algorithm iteratively refines the initial coarsest parti-
tion {S} according to the signatures of the states, until some
fixed point πn+1 = πn is obtained. For monotone signatures
(defined below), this fixed point is the maximal bisimulation.
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Definition 12 A signature is monotone if for all π, π ′ with
π 
 π ′, σ(π)(s) = σ(π)(t) implies σ(π ′)(s) = σ(π ′)(t).

For all monotone signatures, the sigref operator is mono-
tone: π 
 π ′ implies sigref(π, σ ) 
 sigref(π ′, σ ). Hence,
following Kleene’s fixed point theorem, the procedure above
reaches the greatest fixed point.

In Definition 11, the full signature is computed in every
iteration. We propose to apply partition refinement using
parts of the signature. By definition, σ(π)(s) = σ(π)(t)
if and only if for all parts fi (π)(s) = fi (π)(t).

Definition 13 (Partition refinement with partial signatures)

sigref(π, fi ) := {{t ∈ S | fi (π)(s) = fi (π)(t)∧
s ≡π t} | s ∈ S}

π0 := {S}
πn+1 := sigref(πn, fi ) (select fi ∈ σ)

We always select some fi that refines the partition π . A
fixed point is reached only when no fi refines the partition
further: ∀ fi ∈ σ : sigref(πn, fi ) = πn . The extra clause
s ≡π t ensures that every application of sigref refines the
partition.

Theorem 1 If all parts fi are monotone, Definition 13 yields
the greatest fixed point.

Proof The procedure terminates since the chain is decreasing
(πn+1 
 πn), due to the added clause s ≡π t . We reach
some fixed point πn , since sigref(πn, σ ) = πn is implied
by ∀ fi ∈ σ : sigref(πn, fi ) = πn . Finally, to prove that
we get the greatest fixed point, assume there exists another
fixed point ξ = sigref(ξ, σ ). Then, also ξ = sigref(ξ, fi )
for all i . We prove that ξ 
 πn by induction on n. Initially,
ξ 
 S = π0. Assume ξ 
 πn , then for the selected i , ξ =
sigref(ξ, fi ) 
 sigref(πn, fi ) = πn+1, using monotonicity
of fi .

There are several advantages to this approach due to its
flexibility. First, for any fi that is independent of the par-
tition, we need to refine with respect to that fi only once.
Furthermore, refinements can be applied according to differ-
ent strategies. For instance, for the strong bisimulation of an
mp-cut IMC, one could refine w.r.t. T until there is no more
refinement, then w.r.t. Rs until there is no more refinement,
then repeat until neitherT norRs refines the partition. Finally,
computing the full signature is the most memory-intensive
operation in symbolic signature-based partition refinement.
If the partial signatures are smaller than the full signature,
then larger models can be minimised.

4 Symbolic signature refinement

This section describes the parallel decision diagram library
Sylvan, followed by the (MT)BDDs and (MT)BDD oper-
ations required for signature-based partition refinement.
We describe how we encode partitions and signatures for
signature-based partition refinement. We present a new par-
allelisedrefine function thatmaximally reuses block num-
bers from the old partition. Finally, we present a new BDD
algorithm that computes inert transitions, i.e., restricts a tran-
sition relation such that states s and s′ are in the same block.

4.1 Decision diagram algorithms in Sylvan

In symbolic model checking [11], sets of states and transi-
tions are represented by their characteristic function, rather
than stored individually. With states described by N Boolean
variables, a set S ⊆ B

N can be represented by its character-
istic function f : B

N → B, where S = {s | f (s)}. Binary
decision diagrams (BDDs) are a concise and canonical rep-
resentation of Boolean functions [10].

An (ordered) BDD is a directed acyclic graph with leaves
0 and 1. Each internal node has a variable label xi and two
outgoing edges labelled 0 and 1. Variables are encountered
along each path according to a fixed variable ordering. Dupli-
cate nodes and nodes with two identical outgoing edges are
forbidden. It is well known that for a fixed variable ordering,
every Boolean function is represented by a unique BDD.

In addition to BDDs with leaves 0 and 1, multi-terminal
binary decision diagrams have been proposed [2,12] with
leaves other than 0 and 1, representing functions from the
Boolean space B

N onto any set. For example, MTBDDs
can have leaves representing integers (encoding B

N → N),
floating-point numbers (encoding B

N → R), and rational
numbers (encoding B

N → Q). Partial functions are sup-
ported using a leaf ⊥.

Sylvan [17,18,20] implements parallelised operations on
decision diagrams using parallel data structures and work-
stealing.Work-stealing [7,19] is a load balancing method for
task-based parallelism. Recursive operations, such as most
BDD operations, implicitly form a tree of tasks. Independent
subtasks are stored in queues and idle processors steal tasks
from the queues of busy processors.

See Algorithm 1 for a generic example of a BDD opera-
tion. This algorithm takes two inputs, the BDDs x and y, to
which a binary operationF is applied.Most decision diagram
operations first check if the operation can be applied immedi-
ately to x and y (line 2). This is typically the case when x and
y are leaves. Often there are also other trivial cases that can
be checked first. We then consult the operation cache (line 4)
to see if this (sub)operation has been computed earlier. The
operation cache is required to reduce the time complexity of
BDD operations from exponential to polynomial in the size
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1 def apply(x , y, F):
2 if x and y are leaves or trivial : return F(x, y)
3 Normalise/simplify parameters
4 if result ← cache[(x, y,F)] : return result
5 v = topVar(x ,y)
6 do in parallel:
7 low ← apply(xv=0, yv=0, F)
8 high ← apply(xv=1, yv=1, F)
9 result ← lookupBDDnode(v, low, high)

10 cache[(x, y,F)] ← result
11 return result

Algorithm 1 Example of a parallelised BDD algorithm: apply a binary
operator F to BDDs x and y.

of the BDDs. Sylvan uses a single shared unique table for
all BDD nodes and a single shared operation cache for all
operations.

Often, the parameters of an operation can be normalised in
someways to increase the cache efficiency. For example,a∧b
and b∧ a are the same operation. In that case, normalisation
rules can rewrite the parameters to some standard form in
order to increase cache utilisation, at line 3. A well-known
example is the if-then-else algorithm, which rewrites using
rewrite rules called “standard triples” as described in [9].

If x and y are not leaves and the operation is not trivial
or in the cache, we use topVar (line 5) to determine the
first variable of the root nodes of x and y. If x and y have a
different variable in their root node, topVar returns the first
one in the variable ordering. We then compute the recursive
application of F to the cofactors of x and y with respect to
variable v at lines 7–8. We write xv=i to denote the cofactor
of x where variable v takes value i . Since x and y are ordered
according to the same fixed variable ordering, we can easily
obtain xv=i . If the root node of x is on the variable v, then
xv=i is obtained by following the low (i = 0) or high (i = 1)
edge of x . Otherwise, xv=i equals x . After computing the
suboperations, we compute the result by either reusing an
existing or creating a new BDD node (line 9).

Operations on decision diagrams are typically recursively
defined on the structure of the inputs. To parallelise the oper-
ation in Algorithm 1, the two independent suboperations at
lines 7–8 are executed in parallel using work-stealing. To
obtain high performance in a multi-core environment, the
data structures for the BDD node table and the operation
cache must be highly scalable. Sylvan implements several
non-blocking data structures to enable good speedups [17,
20].

To compute symbolic signature-based partition refine-
ment, several basic operationsmust be supported by theBDD
package (see also [41]). Sylvan implements basic operations
such as ∧ and if-then-else, and existential quantifi-
cation ∃. Negation ¬ is performed in constant time using
complement edges. To compute relational products of tran-
sition systems, there are operations relnext (to compute

successors) and relprev (to compute predecessors and to
concatenate relations), which combine the relational product
with variable renaming. Similar operations are also imple-
mented for MTBDDs. Sylvan is designed to support custom
BDD algorithms. We present several new algorithms below.

4.2 Encoding of signature refinement

We implement symbolic signature refinement similar to [41].
However, we do not refine the partition with respect to a
single block, but with respect to all blocks simultaneously.
We use a binary encoding with variables s for the current
state, s′ for the next state, a for the action labels, and b for
the blocks. We order BDD variables a and b after s and s′,
since this is required to efficiently replace signatures (on a
and b) by new block numbers b (see below). Variables s and
s′ are interleaved, which is a common heuristic for transition
systems.

In [21], we ordered a before b. However, we expect that in
general ordering b before a is better for the following reason.
If we have a before b, then when computing the signatures
and the quotient (Sect. 5), it is guaranteed that all BDD nodes
on a variables have to be recreated, whereas they may be
reused if a variables are last in the ordering.

To perform symbolic bisimulation, we represent a number
of sets by their characteristic functions. See also Fig. 1.

– A set of states is represented by a BDD S(s);
– Transitions are represented by a BDD T (s, s′, a);
– Markovian transitions are represented by an MTBDD
R(s, s′),with leaves containing rational numbers (Q) that
represent the transition rates;

– SignaturesT andB are represented by aBDDσT (s, b, a);
– Signatures Rs and Rb are represented by an MTBDD

σR(s, b), with leaves containing rational numbers (Q)
that represent the rates in the signature.

We represent Markovian transitions using rational num-
bers, since they offer better precision than floating-point
numbers. The manipulation of floating-point numbers typi-
cally introduces tiny rounding errors, resulting in different
results of similar computations. This significantly affects
bisimulation reduction, often resulting in finer partitions than
the maximal bisimulation [38], which is unacceptable.

In the literature, three methods have been proposed to
represent the partition π .

1. As an equivalence relation, using a BDD E(s, s′) = 1 iff
s ≡π s′ [8,32].

2. As a partition, by assigning each block a unique number,
encoded with variables b, using a BDD P(s, b) = 1 iff
s ∈ Cb [16,41,42].
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s, s

a

T (s, s , a)

s

b

a

σT (s, b, a)

s

b

σR(s, b)

s

b

P(s , b)

Fig. 1 Schematic overview of the BDDs in signature refinement

3. Using k = � log2 n� BDDs P0, . . . ,Pk−1 such that
Pi (s) = 1 iff s ∈ Cb and the ith bit of b is 1. This
requires significant time to restore blocks for the refine-
ment procedure, but can require less memory [15].

We choose to use method 2, since in practice the BDD of
P(s, b) is smaller than the BDD of E(s, s′). Using P(s, b)
also has the advantage of straightforward signature compu-
tation. The logarithmic representation is incompatible with
our approach, sincewe refine all blocks simultaneously.Their
approach involves restoring individual blocks to the P(s, b)
representation, performing a refinement step, and compact-
ing the result to the logarithmic representation. Restoring all
blocks simply computes the full P(s, b).

In the implementation of signature refinement, we actu-
ally encode P using s′ variables instead of s variables, i.e.,
encoding from target states to block numbers. This is advan-
tageous for signature computation, as the signatures σT and
σR can then be computed as follows:

– σT (s, b, a) := ∃s′ : T (s, s′, a) ∧ P(s′, b)
– σR(s, b) := ∃sum s′ : R(s, s′) ∧ P(s′, b)

4.3 The refine algorithm

We present a new BDD algorithm to refine partitions accord-
ing to a signature, which maximally preserves previously
assigned block numbers.

Partition refinement consists of two steps: computing the
signatures and computing the next partition. Given the sig-
natures σT and/or σR for the current partition π , the new
partition can be computed as follows.

Since the chosen variable ordering has variables s, s′
before a, b, each path in σ ends in a (MT)BDD represent-
ing the signature for the states encoded by that path. For σT ,
every path that assigns values to s ends in a BDD on a, b. For

1 def refine(σ , P):
2 if result ← cache[(σ,P, iter)] : return result
3 v = topVar(σ , P) # interpret s′ in P as s
4 if v equals si for some i :

# match state in σ and P
5 do in parallel:
6 low ← refine(σsi=0, Ps′i=0)

7 high ← refine(σsi=1, Ps′i=1)

8 result ← lookupBDDnode(s′
i , low, high)

9 else:
# σ now encodes the state signature
# P now encodes the previous block

10 B ← decodeBlock(P)

# try to claim block B if still free
11 if blocks[B].sig = ⊥ :
12 cas(blocks[B].sig,⊥, σ )

13 if blocks[B].sig = σ :
14 result ← P
15 else:
16 B ← search_or_insert(σ, B)

17 result ← encodeBlock(B)
18 cache[(σ,P, iter)] ← result
19 return result

Algorithm 2 refine, the (MT)BDD operation that assigns block
numbers to signatures, given a signature σ and the previous
partition P .

σR , every path that assigns values to s ends in a MTBDD on
b with rational leaves.

Wimmer et al. [41] present a BDD operation refine
that “replaces” these sub-(MT)BDDs by the BDD represent-
ing a unique block number for each distinct signature. The
result is the BDD of the next partition. They use a global
counter and a hash table to associate each signature with a
unique block number. This algorithm has the disadvantage
that block number assignments are unstable. There is no guar-
antee that a stable block has the same block number in the
next iteration. This has implications for the computation of
the new signatures. When the block number of a stable block
changes, cached results of signature computation in earlier
iterations cannot be reused.
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We modify the refine algorithm to use the current par-
tition to reuse the previous block number of each state. This
also allows refining a partition with respect to only a part
of the signature, as described in Sect. 3. The modification is
applied such that it can be parallelised in Sylvan. See Algo-
rithm 2.

The algorithm has two input parameters: σ which encodes
the (partial) signature for the current partition and P which
encodes the current partition. The algorithm uses a global
counter iter, which is the current iteration. This is necessary
since the cached results of the previous iteration cannot be
reused. It also uses and updates an array blocks, which
contains the signature of each block in the new partition. This
array is cleared between iterations of partition refinement.

The implementation is similar to other BDD operations,
with an operation cache (lines 2 and 18) and a recursion step
for variables in s (lines 3–8). The two recursive operations
are executed in parallel. refine simultaneously descends
in σ and P (lines 6–7), matching the valuation of si in σ and
s′
i in P . Block assignment happens at lines 11–17. We rely
on thewell-known atomic operation compare_and_swap
(cas), which atomically compares and modifies a value in
memory. This is necessary for parallel correctness. We use
cas to claim the previous block number for the signature
(line 12). If the block number is already claimed for a dif-
ferent signature, then the current block is being split and we
call search_or_insert to assign a new block number.

Different implementations of search_and_insert
are possible. We implemented a parallel hash table that uses
a global counter for the next block number when inserting
a new pair (σ, B), similar to [41]. We also implemented
an alternative implementation that integrates the blocks
array with a skip list. A skip list is a probabilistic multi-level
ordered linked list. See [35]. This implementation performed
better in our experiments, but we omit the implementation
details due to space constraints.

4.4 Computing inert transitions

To compute the set of inert τ -transitions for branching
bisimulation s

τ→
π
s′, or more generally, to compute any inert

transition relation →∩≡ with π = S/≡ with blocks b, the
expression T (s, s′) ∧ ∃b : P(s, b) ∧P(s′, b) must be evalu-
ated. [41] writes that the intermediate BDD of ∃b : P(s, b)∧
P(s′, b), obtained by first computing P(s, b) using variable
renaming fromP(s′, b) and then∃b : P(s, b)∧P(s′, b)using
and_exists, is very large. This is no surprise, since this
intermediate result is indeed the BDD E(s, s′), which we
were avoiding by representing the partition using P(s′, b).

The solution in [41] was to avoid computing E by com-
puting the signatures and the refinement only with respect to
one block at a time, which also enables several optimisations
in [40].

1 def inert(T , Ps , Ps′):
2 if T = 0 : return 0

3 if result ← cache[(T ,Ps ,Ps′ )] : return result
# interpret s′

i in Ps as si
4 v = topVar (T , Ps , Ps′ )
5 if v equals si for some i :

# match si in T with s′
i in Ps

6 do in parallel:
7 low ← inert(Tsi=0, Ps

s′i=0, P
s′)

8 high ← inert(Tsi=1, Ps
s′i=1, P

s′)

9 result ← lookupBDDnode(si , low, high)
10 elif v equals s′

i for some i :
# match s′

i in T with s′
i in Ps′

11 do in parallel:
12 low ← inert(Ts′i=0, Ps , Ps′

s′i=0)

13 high ← inert(Ts′i=1, Ps , Ps′
s′i=1)

14 result ← lookupBDDnode(s′
i , low, high)

15 else:
# match the blocks Ps and Ps′

16 if Ps �= Ps′ : result ← 0
17 else: result ← T
18 cache[(T ,Ps ,Ps′ ] ← result
19 return result

Algorithm 3 Computes the inert transitions of a transition relation T
according to the block assignments to current states (Ps ) and next states
(Ps′ ).

We present an alternative solution, which computes →
∩ ≡ directly using a custom BDD algorithm. The inert
algorithm takes parameters T (s, s′) (T may contain other
variables ordered after s, s′) and two copies of P(s′, b): Ps

and Ps′ . The algorithm matches T and Ps on valuations
of variables s, and T and Ps′ on valuations of variables s′.
See Algorithm 3, and also Fig. 2 for a schematic overview.
When in the recursive call all valuations to s and s′ have
been matched, with Ss, Ss′ ⊆ S the sets of states represented
by these valuations, T is the set of actions that label the
transitions between states in Ss and Ss′ , Ps is the block that
contains all Ss , and Ps′ is the block that contains all Ss′ .
Then, if Ps �= Ps′ , the transitions are not inert and inert
returns False, removing the transition from T . Otherwise,
T (which may still contain other variables ordered after s, s′,
such as action labels) is returned.

5 Quotient computation

Computing the partition of the maximal bisimulation is only
the first part of the minimisation process. Wemust also apply
the partition to the original system, such that the blocks of the
partition become the states of the new transition system. A
straightforward conversion procedure encodes the new states
using the block numbers assigned during partition refine-
ment.
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Fig. 2 Schematic overview of the BDDs in the inert algorithm

Just like partition refinement, the quotient can be com-
puted with a sequence of standard BDD operations. We
describe how the Sigref tool by Wimmer et al. [41] imple-
ments this computation. Furthermore,wedevelop specialised
algorithms which significantly speedup quotient computa-
tion for the interactive transition relation (Sect. 5.1) and
for the Markovian transition relation (Sect. 5.2). Finally, we
investigate a different encoding that does not use the assigned
block numbers for the new system, but picks an arbitrary state
from each block as a representative (Sect. 5.3).

5.1 Computing the new interactive transition relation

For LTSs and IMCs, the new interactive transition relation is
computed using the original transition relation and the par-
tition. We first describe how this relation is computed using
standard BDD operations in the Sigref tool [41]. We then
present a new algorithm that performs all steps in one oper-
ation.

The Sigref tool implements two methods to compute the
new interactive transition relation. The first consists of the
following steps:

1. Merge target states to the new encoding (in b).

T (s, b, a) := ∃s′ : T (s, s′, a) ∧ P(s′, b)

2. Rename b variables to s′ variables.

T (s, s′, a) := T (s, b, a)[b ← s′]

3. Merge source states to the new encoding (in b).

T (s′, b, a) := ∃s : T (s, s′, a) ∧ P ′(s, b)

4. Rename b variables to s variables.

T (s, s′, a) := T (s′, b, a)[b ← s]

5. Remove τ -loops (only for branching bisimulation).

T (s, s′, a) := T (s, s′, a) ∧ ¬(s = s′ ∧ a = τ)

Encoding and merging states (steps 1 and 3) are carried
out using theBDDoperation and_exists on the transition
relation and the partition, where the existential quantification
causes the transitions to states in the same block and from
states in the same block to be combined like a set union. It
is straightforward to see that the result is correct, as long as
τ -loops are removed for branching bisimulation. For strong
bisimulation, all states in a block have the same transitions, so
existential quantification has no effect. For branching bisim-
ulation, all states in a block can reach transitions via inert
τ -steps, so combining the transitions with existential quan-
tification is necessary to compute the correct result.

Step 1 requires the partition defined on s′ and b variables,
whereas step 3 requires the partition defined on s and b vari-
ables, in order to perform and_exists. Therefore, one
additional rename operation is required to obtain a duplicate
of the partition defined on the other variables. The algorithm
to compute the quotient is then as follows:

1 def quotient(T (s, s′, a), P(s′, b)):
2 T (s, b, a) ← and_exists(T , P , s′)
3 T (s, s′, a) ← rename(T , [b ← s′])
4 P ′(s, b) ← rename(P , [s′ ← s])
5 T (s′, b, a) ← and_exists(T , P ′, s)
6 T (s, s′, a) ← rename(T , [b ← s])

# for branching bisimulation:
7 T ← and(T , ¬(s = s′ ∧ a = τ))
8 return T

Steps 1–5 coincide with lines 2–7 in the above algorithm.
The BDD for s = s′ ∧ a = τ (line 7) is trivial and can be
computed just before line 7.

The Sigref tool also implements a more optimised ver-
sion, by introducing b′ variables that are interleaved with the
b variables, similar to how s and s′ variables are interleaved.
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1. Merge target states to the new encoding (in b′).

T (s, b′, a) := ∃s′ : T (s, s′, a) ∧ P ′(s′, b′)

2. Merge source states to the new encoding (in b).

T (b, b′, a) := ∃s : T (s, a, b′) ∧ P ′′(s, b)

3. Rename b and b′ variables to s and s′ variables.

T (s, s′, a) := T (a, b, b′)[b ← s, b′ ← s′]

4. Remove τ -loops (only for branching bisimulation).

T (s, s′, a) := T (s, s′, a) ∧ ¬(s = s′ ∧ a = τ)

Since we use s′ and b variables for P , two rename opera-
tions would be required to compute P ′(s′, b′) and P ′′(s, b).
Instead, we perform this version as follows:

1. Merge target states to the new encoding (in b).

T (s, b, a) := ∃s′ : T (s, s′, a) ∧ P(s′, b)

2. Rename s and b variables to s′ and b′ variables.

T (s′, b′, a) := T (s, b, a)[s ← s′, b ← b′]

3. Merge source states to the new encoding (in b).

T (b, b′, a) := ∃s : T (s′, b′, a) ∧ P(s′, b)

4. Rename b and b′ variables to s and s′ variables.

T (s, s′, a) := T (b, b′, a)[b ← s, b′ ← s′]

5. Remove τ -loops (only for branching bisimulation).

T (s, s′, a) := T (s, s′, a) ∧ ¬(s = s′ ∧ a = τ)

This procedure avoids creating a copy of P by renaming.
The implementation is then as follows:

1 def quotient(T (s, s′, a), P(s′, b)):
2 T (s, b, a) ← and_exists(T , P , s′)
3 T (s′, b′, a) ← rename(T , [s ← s′, b ← b′])
4 T (b, b′, a) ← and_exists(T , P , s)
5 T (s, s′, a) ← rename(T , [b ← s, b′ ← s′])

# for branching bisimulation:
6 T ← and(T , ¬(s = s′ ∧ a = τ))
7 return T

These algorithms still compute intermediate results that
could be avoided by combining several steps into one opera-
tion. For example, every rename operation essentially creates

1 def quotient(T , Ps , Ps′):
2 if T = 0 : return 0

3 if result ← cache[(T ,Ps ,Ps′ )] : return result
# interpret s′

i in Ps as si
4 v = topVar (T , Ps , Ps′ )
5 if v equals si for some i :

# match si in T with s′
i in Ps

6 low ← quotient(Tsi=0, Ps
s′i=0, P

s′)

7 high ← quotient(Tsi=1, Ps
s′i=1, P

s′)

8 result ← or(low, high)
9 elif v equals s′

i for some i :
# match s′

i in T with s′
i in Ps′

10 low ← quotient(Ts′i=0, Ps , Ps′
s′i=0)

11 high ← quotient(Ts′i=1, Ps , Ps′
s′i=1)

12 result ← or(low, high)
13 else:

# remove inert τ-loops (branching
only)

14 if Ps = Ps′ : T ← T ∧ ¬τ

# convert blocks Ps and Ps′

15 result ← makecube(Ps ,Ps′ ,T ))

16 cache[(T ,Ps ,Ps′ ] ← result
17 return result

18 def makecube(Bs , Bs′ , A, V = s ∪ s′):
19 if Bs = 0 ∨ Bs′ = 0 : return 0
20 if V = ∅ : return A
21 v, V ← var(V), next(V)
22 if v equals si for some i :
23 low ← makecube(low(Bs),Bs′ ,A,V)

24 high ← makecube(high(Bs),Bs′ ,A,V)
25 return lookupBDDnode(v, low, high)
26 else:
27 low ← makecube(Bs ,low(Bs′),A,V)

28 high ← makecube(Bs ,high(Bs′),A,V)
29 return lookupBDDnode(v, low, high)

Algorithm4 Computes the quotient of a transition relationT according
to the block assignments to current states (Ps ) and next states (Ps′ ).

a duplicate of the original BDD, when most BDD nodes
are affected by the renaming. Using a custom operation can
mitigate this. Similar to the inert algorithm discussed in
Sect. 4.4, we implement the algorithm quotient that com-
bines all steps of the above two algorithms. See Fig. 3 and
Algorithm 4. Note the similarities with Fig. 2 and Algo-
rithm 3.

Like the inert operation, we evaluate and match the
transition relation with two copies of the partition (lines 1–
12) and obtain the source block, the target block, and the set
of actions at line 14–15. If we perform branching bisimula-
tion and the source and target blocks are identical, we remove
the τ transition from the obtained set of actions (line 14). As
the two BDDs for the blocks are simple cubes that encode
exactly one block by assigning a value to each b variable, and
T is the set of actions A, it is very straightforward to compute
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Fig. 3 Schematic overview of the BDDs in the quotient algorithm for interactive transition relations

the BDD representing the triple (s, s′, A) using the recursive
function makecube (line 15), which we included for com-
pleteness in Algorithm 4 at lines 18–29. Then, we combine
all tuples computed at line 15with or (lines 8 and 12), which
has the same effect as existential quantification in the original
algorithm.

5.2 Computing the new Markovian transition relation

For CTMCs and IMCs, the new Markovian transition rela-
tion must be computed. We first describe how this relation
is computed using standard BDD operations in the Sigref
tool [41]. We then present a new algorithm that combines
several steps of the computation.

The Sigref tool uses the following method to compute
the new Markovian transition relation:

1. Merge target states to the new encoding (in b).

R(s, b) := ∃sums′ : R(s, s′) ∧ P(s′, b)

2. Rename b variables to s′ variables.

R(s, s′) := R(s, b)[b ← s′]

3. Merge source states to the new encoding (in b).

R(s′, b) := ∃maxs : R(s, s′) ∧ P ′(s, b)

4. Rename b variables to s variables.

R(s, s′) := R(s′, b)[b ← s]

First, the target states are converted to the new encoding
using and_exists_sum, as transition rates to differ-
ent states in the same block are added to obtain R(s, b).
The variables b are renamed to s′ to obtain R(s, s′). The
source states are then converted to the new encoding using

and_exists_max, as we take the maximum, as discussed
in Sect. 3, to obtain R(s′, b). Finally, the variables b are
renamed to s to obtain the resultR(s, s′).

The algorithm to compute the quotient is then as follows:

1 def quotient(R(s, s′), P(s′, b)):
2 R(s, b) ← and_exists_sum(R, P , s′)
3 R(s, s′) ← rename(R, [b ← s′])
4 P ′(s, b) ← rename(P , [s′ ← s])
5 R(s′, b) ← and_exists_max(R, P , s)
6 R(s, s′) ← rename(R, [b ← s])
7 return R

We also implemented a custom quotient operation for
the Markovian transition relation. However, not all steps
can be combined like with interaction transition relation,
since adding rates from states to blocks must be done
before the source states are merged. Thus, we can only
combine steps 2–4. Thequotientoperation for theMarko-
vian transition relation is similar to the implementation of
and_exists_max in Sylvan, modified to perform the
rename operations on the fly and we omit it due to space
limitations.

5.3 Alternative encoding for new states

The standard encoding of the states in the new transition
system uses the block numbers assigned during partition
refinement. This can have a significant disadvantage. Sym-
bolic models are powerful as they can represent large state
spaces efficiently by exploiting structural properties of the
transition system, like symmetries and independent vari-
ables. Such properties are lost when using the block numbers
of the partition.

We propose an alternative encoding “pick-one-state” that
picks one state from each block to represent all states in
the block. Each path in P to the sub-BDD that repre-
sents a block (on b variables) encodes states in that block,
such that state variables encountered along the path are
True if the high edge was followed and False if the low
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1 def pick(P , path):
2 if P = 0 : return
3 if cache[P] : return
4 cache[P] ← �
5 v = var (P)
6 if v is a block variable :
7 B ← decodeBlock(P)

8 if picked[B] = ⊥ :
9 picked[B] ← pick_one_state(path)
10 else:
11 do in parallel:
12 pick(Pv=0, path + ¬v)
13 pick(Pv=1, path + v)

Algorithm 5 Algorithm pick to obtain one state for each block in the
partition.

edge was followed. We use this information to compute
exactly one state (encoded using b variables, with miss-
ing state variables set to False) that represents the block
and store this state in an array. Since we are simply inter-
ested in obtaining one state that represents each block, we
only need to visit each node in the BDD P once, so we
use the operation cache to denote whether we have visited
the node. See Algorithm 5. This algorithm pick fills an
array picked with a single state for each block, obtained
from the path as described above using a helper function
pick_one_state.

After obtaining a single state for each block, we can use
an algorithm similar to refine (Sect. 4.3) to replace each
block in P by the selected state (encoded using b variables).
Then, the same algorithms as in Sects. 5.1 and 5.2 compute
the new transition system using the proposed encoding.

6 Tool support

Weimplementedmulti-core symbolic signature-basedbisim-
ulation minimisation in a tool called SigrefMC. The tool
supports LTSs, CTMCs, and IMCs delivered in two input
formats, the XML format used by the original Sigref tool
and the BDD format that the tool LTSmin [28] generates for
variousmodel checking languages. SigrefMC supports both
the floating-point and the rational representation of rates in
continuous-time transitions.

One of the design goals of this tool is to encourage
researchers to extend it for their own file formats and notions
of bisimulation, and to integrate it in other toolsets. There-
fore, SigrefMC is freely available online1 and licensed
with the permissive Apache 2.0 license. Documentation is
available and instructions for extending the tool for dif-
ferent input/output formats and types of bisimulation are
included.

1 https://github.com/utwente-fmt/sigrefmc.

6.1 Support for LTSMIN

SigrefMC supports models are generated by the model
checking toolset LTSmin. LTSmin provides a language-
independent Partitioned Next-State Interface (Pins), which
connects various input languages to model checking algo-
rithms [6,28,31]. In Pins, the states of a system are
represented by vectors of N integer values. Furthermore,
transitions are distinguished in K disjunctive “transition
groups”, i.e., each transition in the system belongs to one
of these transition groups. The transition relation of each
transition group usually only depends on a subset of the
entire state vector called the “short vector”, further distin-
guished by the variables that are “read” and the variables
that are “written” [31]. This enables the efficient encoding of
transitions that only affect some integers of the state vector.
Exploiting this information lets the Pins interface work in
a quasi-symbolic way, as a single pair of short vectors can
represent many transition relations on the full state vector.

Initially, LTSmin does not have knowledge of the tran-
sitions in each transition group, and only the initial state
is known. The transition system is explored by learning
new transitions via the Pins interface, which are then added
to the transition relation. Various input languages con-
nect to LTSmin via the Pins interface by implementing a
next-state function, which produces all target states (as
write vectors) reachable from a given source state (as read
vector). Using the LTSmin toolset, we can convert process
algebra specifications in the language mCRL2 [13] to the
BDD file format that SigrefMC supports. We can then min-
imise the obtained LTS using the techniques described in
this paper and obtain the result, either as a symbolic LTS or
as a simple explicit-state enumeration of transitions between
states.

7 Experimental evaluation

This section reports on the experimental evaluation of the
techniques proposed in this paper. We study the improve-
ments to signature refinement in Sect. 7.1, the improvements
to quotient computation in Sect. 7.2, the effect of ordering
block variables after or before action variables in Sect. 7.3,
and finally the performance of the presented tool SigrefMC
on process algebra benchmarks produced with LTSmin in
Sect. 7.4. We also refer to the full experimental data that are
available online2 and can be reproduced.

When comparing SigrefMC to other tools, we restrict
ourselves to the symbolic bisimulation minimisation tool
Sigref byWimmer et al., as [41] already comparesSigref to

2 https://github.com/utwente-fmt/sigrefmc-sttt16.
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Table 1 Computation time in seconds for partition refinement on the benchmarks, comparing Sigref with SigrefMC

Model States Blocks Time Speedups

Tw T1 T48 Seq. Par. Total

LTS models (strong)

kanban03 1,024,240 85,356 92.16 10.09 0.88 9.14× 11.52× 105.29×
kanban04 16,020,316 778,485 1410.66 148.15 11.37 9.52× 13.03× 124.06×
kanban05 16,772,032 5,033,631 – 1284.86 73.57 – 17.47× –

kanban06 264,515,056 25,293,849 – – 2584.23 – – –

LTS models (branching)

kanban04 16,020,316 2785 8.47 0.52 0.24 16.39× 2.11× 34.60×
kanban05 16,772,032 7366 34.11 1.48 0.43 22.98× 3.47× 79.81×
kanban06 264,515,056 17,010 118.19 3.87 0.83 30.55× 4.65× 142.20×
kanban07 268,430,272 35,456 387.16 8.83 1.66 43.86× 5.31× 232.71×
kanban08 4,224,876,912 68,217 1091.67 17.91 2.98 60.96× 6.02× 366.72×
kanban09 4,293,193,072 123,070 3186.48 34.23 5.51 93.10× 6.21× 578.59×

CTMC models

cycling-4 431,101 282,943 220.23 26.72 2.60 8.24× 10.29× 84.84×
cycling-5 2,326,666 1,424,914 1249.23 170.28 19.42 7.34× 8.77× 64.34×
fgf 80,616 38,639 71.62 8.86 0.88 8.08× 10.04× 81.20×
p2p-5-6 230 336 750.29 26.96 2.99 27.83× 9.03× 251.24×
p2p-6-5 230 266 248.17 9.49 1.21 26.15× 7.82× 204.47×
p2p-7-5 235 336 2280.76 24.01 2.97 94.99× 8.08× 767.12×
polling-16 1,572,864 98,304 792.82 118.50 10.18 6.69× 11.64× 77.85×
polling-17 3,342,336 196,608 1739.01 303.65 22.58 5.73× 13.45× 77.03×
polling-18 7,077,888 393,216 – 705.22 49.81 – 14.16× –

robot-020 31,160 30,780 28.15 3.21 0.60 8.78× 5.36× 47.04×
robot-025 61,200 60,600 78.48 6.78 0.95 11.58× 7.11× 82.39×
robot-030 106,140 105,270 174.30 12.26 1.47 14.21× 8.33× 118.44×

IMC models (strong)

ftwc01 2048 1133 1.26 1.14 0.2 1.11× 5.76× 6.38×
ftwc02 32,768 16,797 154.55 102.07 15.85 1.51× 6.44× 9.75×

IMC models (branching)

ftwc01 2048 430 1.12 0.77 0.13 1.45× 6.07× 8.83×
ftwc02 32,786 3886 152.9 50.39 4.89 3.03× 10.3× 31.26×

Each data point is an average of at least 15 runs. The timeout was 3600 s

other explicit-state and symbolic bisimulation minimisation
tools.

7.1 Signature refinement

7.1.1 Design

To study the improvements to signature refinement that
we present in this paper, we compared our results (using
the skip list variant of refine) to Sigref 1.5 [40] for
LTS and IMC models, and to a version of Sigref used
in [38] for CTMC models. For the CTMC models, we
used Sigref with rational numbers provided by the GMP

library and SigrefMC with rational number support by
Sylvan. For the IMC models, version 1.5 of Sigref does
not support the GMP library and the version used in [38]
does not support IMCs. We used SigrefMC with float-
ing points for a fairer comparison, but the tools give a
slightly different number of blocks, due to the use of floating
points.

We restrict ourselves to the models presented in [38,41]
and an IMC model that is part of the distribution of Sigref.
These models have been generated from PRISM bench-
marks using a custom version of the PRISM toolset [30].
We refer to the literature for a description of these
models.
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Fig. 4 Time per iteration for Sigref and SigrefMC (1 worker), and
the number of new blocks per iteration for strong bisimulation of the
kanban04 LTS model

We perform experiments on the three tools using a 48-core
machine, containing 4 AMD OpteronTM 6168 processors
with 12 cores each. We measure the runtimes for the parti-
tion refinement algorithm (excluding file-I/O) using Sigref,
SigrefMCwith only 1worker, and SigrefMCwith 48work-
ers.

Apart from the new refine and inert algorithms pre-
sented in the current paper, there are several other differences.
The first is that the original Sigref uses the CUDD imple-
mentation of BDDs, while SigrefMC uses Sylvan, along
with some extra BDD algorithms that avoid explicitly com-
puting variable renaming of some BDDs. The second is that
Sigref has several optimisations [40] that are not available
in SigrefMC.

7.1.2 Results

See Table 1 for the results of these experiments. These results
were obtained by repeating each benchmark at least 15 times

and taking the average. The timeout was set to 3600 s. The
column “States” shows the number of states before bisimu-
lation minimisation and “Blocks” the number of equivalence
classes after bisimulation minimisation. We show the wall
clock time using Sigref (Tw), using SigrefMC with 1
worker (T1) and using SigrefMCwith 48 workers (T48). We
compute the sequential speedup Tw/T1, the parallel speedup
T1/T48, and the total speedup Tw/T48.

Note that we obtained these results using the variable
ordering s, s′ < a < b; the other experiments are com-
puted using the variable ordering s, s′ < b < a, as discussed
below and in Sect. 4.2.

Due to space constraints, we do not include all results, but
restrict ourselves to larger models. We refer to the full exper-
imental data that is available online. In the full set of results,
excluding executions that take less than 1 s, SigrefMC is
always faster sequentially and always benefits from paral-
lelism.

The results show a clear advantage for larger models. One
interesting result is for the p2p-7-5 model. This model is
ideal for symbolic bisimulation with a large number of states
(235) and very few blocks after minimisation (336). For this
model, our tool is 95× faster sequentially and has a parallel
speedup of 8×, resulting in a total speedup of 767×. The
best parallel speedup of 17× was obtained for the kanban05
model.

In almost all experiments, the signature computation dom-
inates with 70–99% of the execution time sequentially. We
observe that the refinement step sometimes benefits more
from parallelism than signature computation, with speedups
up to 29.9×. We also find that reusing block numbers for
stable blocks causes a major reduction in computation time
towards the end of the procedure. The kanban LTS mod-
els and the larger polling CTMC models are an excellent
case study to demonstrate this. See Fig. 4. There is a clear
correlation between the number of new blocks per iteration
and the time per iteration for SigrefMC, while the time per
iteration for Sigref seems to correlate with the number of
blocks.

7.2 Quotient computation

7.2.1 Design

To study the different methods for quotient computation, we
implemented the methods described in Sects. 5.1 and 5.2:

– block-s: block encoding using standard operations
– block: block encoding using specialised operations
– pick: pick-one-state encoding, specialised operations

We computed the partition in SigrefMC using rational
numbers for the Markovian transitions and with the variable
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Table 2 Computation time in seconds for different implementations of quotient computation

block-s block pick

T1 T48 Sp. T1 T48 Sp. T1 T48 Sp.

LTS model (strong)

kanban03 24.64 1.5 16.42× 9.48 0.48 19.85× 6.72 0.35 19.08×
kanban04 370.16 21.25 17.42× 129.19 7.84 16.47× 106.22 5.38 19.73×
kanban05 – 175.92 – 1114.06 55.26 20.16× 740.53 33.80 21.91×

LTS model (branching)

kanban04 1.08 0.12 8.91× 0.20 0.03 6.67× 0.16 0.04 3.65×
kanban05 3.48 0.33 10.71× 0.68 0.09 7.60× 0.51 0.10 5.05×
kanban06 11.44 1.10 10.38× 1.90 0.27 6.95× 1.42 0.30 4.78×
kanban07 29.94 3.02 9.93× 5.38 0.77 7.00× 3.17 0.64 4.93×
kanban08 110.47 8.34 13.24× 11.52 1.52 7.56× 7.01 1.29 5.44×
kanban09 200.44 18.77 10.68× 27.05 3.83 7.06× 14.21 2.74 5.19×

CTMC model

cycling-4 170.2 9.51 17.91× 40.22 3.05 13.21× 59.51 3.32 17.90×
cycling-5 1039.17 55.52 18.72× 231.25 14.01 16.50× 294.15 13.48 21.83×
fgf 17.77 1.64 10.83× 6.12 0.61 9.99× 7.42 0.73 10.20×
kanban-3 19.32 1.5 12.87× 6.4 0.58 11.07× 7.04 0.49 14.26×
kanban-4 285.52 14.72 19.40× 81.57 4.67 17.48× 104.65 5.08 20.60×
p2p-5-6 22.1 2.34 9.45× 9.66 1.12 8.63× 10.25 1.41 7.29×
p2p-6-5 7.45 0.91 8.17× 3.41 0.45 7.64× 3.67 0.55 6.71×
p2p-7-5 17.55 2.02 8.71× 8.84 1.05 8.39× 9.26 1.19 7.79×
polling-16 176.47 8.74 20.20× 95.33 4.83 19.76× 66.25 4.49 14.75×
polling-17 416.17 20.65 20.16× 223.11 11.51 19.39× 161.74 10.02 16.14×
polling-18 1063.13 53.38 19.92× 542.02 26.43 20.51× 359.49 21.68 16.58×
robot-020 3.47 0.27 12.68× 1.72 0.16 10.83× 1.55 0.12 12.57×
robot-025 6.97 0.54 13.00× 3.39 0.32 10.66× 2.91 0.25 11.83×
robot-030 12.36 1.03 12.04× 5.84 0.53 10.98× 4.81 0.41 11.78×

IMC model (strong)

ftwc01 1.62 0.16 10.06× 1.69 0.14 12.22× 0.96 0.08 11.98×
ftwc02 208.89 20.78 10.05× 370.16 36.65 10.10× 301.88 15.34 19.68×

IMC model (branching)

ftwc01 0.36 0.05 6.99× 0.3 0.03 9.00× 0.19 0.03 6.83×
ftwc02 17.13 1.72 9.98× 15.73 1.45 10.86× 5.24 0.49 10.77×

Each data point is an average of at least 12 runs. The timeout was 1200 s to compute the partition and the quotient

ordering s, s′ < b < a for the interactive transitions.Weused
the same 48-core machine as for the experiments in Sect. 7.1.
Wemeasure the time for quotient computation with 1 worker
and with 48 workers. Our experimental setup performed all
benchmarks in random order and repeated the experiments
ad infinitum. When we halted the script, every benchmark
was performed at least 12×. The timeout was set to 1200 s,
including time to compute the partition.

7.2.2 Results

See Table 2 for the results of these experiments. The results
show that the block implementation is faster than the

block-s implementation, except for the ftwc02 model.
For CTMC models, using specialised operations results in
a speedup of 2–3×. For LTS models, using specialised oper-
ations results in a speedup of 5–9×. The pick-one-state
encoding shows mixed results for computation time, as it
can be slower or faster than block encoding. Furthermore,
we obtain a parallel speedup of up to 20.5× for the block
encoding and 21.9× with the pick-one-state encoding, with
48 workers.

See Table 3 for the sizes of the computed transition
relations using block encoding and using pick-one-state
encoding, in number ofBDDnodes. Inmany cases, pick-one-
state encoding is superior, with up to 5162× smaller BDDs
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Table 3 Number of BDDnodes for the transition relation after quotient
computation, for the block number encoding and the pick-one-state
encoding

block pick factor

LTS (strong)

kanban03 710,359 6137 115.75×
kanban04 6,553,843 14,599 448.92×
kanban05 43,901,839 27,600 1590.65×

LTS (branching)

kanban04 17,510 1081 16.20×
kanban05 47,920 1259 38.06×
kanban06 110,069 1944 56.62×
kanban07 233,902 1999 117.01×
kanban08 442,890 2838 156.06×
kanban09 800,649 3388 236.32×

IMC (strong)

ftwc01 47,859 660 72.51×
ftwc02 5,669,528 1208 4693.32×

IMC (branching)

ftwc01 2137 285 7.50×
ftwc02 49,093 413 118.87×
ftwc03 1,236,052 541 2284.75×

CTMC

cycling-4 1,869,641 185,824 10.06×
cycling-5 8,960,365 430,936 20.79×
fgf 422,954 38,452 11.00×
kanban-3 354,774 2473 143.46×
kanban-4 3,032,327 4899 618.97×
p2p-5-6 1513 2635 0.57×
p2p-6-5 1039 2151 0.48×
p2p-7-5 1428 3057 0.47×
polling-16 715,145 494 1447.66×
polling-17 1,442,013 529 2725.92×
polling-18 2,901,462 562 5162.74×
robot-020 148,385 3790 39.15×
robot-025 260,514 4785 54.44×
robot-030 411,624 5512 74.68×

for the polling models. For the p2p models, block encoding
is superior, likely due to the small number of blocks after
bisimulation minimisation.

7.3 Variable ordering

7.3.1 Design

As discussed in Sect. 4.2, we can choose to order block
variables b before or after action variables a in the variable
ordering of theBDDs. To compare the ordering s, s′ < a < b

and s, s′ < b < a, we compare signature refinement and
quotient computation for the kanban LTS models.

We expect that in general ordering b before a is the best
choice. If we have a variables before b variables, then it is
guaranteed that all BDD nodes on a variables are recreated
when we compute signatures for partition refinement and
when we compute the quotient, whereas they may be reused
if a variables are last in the ordering.

7.3.2 Results

See Table 4 for the results of this experiment. All data points
are computed with at least 5 runs. We computed the quo-
tient using the pick-one-state algorithm. We see that in most
cases the ordering with b before a is superior. We observe
a stronger effect for partition refinement than for quotient
computation. The surprising exception is quotient computa-
tion of the kanban04 model with strong bisimulation, where
the ordering with a before b is slightly better, although the
total time still favours ordering b before a.

7.4 Process algebra experiments

7.4.1 Design

As described in Sect. 6.1, we extended SigrefMC with
support for BDDs produced by the model checking toolset
LTSmin from process algebra models specified in the
mCRL2 specification language.

We first took a number of communication protocols from
the mCRL2 example directory, in particular the bounded
retransmission protocol (BRP) and the Sliding Window Pro-
tocol (SWP). We made them parametric in the number of
data elements, number of retries, window size, etc. We also
include a number of distributed algorithms. We ported the
probabilistic leader election protocols [3], based on Dolev–
Klawe–Rodeh and Franklin, fromμCRL tomCRL2. We also
included Hesselink’s hardware register [27]. Finally, we also
included an industrial case study: Workload Management
System of the computation grid at the Large Hadron Collider
LHC (CERN), specified in [36].

This leads to the following specifications:

– SWP_m_n: the Sliding Window Protocol [1] on m
data items, with window size n. This specifies a one-
directional version of the sliding window protocol. n
subsequent data items can be sent and acknowledged in
arbitrary order. This requires sequence numbers mod-
ulo 2n. Its external behaviour is equivalent to a 2n-place
buffer.

– BRP_m_�_n: the bounded retransmission protocol [24]
on m data items, sending a list of length � and with n
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Table 4 Computation time in seconds on the LTS benchmarks, with the variable orders s, s′ < a < b and s, s′ < b < a, for both partition
refinement and quotient computation, with 1 worker and 48 workers

Model (bisimulation) Partition, 1 worker Partition, 48 workers Quotient, 1 worker Quotient, 48 workers

a < b b < a a < b b < a a < b b < a a < b b < a

kanban03 (strong) 8.69 6.86 1.10 1.01 6.83 6.72 0.36 0.35

kanban04 (strong) 127.54 102.11 13.86 11.66 98.12 106.22 4.25 5.38

kanban05 (strong) 1211.20 1076.17 99.63 95.09 854.62 740.53 34.17 33.80

kanban04 (branching) 0.40 0.38 0.22 0.23 0.16 0.16 0.04 0.04

kanban05 (branching) 1.12 1.05 0.43 0.39 0.51 0.51 0.11 0.10

kanban06 (branching) 2.88 2.65 0.92 0.89 1.42 1.42 0.30 0.30

kanban07 (branching) 6.46 5.95 2.06 2.21 3.18 3.17 0.65 0.64

kanban08 (branching) 13.09 11.95 4.27 3.60 7.04 7.01 1.33 1.29

kanban09 (branching) 24.37 22.24 7.28 6.99 14.47 14.21 3.01 2.74

retries. This protocol extends the ABP, but gives up after
n retries. The status of the transmission is returned to
both the sender and the receiver. The external behaviour
is a bit complicated, since the sender cannot distinguish
if the last data element or the last acknowledgement got
lost.

– DKR_n: randomised variant [3] of Dolev–Klawe–Rod-
eh’s [22] Leader Election Protocol on a uni-directional
ring with n anonymous partners. Several rounds may be
needed when partners choose the same identity. The pro-
tocol is based on hop counters and on an alternating bit to
distinguish subsequent rounds. The external behaviour is
equivalent to a single leader action.

– Franklin_n_m: randomised variant [3] of Franklin’s
Leader Election Protocol [23], but now on a bidirectional
ringwith n partners, usingm ≤ n different identities. The
external behaviour is again equivalent to a single leader
action.

– Hesselink_n: Hesselink’s handshake register [27], con-
structed from four safe registers and four Boolean atomic
registers, modelled in mCRL2 by Groote, and used for
experimentation in [34].

– WMS: this models the Workload Management System
of the DIRAC (Distributed Infrastructure with Remote
Agent Control) for the Large Hadron Collider experi-
ments at CERN, as described in [36].

We used the following toolchain to generate input files for
SigrefMC:

1. mcrl22lps -Dfvn from the mCRL2 toolset to gen-
erate LPS files from the specifications

2. lps2lts-sym --vset=lddmc from the LTSmin
toolset to generate the transition systems in LDD format
from the LPS files

3. ldd2bdd from the LTSmin toolset to convert the tran-
sition systems from LDDs to BDDs

To evaluate SigrefMC on these models, we performed
the same experiments as in Sect. 7.2.

Wemeasure the time for partition refinement and quotient
computation with 1 worker and with 48 workers. Our exper-
imental setup performed all benchmarks in random order
and repeated the experiments ad infinitum. When we halted
the script, every benchmark was performed at least 6×. The
timeout was set to 1200 s for the entire program, i.e., partition
refinement and quotient computation.

7.4.2 Results

The results are summarised in Tables 5 and 6. We do not
include all results to conserve space; all results from the
experiments are available online.

It is interesting to see that both strong andbranchingbisim-
ulation result in huge reductions. We see clear benefit from
parallel processing, with speedups of up to 24.7× for sig-
nature refinement and up to 24.5× for quotient computation
(block encoding)

The pick-one-state encoding does not work so well here.
Probably because the number of blocks is low; also the state
vectors are relatively long. For a few models, the pick-one-
state encoding works relatively well; these are models that
have a high number of blocks.

8 Conclusions

Originally,we intended to investigate parallelism in symbolic
bisimulation minimisation. To our surprise, we obtained a
muchhigher sequential speedupusing specialisedBDDoper-
ations, as demonstrated by the results in Table 1 and Fig. 4.
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Table 5 Results for the process algebra benchmarks generated with LTSmin

Model States Blocks Signature refinement Quotient (block-s) Quotient (block)

T1 T48 Sp. T1 T48 Sp. T1 T48 Sp.

LTS model (strong)

brp-2-4-4 11,182 2976 3.92 0.35 11.23× 1.32 0.43 3.08× 0.57 0.04 13.26×
brp-3-4-4 40,592 10,326 13.50 0.92 14.75× 5.30 0.63 8.48× 2.45 0.14 17.53×
brp-4-4-4 109,422 27,106 38.91 2.23 17.43× 18.03 1.49 12.10× 9.84 0.52 18.93×
dkr-3 11,455 208 7.64 0.54 14.05× 3.64 0.38 9.57× 1.31 0.09 14.50×
dkr-4 909,593 3429 – 115.28 – – 25.86 – – 4.99 –

franklin-3-2 11,805 702 7.15 0.47 15.21× 4.71 0.42 11.12× 0.99 0.07 13.55×
franklin-3-3 41,401 883 24 1.24 19.40× 16.25 1.05 15.52× 3.13 0.19 16.46×
franklin-4-2 272,241 10,706 330.56 14.67 22.53× 204.68 9.65 21.21× 28.04 1.43 19.63×
franklin-4-3 5,269,441 17,738 – 441.56 – – 115.02 – – 13.87 –

hesselink-2 540,736 1018 3.49 0.34 10.30× 1.96 0.30 6.60× 0.43 0.07 5.94×
hesselink-3 13,834,800 2835 17.70 1.42 12.50× 16.16 1.57 10.27× 2.33 0.35 6.58×
hesselink-4 142,081,536 6036 51.41 3.56 14.44× 66.71 5.37 12.43× 7.01 1.21 5.78×
hesselink-5 883,738,000 11,005 179.85 12.61 14.26× 313.42 25.40 12.34× 22.32 3.64 6.14×
swp-2-4 2,589,056 69,555 267.46 11.33 23.60× 258.66 13.40 19.30× 30.78 1.39 22.21×
swp-3-2 52,380 4710 4.12 0.25 16.45× 4.98 0.39 12.71× 0.73 0.05 14.57×
swp-3-3 1,652,724 65,025 142.60 6.13 23.26× 188.10 9.60 19.60× 24.89 1.11 22.39×
swp-4-2 140,352 11,553 9.77 0.54 18.02× 13.18 0.98 13.40× 1.96 0.12 16.10×
swp-4-3 7,429,632 – 630.73 25.92 24.34× – 47.05 – 111.69 4.55 24.56×
WMS 155,034,776 1 0.12 0.02 4.91× 0.11 0.20 0.56× 0.10 0.13 0.79×

LTS model (branching)

brp-2-4-4 11,182 98 3.63 0.36 10.11× 0.28 0.10 2.67× 0.18 0.02 7.71×
brp-3-4-4 40,592 328 13.78 0.98 14.08× 0.28 0.10 2.67× 0.18 0.02 7.71×
brp-4-4-4 109,422 858 39.71 2.16 18.38× 4.04 0.48 8.47× 4.52 0.23 19.64×
dkr-3 11,455 2 4.46 0.33 13.39× 0.94 0.38 2.47× 0.63 0.05 11.79×
dkr-4 909,593 2 349.24 15.31 22.81× 45.30 10.60 4.27× 25.73 1.37 18.82×
franklin-3-2 11,805 2 3.62 0.29 12.58× 0.53 0.35 1.50× 0.28 0.04 6.64×
franklin-3-3 41,401 2 11.94 0.66 17.96× 1.80 0.47 3.88× 0.95 0.07 13.55×
franklin-4-2 272,241 2 50.97 2.40 21.28× 4.76 1.76 2.71× 2.19 0.18 12.28×
franklin-4-3 5,269,441 2 807.72 32.69 24.71× 67.70 22.37 3.03× 31.94 1.56 20.52×
hesselink-2 540,736 72 7.64 0.79 9.71× 0.73 0.15 4.80× 0.19 0.03 6.33×
hesselink-3 13,834,800 189 37.10 2.76 13.46× 5.88 0.66 8.86× 0.94 0.13 7.36×
hesselink-4 142,081,536 384 114.37 7.98 14.33× 26.66 2.05 12.97× 2.79 0.38 7.44×
hesselink-5 883,738,000 675 351.69 23.93 14.70× 102.95 7.38 13.95× 8.33 1.11 7.49×
swp-2-4 2,589,056 511 116.16 5.08 22.88× 20.58 1.33 15.53× 2.32 0.13 18.09×
swp-3-2 52,380 121 4.41 0.31 14.07× 0.67 0.09 7.76× 0.11 0.01 11.00×
swp-3-3 1,652,724 1093 135.99 6.21 21.88× 18.35 1.16 15.84× 2.34 0.12 19.51×
swp-4-2 140,352 341 8.13 0.46 17.85× 1.96 0.34 5.74× 0.28 0.03 11.13×
swp-4-3 7,429,632 5461 420.09 17.13 24.52× 99.64 5.42 18.38× 10.59 0.49 21.68×
WMS 155,034,776 1 0.36 0.22 1.66× 0.11 0.22 0.51× 0.10 0.11 0.93×

We compute the partition using SigrefMC and the quotient using the block-s and the block algorithms and give the computation time in
seconds

The specialised BDD operations offer a clear advantage
sequentially and the integration with Sylvan results in decent
parallel speedups. Our best result had a total speedup of
767×. By also using specialisedBDDoperations for quotient

computation, we demonstrated performance improvements
in 2–10× over using standard BDD operations.

The success of this approach suggests that for applica-
tions that involve decision diagrams, specialised operations
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Table 6 Results for the process algebra benchmarks generated with LTSmin

Model States Blocks quotient (pick) Number of nodes

T1 T48 Sp. block pick Factor

LTS model (strong)

brp-2-4-4 11,182 2976 0.68 0.05 13.60× 9383 10,390 0.9×
brp-3-4-4 40,592 10,326 2.85 0.16 17.42× 22,981 21,935 1.05×
brp-4-4-4 109,422 27,106 10.94 0.58 18.69× 43,414 48,777 0.89×
dkr-3 11,455 208 1.48 0.10 14.85× 1192 31,412 0.04×
dkr-4 909,593 3429 – 5.44 – – – –

franklin-3-2 11,805 702 1.27 0.10 13.32× 3706 65,776 0.06×
franklin-3-3 41,401 883 3.80 0.23 16.27× 4840 101,813 0.05×
franklin-4-2 272,241 10,706 38.27 1.86 20.52× 58,428 799,831 0.07×
franklin-4-3 5,269,441 17,738 – 15.79 – – – –

hesselink-2 540,736 1018 0.60 0.11 5.76× 5927 8368 0.71×
hesselink-3 13,834,800 2835 3.13 0.54 5.77× 12,575 16,965 0.74×
hesselink-4 142,081,536 6036 9.32 1.81 5.15× 20,648 25,722 0.8×
hesselink-5 883,738,000 11,005 28.71 4.92 5.83× 32,335 43,141 0.75×
swp-2-4 2,589,056 69,555 50.90 2.47 20.62× 485,607 154,904 3.13×
swp-3-2 52,380 4710 1.20 0.09 13.09× 40,718 23,401 1.74×
swp-3-3 1,652,724 65,025 – – – 435,339 – –

swp-4-2 140,352 11,553 3.08 0.23 13.22× 93,494 40,475 2.31×
swp-4-3 7,429,632 264,708 164.38 6.69 24.56× 1,474,564 404,756 3.64×
WMS 155,034,776 1 0.11 0.10 1.05× 7 265 0.03×

LTS model (branching)

brp-2-4-4 11,182 98 0.20 0.02 10× 804 4514 0.18×
brp-3-4-4 40,592 328 1.00 0.06 16.16× 2136 12,221 0.17×
brp-4-4-4 109,422 858 4.67 0.24 19.33× 4383 31,192 0.14×
dkr-3 11,455 2 0.68 0.06 11.81× 5 163 0.03×
dkr-4 909,593 2 26.40 1.43 18.5× 5 251 0.02×
franklin-3-2 11,805 2 0.29 0.03 8.8× 5 139 0.04×
franklin-3-3 41,401 2 1.00 0.07 14.26× 5 175 0.03×
franklin-4-2 272,241 2 2.27 0.18 12.7× 5 203 0.02×
franklin-4-3 5,269,441 2 33.04 1.59 20.8× 5 267 0.02×
hesselink-2 540,736 72 0.22 0.03 7.33× 653 3700 0.18×
hesselink-3 13,834,800 189 1.10 0.14 7.62× 1516 9191 0.16×
hesselink-4 142,081,536 384 3.36 0.42 7.94× 2329 14,253 0.16×
hesselink-5 883,738,000 675 9.94 1.22 8.14× 3749 24,943 0.15×
swp-2-4 2,589,056 511 2.80 0.14 19.99× 1821 4722 0.39×
swp-3-2 52,380 121 0.13 0.01 13× 555 2620 0.21×
swp-3-3 1,652,724 1093 2.75 0.14 20.3× 3994 10,461 0.38×
swp-4-2 140,352 341 0.33 0.02 14× 1588 4952 0.32×
swp-4-3 7,429,632 5461 12.28 0.56 21.87× 15,050 26,941 0.56×
WMS 155,034,776 1 0.11 0.11 0.97× 3 89 0.03×

We compute the partition using SigrefMC and the quotient using the block-s and the block algorithms and give the computation time in
seconds

that combine sequential steps can be a goodmethod to obtain
performance improvements in several orders of magnitude.
Similarly, the additional performance improvement gained
by the parallel framework fromSylvan is relatively low hang-

ing fruit to improve the performance of symbolic algorithms
with decision diagrams.

The pick-one-state encoding that we proposed in this
paper is promising, especially for transition systems that
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are still relatively large after bisimulation minimisation. The
implementation discussed here just picked an arbitrary state;
we expect that better heuristics may be developed in the
future.

A limitation of this study is that we only measured the
performance on the benchmarks that were used in [38,40]
and on several benchmarks from the mCRL2 distribution.
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