
ar
X

iv
:1

80
5.

03
49

6v
1 

 [
cs

.L
O

] 
 9

 M
ay

 2
01

8

Revisiting Decision Diagrams for SAT∗

Tom van Dijk1, Rüdiger Ehlers2, and Armin Biere1

1 Johannes Kepler University Linz, Austria
tom.vandijk@jku.at biere@jku.at
2 University of Bremen, Germany

rehlers@uni-bremen.de

Abstract

Symbolic variants of clause distribution using decision diagrams to eliminate variables
in SAT were shown to perform well on hard combinatorial instances. In this paper we
revisit both existing ZDD and BDD variants of this approach. We further investigate
different heuristics for selecting the next variable to eliminate. Our implementation makes
further use of parallel features of the open source BDD library Sylvan.

1 Introduction

In the past, decision diagrams have been used for the Satisfiability (SAT) problem in different
ways. To compute all satisfiable models for a set of clauses one can build the binary decision
diagram (BDD) of the conjunction of all clauses. In general, this is expensive and only works
for very small or specific models.

Most approaches to SAT manipulate the set of clauses until a satisfying solution is found or
unsatisfiability is established by deriving the empty clause. Decision diagrams have also been
used in the past to represent the set of clauses, in particular by the ZRES solver by Chatalic
and Simon [1]. For a more complete list of references see also [5].

Chatalic and Simon were able to show that SAT instances encoding the problem of putting
n + 1 pigeons into n holes, proven to be hard for any resolution-based SAT solver [3], can be
solved in polynomial time using a compressed conjunctive normal form (CNF) clause represen-
tation with zero-suppressed binary decision diagrams (ZDDs) [4]. They defined advanced clause
set disjunction and conjunction operators on ZDDs that remove subsumed clauses during the
variable elimination process. This way, the number of diagram nodes grows only polynomially
during solving.

Sets of clauses are concisely represented using ZDDs as the number of ZDD nodes required
is strictly smaller than or equal to the total number of literals in the clauses. Because decision
diagrams share isomorphic subgraphs, ZDD nodes can be reused. Under certain conditions the
ZDD representing a set of clauses can be significantly smaller, essentially compressing the set
of clauses by a factor of #nodes/#literals. We call this ratio the compression ratio.

The relatively little interest in ZDD-based clause representations contrasts with their high
usability as a basis for experimenting with advanced simplification techniques for clause sets.
In this paper, we revisit these methods and study several new techniques.

2 Background

Chatalic and Simon [1] employ ZDDs whose variables are the literals in the original set of
clauses. Hence, the number of variables in the ZDD is twice as large as in the SAT instance

∗Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE), and the Institutional Strategy of
the University of Bremen, funded by the German Excellence Initiative.

http://arxiv.org/abs/1805.03496v1


Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

that the ZDD encodes. A clause is contained in the clause set represented by a ZDD if there
exists a path from the ZDDs root to the 1 sink node along which exactly the ZDD variables
that represent the literals in the clause have true values.

Chatalic and Simon show how to perform variable elimination on such clause sets, which
allows to solve the SAT problem by just eliminating all variables. To speed up the solution,
they also define a subsumption removal operation, which removes all clauses from a clause
set S represented in ZDD form that are subsumed by other clauses in S. This technique is a
representative for clause level techniques, which aim at reducing or simplifying the set of clauses.
Subsumption removal does not necessarily reduce the number of nodes in a ZDD and hence
does not guarantee improvements in the further ZDD operations. In practice, non-improving
removals are however rare.

Inspired by the success of bounded variable elimination for CNF [2], we also looked into
bounding the nodes in ZDD-based variable elimination or alternatively the size of the CNF
represented by a ZDD. The idea is to limit the growth of the ZDD during variable elimination.
If speculatively eliminating a variable increases the size too much, its elimination is undone.

Finally, in recent work, parallel implementations of BDDs have been proposed, in particular
the package Sylvan [7, 6] which parallelizes the low-level BDD operations. We look at how this
affects the approach of building the BDD of satisfiable models based from the CNF.

3 Solving SAT by Computing the BDD

The naive approach to solving SAT symbolically encodes each clause as a BDD and then
computes the conjunction of all encoded clauses. We use a slightly different approach, by first
encoding the CNF as a ZDD and then computing the BDD of the models from the ZDD. In
this way, BDDs of shared ZDD nodes can be cached and only need to be computed once. There
is furthermore a potential to skip redundant BDD nodes. Our implementation is based on the
parallel decision diagram package Sylvan [7, 6] which uses work-stealing to implement parallel
operations.

Sylvan parallelizes BDD operations for multi-core systems using two techniques. The first
technique is to use a work-stealing framework to perform load-balancing on multiple cores.
As BDD operations are implemented as recursive tasks that typically spawn two independent
subtasks, such operations naturally form a tree of tasks that can be executed using techniques
like work-stealing. The reason Sylvan uses work-stealing is because work-stealing has been
demonstrated to be very efficient and scalable for fine-grained task parallelism. BDD operations
mainly consist of calls to two hash tables: the operation cache and the unique nodes table. The
second technique is to use specialized lock-free hash tables for the operation cache and the
unique nodes table to maximize the scalability of the BDD operations.

In our implementation of converting a CNF to a BDD, we first read all clauses to an array
of integers, and then we recursively encode this CNF to a ZDD in a straight-forward manner.
We then use another algorithm that computes an equivalent BDD for each ZDD node. The
BDD for the ZDDs root node then represents the BDD for the set of solutions to the SAT
problem. Both the encoding of the CNF to a ZDD and computing the BDD from this ZDD are
performed in parallel, by using our parallel decision diagram library Sylvan [7, 6].

The experiments in Table 1 were performed using 32-core Xeon E5-2620 machines, with 128
GB available memory, although we only allocated 2 GB for the experiments. The experiments
show reasonable speed-ups up to 19 pigeons. For 20 pigeons we get strange results, which still
need to be investigated. We may also want to look at other examples in the future.

2



Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

cores ph10 ph11 ph12 ph13 ph14 ph15 ph16 ph17 ph18 ph19 ph20
1 0.43 0.46 0.50 0.61 0.90 1.54 3.02 6.31 18.18 37.15 58.95
2 0.62 0.63 0.73 0.82 1.04 1.19 2.20 4.29 9.61 22.27 33.38
4 0.61 0.63 0.67 0.72 0.87 1.17 1.77 3.15 8.45 18.55 143.05
6 0.37 0.41 0.39 0.47 0.59 0.83 1.31 2.44 5.87 12.50 98.28
8 0.70 0.71 0.76 0.81 0.87 1.06 1.45 2.45 5.04 10.98 132.32
10 0.79 0.84 0.87 0.94 1.06 1.30 1.98 2.88 5.63 10.52 93.82
12 0.26 0.29 0.32 0.42 0.54 0.83 1.28 2.35 5.27 10.06 108.49
14 0.34 0.37 0.42 0.48 0.63 0.86 1.34 2.31 4.83 9.22 102.03
16 0.81 0.81 0.86 0.91 1.05 1.31 1.79 2.72 4.92 9.01 57.23

cores ph10 ph11 ph12 ph13 ph14 ph15 ph16 ph17 ph18 ph19 ph20
1 0.93 0.96 1.00 1.11 1.39 2.04 3.52 6.80 18.80 38.46 54.50
2 0.94 0.94 1.00 1.08 1.27 1.67 2.53 4.62 11.27 23.04 37.13
4 0.94 0.96 0.98 1.04 1.17 1.47 2.02 3.61 8.99 16.36 29.42
6 0.47 0.47 0.48 0.53 0.63 0.95 1.37 2.44 6.96 14.07 105.88
8 0.18 0.17 0.20 0.23 0.35 0.59 1.00 1.83 5.39 11.08 138.65
10 0.54 0.50 0.55 0.60 0.68 0.91 1.47 2.76 5.63 11.57 174.56
12 0.52 0.54 0.57 0.63 0.73 1.00 1.48 2.79 5.84 11.90 91.31
14 0.49 0.49 0.53 0.56 0.69 0.89 1.32 2.62 5.68 10.90 94.71
16 0.41 0.46 0.47 0.56 0.65 0.89 1.29 2.34 5.15 10.74 19.01

Table 1: In the upper table we compute the BDD directly during parsing of the DIMACS file,
while in the bottom table we read the file into a ZDD and then compute a BDD recursively.

4 Operations on ZDDs for Clause Sets

In this section, we review the operations on ZDDs described by Chatalic and Simon [1]. We
also introduce and apply novel simplifications for the presentation of operations on ZDDs that
represent sets of clauses. For example, for the clause intersection operation which corresponds
to logical disjunction on clause sets, six of the seven non-final cases of the recursion procedure
can be dropped.

A ZDD representing a clause set is a directed acyclic graph (DAG) with a 0 sink, a 1 sink,
and a designated root node (which can be one of the two sinks as special cases). All nodes
except for the two sinks are labelled by either v or ¬v for some set of SAT variables V . There
exists an ordering O = [v1,¬v1, . . . , vn,¬vn] of the possible node labels, and along every path
from the root to a sink node, node labels can occur only once and in the order defined by O.
Not every node label has to occur along every path, though. Every node except for the sinks has
exactly two successors, the then- and else-successors. The ZDD represents exactly the clauses
represented by the paths from the root to the 1 sink, where whenever a then-edge is taken from
a node labeled by l for l ∈ V ∪ {¬v | v ∈ V}, then l is a literal in the clause. We also view an
order O as a function that maps a literal to its position in the order.

A ZDD is said to be in reduced form if (1) for no two nodes n1 and n2 in the DAG with
the same label, the then-successor of n1 is the same as the then-successor of n2 and the else-
successor of n1 is the same as the else-successor of n2, and (2) the then-successor of no node
is the 0 sink. We also call these requirements the reduction rules of ZDDs and without loss
of generality, we will consider reduced ZDDs in the following, as practical implementations of
ZDDs and their operations normally operate on these.

3



Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

Given a v-labelled node in the graph with a then-successor n1 and the else-successor n2,
we denote the node using the notation △(v, n1, n2). We consider only ZDDs in which for no
variable v, both v and ¬v can occur as literals in a clause. Such clauses are redundant and if
we ensure that all operations we apply to ZDDs in the following never introduce such clauses,
this assumption is justified. We make use of it because it allows us to simplify notation. In
many cases, a v-node has a ¬v-node successor for some v ∈ V . In this case, we introduce

▽(v, n1, n2, n3) = △(v, n1,△(¬v, n2, n3))

as a more elegant description of this node pair. Additionally, as a node of the form△(¬v, n1, n2)
is semantically equivalent to △(v, 0,△(¬v, n1, n2)), we define

▽(v, 0, n1, n2) = △(v, 0,△(¬v, n1, n2)) = △(¬v, n1, n2)

for v ∈ V and ▽(v, n1, 0, n2) = △(v, n1, n2) if τ(n2) 6= ¬v, where τ maps every node to its
label.

By using these definitions, the application of all operations on ZDD nodes only needs to be
described for combined nodes of the form ▽(v, n1, n2, n3) as the cases that a v-node has no ¬v
successor and a ¬v node has no v predecessor are now special cases and need not be explicitly
considered for all functions respecting the clause-set semantics of ZDDs. In the following, for
every combined node n = ▽(v, n1, n2, n3), we call n1 the then-successor of n, n2 the else-
successor of n and n3 the don’t care-successor of n. We furthermore use sets of clauses and
their respective ZDDs interchangeably.

ZDD operations are – as BDD operations – normally defined as recursive functions operating
on two decision diagrams. They recurse on pairs of ZDD nodes (one for each input ZDD), where
the two nodes can have different labels. For the binary operations to follow, we only need to
state the result of their applications to pairs of nodes with the same labels as we can always
introduce additional (artificial helper) ZDD nodes while not changing any clause, i. e. for any
operation ⊙ respecting the semantics of the ZDDs, we have

▽(v, n1, n2, n3)⊙▽(v′,m1,m2,m3) = ▽(v, n1, n2, n3)⊙▽(v, 0, 0,▽(v′,m1,m2,m3))

if O(v) < O(v′) and

▽(v, n1, n2, n3)⊙▽(v′,m1,m2,m3) = ▽(v′, 0, 0,▽(v, n1, n2, n3))⊙▽(v′,m1,m2,m3)

if O(v) > O(v′).
For the actual implementation of functions on ZDDs, it however makes sense to consider

these special cases in order to speed up the computation. Additionally, implementations of
these functions must apply the ZDD reduction rules after the computation of ▽(v, n1, n2, n3)⊙
▽(v′,m1,m2,m3) in order to obtain a valid ZDD.

As a first example for a ZDD operation, a clause union operator ⊔, which merges two sets
of clauses in ZDD form to a resulting ZDD containing the clauses of both sets, can be described
(for X being a place holder for either an internal node or a sink) as follows (for all v ∈ V):

0 ⊔X = X

X ⊔ 0 = X

1 ⊔X = 1

X ⊔ 1 = 1

▽(v, n1, n2, n3) ⊔▽(v,m1,m2,m3) = ▽(v, n1 ⊔m1, n2 ⊔m2, n3 ⊔m3)

4



Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

In this definition, the first two basic cases reflect the case that during the recursive application
of this procedure, there is no clause in the one set corresponding to the current clause prefix(es)
in the other set. In this case, the respective part from the other set can simple be copied. The
third and fourth case represent situations in which for one ZDD, all literals of a clause have
already been seen along a path in the ZDD while in the second ZDD, there exists a clause
containing the same but possibly additional literals. This might for example occur if we merge
the sets of clauses {a∨b∨c} and {a∨b∨c∨d}. In such a case we can safely drop the additional
literals as the longer clause would be subsumed by the shorter one. The final case involving the
inner nodes simply splits the set of clauses to be represented by the occurrence of a positive or
negative literal for the current variable in the variable order.

Chatalic and Simon [1] also defined a subsumption removal operator that can be defined
(for X being a place holder for either an inner node or a sink) as follows (for all v ∈ V):

0 X = 0

1 1 = 0

1 ▽(v, n1, n2, n3) = 1

▽(v, n1, n2, n3) 1 = 0

▽(v, n1, n2, n3) 0 = ▽ (v, n1, n2, n3)

▽(v, n1, n2, n3) ▽(v,m1,m2,m3) = ▽ (v, (n1 m1) m3,

(n2 m2) m3, n3 m3)

By taking A′ = A B for some clause sets A and B, a modified set of clauses A′ is computed
that is equivalent to A, with the only difference that all clauses that are subsumed by some
other clause in B have been removed. A clause l1 ∨ . . . ∨ lm is said to be subsumed by a clause
l′1∨. . .∨l

′

m′ if {l1, . . . , lm} ⊇ {l′1, . . . , l
′

m′}. The operator can be used to define a subsumption
removal function SF that removes all clauses from a clause set A that are subsumed by other
clauses in A, making sure that SF (A) is subsumption-free:

SF (0) = 0

SF (1) = 1

SF (▽(v, n1, n2, n3)) = ▽ (v, SF (n1) SF (n3), SF (n2) SF (n3), SF (n3))

The following clause union function combines two sets of clauses in ZDD form to a single set
containing the clauses of both of the operand sets (corresponding to logical conjunction). We
only state a version of this operation that makes sure that subsumed clauses are removed if the
input sets are subsumption-free. In particular, for A⊔SB, all clauses in A/B that are subsumed
by some other clause in B/A are removed, respectively. We use the term cross-subsumption for
such cases.

0 ⊔S X = X

1 ⊔S X = 1

X ⊔S 0 = X

X ⊔S 1 = 1

▽(v, n1, n2, n3) ⊔S ▽(v′,m1,m2,m3) = ▽ (v, (n1 ⊔S m1) (n3 ⊔S m3),

(n2 ⊔S m2) (n3 ⊔S m3), n3 ⊔S m3)

5



Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

Finally, an operation corresponding to logical disjunction is to be defined. Below is a definition
of a suitable clause distribution operator which also makes sure that cross-subsumed clauses
are removed.

0×S X = 0

1×S X = X

X ×S 0 = 0

X ×S 1 = X

▽ (v, n1, n2, n3)×S ▽(v′,m1,m2,m3) =

▽ (v, ((n1 ×S m1) ⊔S (n1 ×S m3) ⊔S (n3 ×S m1)) (n3 ×S m3),

((n2 ×S m2) ⊔S (n2 ×S m3) ⊔S (n3 ×S m2)) (n3 ×S m3), (n3 ×S m3))

5 Variable elimination

In their work on ZDDs for SAT solving, Chatalic and Simon [1] implemented the Davis-Putnam
(DP) method, i.e., solving SAT by variable elimination, which works particularly well for the
pigeon hole problem. In the DP procedure, variables are eliminated one by one in some order.
The heuristic for choosing the variable to be eliminated is not described precisely in the work by
Chatalic and Simon, except that the authors claim that their implementation tends to maximize
the number of clauses (represented by the ZDD) produced at each elimination step.

We implemented our variant of their approach as follows. Given a variable v to eliminate, we
first extract a ZDD Av representing all clauses which involve v both positively and negatively.
The ZDD of Av is then split into a ZDD A+

v representing clauses with positive occurrence and
another ZDD A−

v representing clauses with negative occurrence (removing v and ¬v). Then we
apply the clause distribution operation described above to obtain a ZDD representing all the
resolvents on the chosen variable, i.e., A+

v ×S A−

v . Next, the ZDD Av is subtracted from the
ZDD for the whole CNF. Finally the resulting ZDD from clause distribution is added through
the clause union operation also described above. Note that during both clause distribution
and the union operation, subsumed clauses are removed automatically and all operations are
recursively parallelized.

We use three strategies to select the order of variables to eliminate next. In our original

variant, we simply picked variables in the order they are listed in the DIMACS input file that
contains the SAT instance (as integers). In the second and third approaches we perform the
procedure described above speculatively and only keep the result if the result stays within a
certain bound. As bound we either use the number of nodes of the ZDD (in the second approach)
or the number of represented clauses of the ZDD (in the third approach).

If speculative eliminations fails for all variables, then our procedure simply eliminates the
first variable with the lowest increase (in either nodes or clauses). We continue with the orig-
inal bound afterwards, which in our experiments was always kept at zero. Thus, eliminations
that reduce the number of nodes or clauses are always performed eagerly, while more costly
eliminations are delayed.

The results are shown in Table 2 for all three strategies. Clearly, bounded variable elimi-
nation minimizing the number of nodes works best. It scales up to 20 pigeons. However, it is
slower than simple BDD-based conjunction (cf. Table 1). Also note that parallel speed-ups are
only observed for the otherwise inferior strategies (“original” and “clause”).

6



Revisiting Decision Diagrams for SAT Van Dijk, Ehlers and Biere

strategy cores ph10 ph11 ph12 ph13 ph14 ph15 ph16 ph17 ph18 ph19 ph20

original

1 40 218 1231 – – – – – – – –
8 5 21 117 673 – – – – – – –
16 3 13 64 357 2002 – – – – – –

node

1 2 3 6 10 15 26 43 64 99 147 209
8 2 4 7 11 17 26 44 66 100 146 206
16 3 5 9 13 22 35 55 83 124 182 260

clause

1 53 351 2108 – – – – – – – –
8 7 39 215 1305 – – – – – – –
16 5 24 120 713 – – – – – – –

Table 2: ZDD-based variable elimination.

6 Conclusion

We revisited BDD-based solving and ZDD-based variable elimination for hard combinatorial
benchmarks. We also provide a reimplementation in a parallel BDD library. Our experiments
on pigeon hole formulas show reasonable speed-ups on multi-core machines. Beside aspects
related to parallelism we investigated two natural bounding schemes to select the elimination
order of variables.

We have also applied Quine-McCluskey style resolution and computation of irredundant
clause sets in this setting. However, our preliminary results on optimizing the size of ZDDs in
this way and translating them back into CNF only produced inconclusive experimental results,
and thus are not reported in this paper.

It is unclear how to generate proofs for these procedures, with the goal to increase the level
of confidence in these results. We want to further study complexity and compression ratio
of these procedures, both theoretically on specific problems, as well as empirically on more
problem instances. On the practical side, it might be interesting to also parallelize searching
for the best variable to eliminate.

References

[1] Philippe Chatalic and Laurent Simon. Multiresolution for SAT checking. International Journal on
Artificial Intelligence Tools, 10(4):451–481, 2001.

[2] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elimination.
In SAT, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[3] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.

[4] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In DAC,
pages 272–277. ACM Press, 1993.

[5] Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining BDDs. In CSR, volume
3967 of Lecture Notes in Computer Science, pages 600–611. Springer, 2006.

[6] Tom van Dijk. Sylvan: multi-core decision diagrams. PhD thesis, University of Twente, Enschede,
Netherlands, 2016.

[7] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-core decision diagrams. In TACAS, volume 9035
of Lecture Notes in Computer Science, pages 677–691. Springer, 2015.

7


	1 Introduction
	2 Background
	3 Solving SAT by Computing the BDD
	4 Operations on ZDDs for Clause Sets
	5 Variable elimination
	6 Conclusion

