
Oink: An Implementation and Evaluation
of Modern Parity Game Solvers

Tom van Dijk(B)

Formal Models and Verification, Johannes Kepler University, Linz, Austria
tom.vandijk@jku.at

Abstract. Parity games have important practical applications in formal
verification and synthesis, especially to solve the model-checking prob-
lem of the modal mu-calculus. They are also interesting from the theory
perspective, as they are widely believed to admit a polynomial solution,
but so far no such algorithm is known. In recent years, a number of
new algorithms and improvements to existing algorithms have been pro-
posed. We implement a new and easy to extend tool Oink, which is a
high-performance implementation of modern parity game algorithms. We
further present a comprehensive empirical evaluation of modern parity
game algorithms and solvers, both on real world benchmarks and ran-
domly generated games. Our experiments show that our new tool Oink
outperforms the current state-of-the-art.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the
game is determined by the parity of the highest priority that is encountered
infinitely often. Player Odd wins if this parity is odd; otherwise, player Even
wins.

Parity games are interesting both for their practical applications and for
complexity theoretic reasons. Their study has been motivated by their relation
to many problems in formal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture the expressive power
of nested least and greatest fixpoint operators [17]. In particular, deciding the
winner of a parity game is polynomial-time equivalent to checking non-emptiness
of non-deterministic parity tree automata [33], and to the explicit model-checking
problem of the modal μ-calculus [14,15,23,32].

Parity games are interesting in complexity theory, as the problem of deter-
mining the winner of a parity game is known to lie in UP∩co-UP [26], as well as
in NP ∩ co-NP [15]. This problem is therefore unlikely to be NP-complete and
it is widely believed that a polynomial solution may exist. Despite much effort,
no such algorithm has yet been found.

T. van Dijk—Supported by FWF, NFN Grant S11408-N23 (RiSE).

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 291–308, 2018.
https://doi.org/10.1007/978-3-319-89960-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89960-2_16&domain=pdf
http://orcid.org/0000-0002-5366-1051

292 T. van Dijk

Motivated by recent publications with both novel approaches and improve-
ments to known algorithms, we implement a number of modern solvers in our
new tool Oink, which aims to provide a high-performance implementation of
parity game solvers. Oink is designed as a library that integrates with other
tools and can easily be extended. We use Oink to provide a modern empiri-
cal evaluation of parity game solvers based on both real world benchmarks and
randomly generated games.

In past publications new and improved algorithms are often tested against
the implementation of Zielonka’s algorithm in the PGSolver tool [19]. However,
various recent publications [1,34,40] suggest that much better performance can
be obtained. We combine a number of improvements from the literature [34,40,
41] and propose additional optimizations. We show that our implementation of
Zielonka’s algorithm outperforms PGSolver by several orders of magnitude.

We describe Oink in Sect. 3 and provide accessible descriptions of the imple-
mented state-of-the-art algorithms in Sects. 4–7. We implement the strategy
improvement algorithm (Sect. 4), both the small progress measures and the
recently proposed quasi-polynomial progress measures algorithms (Sect. 5), the
well-known Zielonka algorithm (Sect. 6) as well as a number of related algorithms
from the priority promotion family (Sect. 7). We also propose an alternative
multi-core implementation of strategy improvement.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V,E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity
of the highest priority that occurs infinitely often along the play.

More formally, a parity game � is a tuple (V , V ,E, pr) where V = V ∪ V
is a set of vertices partitioned into the sets V controlled by player Even and
V controlled by player Odd, and E ⊆ V × V is a total relation describing all
possible moves, i.e., every vertex has at least one successor. We also write E(u)
for all successors of u and u → v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V) for the highest priority
of a set of vertices V and pr(�) for the highest priority in the game �. Further-
more, we write pr−1(i) for all vertices with the priority i. A path π = v0v1 . . . is a
sequence of vertices consistent with E, i.e., vi → vi+1 for all successive vertices.
A play is an infinite path. We write pr(π) for the highest priority in π is π is
finite, or the highest priority that occurs infinitely often if π is infinite. Player
Even wins a play π if pr(π) is even; player Odd wins if pr(π) is odd.

A strategy σ : V → V is a partial function that assigns to each vertex in
its domain a single successor in E, i.e., σ ⊆ E. We typically refer to a strategy

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 293

of player α to restrict σ to all vertices controlled by player α. A player wins a
vertex if they have a strategy such that all plays consistent with this strategy are
winning for the player. A fundamental result for parity games is that they are
memoryless determined [13], i.e., each vertex is winning for exactly one player,
and both players have a strategy for each of their winning vertices.

Algorithms for solving parity games frequently employ (variations of) attrac-
tor computation. Given a set of vertices A, the attractor of A for a player α
represents those vertices that α can force the play toward. We write Attr�

α(A)
to attract vertices in � to A as player α, i.e.,

μZ .A ∪ { v ∈ Vα | E(v) ∩ Z �= ∅ } ∪ { v ∈ Vα | E(v) ⊆ Z }
Informally, we compute the α-attractor of A by iteratively adding vertices to A
of α that have a successor in A and of α that have no successors outside A.

2.1 Solvers

We briefly introduce several approaches to solving parity games. These
approaches can be roughly divided into two categories.

First, several algorithms iteratively perform local updates to vertices until a
fixed point is reached. Each vertex is equipped with some measure which records
the best game either player knows that they can play from that vertex so far.
By updating measures based on the successors, they play the game backwards.
The final measures indicate the winning player of each vertex and typically a
winning strategy for one or both players. The strategy improvement algorithm
(Sect. 4) and the progress measures algorithms (Sect. 5) fall into this category.

Second, several algorithms employ attractor computation to partition the
game into regions that share a certain property. This partition is refined until
the winners of some or all vertices can be identified, as well as the strategy for the
winning player(s). The recursive Zielonka algorithm (Sect. 6) and the recently
proposed priority promotion algorithms (Sect. 7) fall into this category.

2.2 Empirical Evaluation

Our goal in the empirical study is three-fold. First, we aim to compare modern
algorithms and treat them fairly. We therefore need to establish that our imple-
mentation is competitive with existing work. Second, we compare the algorithms
that are implemented in Oink directly. Third, as two algorithms have a parallel
implementation, we also study the obtained parallel speedup and the parallel
overhead when going from a sequential to a multi-core implementation.

We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [31] that are publicly available online. This is a
total of 313 model checking and 216 equivalence checking games. We also consider
different classes of random games, in part because the literature on parity games
tends to favor studying the behavior of algorithms on random games. We include
three classes of self-loop-free random games generated using PGSolver with a
fixed number of vertices:

294 T. van Dijk

– low out-degree random games (randomgame N N 1 2 x)
N ∈ { 100, 200, 500, 1000, 2000, 5000, 10000, 20000 }

– fully random games (randomgame N N 1 N x)
N ∈ { 100, 500, 1000, 2000, 4000 }

– low-degree steady games (steadygame N 1 4 1 4)
N ∈ { 100, 200, 500, 1000, 2000, 5000, 10000, 20000 }

We generate 20 games for each parameter N , in total 420 random games. We
include low-degree games, since the solvers may behave differently on games
where all vertices have few edges.

We present the evaluation in two ways. We compare runtimes of algorithms
and penalize algorithms that do not finish on time (with a timeout of 15 min)
by a factor 2× (PAR2), i.e., we assume that their runtime is 2× the timeout.
This may still be quite optimistic. Compared to a timeout of 10 min, only few
more games could be solved in 15 min. We also generate so-called cactus plots
(often used to compare solvers in the SAT community) that show that a solver
solved X models within Y seconds individually.

All experimental scripts and log files are available online via http://www.
github.com/trolando/oink-experiments. The experiments were performed on a
cluster of Dell PowerEdge M610 servers with two Xeon E5520 processors and
24 GB internal memory each. The tools were compiled with gcc 5.4.0.

3 Oink

We study modern parity game algorithms using our research tool named Oink.
Oink is written in C++ and is publicly available under a permissive license via
https://www.github.com/trolando/oink. Oink is easy to extend, as new solvers
subclass the Solver class and only require a few extra lines in solvers.cpp.

Apart from implementing the full solvers described below, Oink also imple-
ments several preprocessors similar to other parity game solvers. We base our
choices mainly on the practical considerations and observations by Friedmann
and Lange [19] and by Verver [41]. We always reorder the vertices by priority and
renumber the priorities from 0 to eliminate gaps (not the same as compression).
The former is beneficial for the attractor-based algorithms in Sects. 6 and 7.
The latter may reduce the amount of memory required for the measures-based
algorithms in Sects. 4 and 5.

The following preprocessors are optional. Oink can perform priority inflation
and priority compression, as described in [19]. We implement self-loop solv-
ing and winner-controlled winning cycle detection, as proposed in [41]. Winner-
controlled winning cycle detection is a prerequisite for the strategy improvement
algorithm of Sect. 4 but is optional for the other algorithms. We trivially solve
games with only a single parity. Finally, we also implement SCC decomposition,
which repeatedly solves a bottom SCC of the game until the full game is solved.

The correctness of an algorithm does not imply that implementations are
correct. Although a formal proof of the implementations would be preferred, we
also implement a fast solution verifier and verify all obtained solutions.

http://www.github.com/trolando/oink-experiments
http://www.github.com/trolando/oink-experiments
https://www.github.com/trolando/oink

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 295

4 Strategy Improvement

Strategy improvement is a technique where each player iteratively improves their
strategies until they are optimal. Strategy improvement algorithms were first
explored for parity games by Jurdziński and Vöge [42] and have been subse-
quently improved in [7,16,20,35,38]. Recently, parallel implementations have
been studied for the GPU [17,24,36]. Fearnley [17] also implements their paral-
lel algorithm for multi-core CPUs. Our treatment in this section is mostly based
on [17,35].

In the strategy improvement algorithm, player Even has a strategy σ and
player Odd has a strategy τ for all their vertices. They improve their strategies
until a fixed point is reached, at which point the game is solved. Instead of
choosing a successor, player Even may also end the play. In the specific algorithm
here, player Even delays selecting a strategy for a vertex until there is a favorable
continuation. As σ and τ cover all vertices, they induce a fixed path from each
vertex. This path is either infinite (a play) or ends at a vertex of player Even.
The strategy is evaluated by computing a valuation for each vertex based on the
current paths. Strategies are improved by choosing the most favorable successor.

The valuation used in e.g. [17,35] assigns to (infinite) plays the value 	 and
to (finite) paths a function L(p) that records for each priority p how often it
occurs in the path. To determine the best move for each player, a total order
� compares valuations as follows. For non-	 valuations L1 and L2, L1 � L2 iff
there exists a highest priority z that is different in L1 and L2, i.e., z = max { z |
L1(z) �= L2(z) }, and either L1(z) < L2(z) if z is even, or L1(z) > L2(z) if z is
odd. Furthermore, L � 	 for any L �= 	. If L1 � L2, then L2 is more favorable
for player Even and L1 is more favorable for player Odd.

Intuitively, player Even likes plays where higher even priorities occur more
often. Furthermore, player Even will end the play unless the highest priority in
the continuation is even. Thus infinite paths are won by player Even and the
valuation 	 represents this. Player Even will always play to 	 and player Odd
will always try to avoid 	. This assumes that no winner-controlled winning cycles
exist where player Odd wins, which can be guaranteed using a preprocessing step
that removes these cycles.

For every strategy σ of player Even, a so-called best response τ of player Odd
minimizes the valuation of each position. Player Even always plays against this
best response. In each iteration, after player Odd computes their best response,
player Even computes all switchable edges based on the current valuation L
and the current strategy σ. An edge (u, v) is switchable if Lv � Lσ(u). Not all
switchable edges need to be selected for the improved strategy, but as argued
in [17], the greedy all-switches rule that simply selects the best edge (maximal
in �) for every position performs well in practice.

There are different methods to compute the best response of player Odd. We
refer again to [17] for a more in-depth discussion. Player Odd can compute their
best response by repeatedly switching all Odd-switchable edges, i.e., edges (u, v)
s.t. Lv � Lτ(u) and Lv is minimal in � of all successors of u.

296 T. van Dijk

1 def strategy-improvement:
2 σ ← (V0 �→ ⊥), τ ← random strategy for Odd
3 repeat
4 repeat
5 compute-valuations(V , σ ∪ τ , L)
6 τ ← τ [SOdd] where SOdd = AllOdd(�, τ, L)

7 until SOdd = ∅
8 mark-won({v ∈ V : Lv = 	})
9 σ ← σ[SEven] where SEven = AllEven(�, σ, L)

10 until SEven = ∅
11 return (W0, W1, σ, τ) where W0 ← {v ∈ V : Lv = 	}, W1 ← V \ W0

Algorithm 1. The strategy improvement algorithm.

1 def backwards-update(v, into, L):
2 for u ∈ into(v) :
3 Lu ← Lv[pr(u) �→ Lv(pr(u)) + 1]
4 spawn compute-valuation(u, σ, L)

5 sync all

6 def compute-valuations(V , σ, L):
7 parallel for v ∈ V : Lv ← 	 ; into(v) ← ∅
8 parallel for v ∈ V | σ(v)
= ⊥ : add v to into(σ(v))
9 parallel for v ∈ V | σ(v) = ⊥ :

10 Lv ← 0 [pr(v) �→ 1]
11 backwards-update(v, into, L)

Algorithm 2. Computing valuations in parallel.

The players thus improve their strategies as in Algorithm 1, where AllOdd and
AllEven compute all switchable edges as described above. The initial strategy for
player Even is to always end the play. Player Odd computes their best response,
starting from a random τ initially. Player Even then improves their strategy once.
They improve their strategies until a fixed point is reached. Then all vertices with
valuation 	 are won by player Even with strategy σ and all other vertices are
won by player Odd with strategy τ [17]. We extend the algorithm given in [17]
at line 8 by marking vertices with valuation 	 after player Odd computes their
best response as “won”. We no longer need to consider them for AllOdd and
AllEven as player Odd was unable to break the infinite play and thus they are
won by Even.

The valuations can be computed in different ways. Fearnley implements a
parallel algorithm that uses list ranking in two steps. The first step computes an
Euler tour of the game restricted to chosen strategies σ and τ resulting in a list.
The second step uses a three-step parallel reduction algorithm to sum all values
of the list. The list is divided into sublists which are each summed independently
in the first sweep, all subresults are then propagated in the second sweep and
then the final values are computed in the third sweep. See further [17].

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 297

We propose an alternative parallel algorithm to compute the valuation. We
start from each Even vertex where the path ends and perform updates along a
recursive backwards search, processing predecessors in parallel using task paral-
lelism. Any vertex that is not visited has valuation 	. See Algorithm 2. This algo-
rithm is implemented in Oink using the high-performance work-stealing frame-
work Lace [12]. When updating the valuations in L, we first sweep twice over
all vertices to initialize L for each vertex to 	 and to add all vertices to into(v)
that have their strategy to v. We also implement computing switchable edges in
parallel via a straight-forward binary reduction using Lace.

Table 1. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the three
solvers PGSolver (pgsi), the solver by Fearnley [17] with sequential (parsi-seq) and
multi-core variants, and Oink with sequential (psi) and multi-core variants.

Model checking Equiv checking Random games Total

psi-8 694 0 1078 0 315 0 2087 0

psi 860 0 3262 0 480 0 4603 0

psi-1 1190 0 4090 0 487 0 5767 0

parsi-seq 1471 0 4199 0 1534 0 7204 0

parsi-8 2501 1 2908 0 56529 27 61938 28

parsi-1 4200 1 13867 6 71280 39 89347 46

pgsi 167596 88 95407 49 58839 27 321842 164

Empirical Evaluation. We compare the performance of Oink with the sequen-
tial and parallel solvers (1 or 8 threads) by Fearnley [17] and the “optstratim-
prov” solver in PGSolver. We disable optional preprocessing in all solvers. We
only consider games without winner-controlled winning cycles, which are 289
model checking, 182 equivalence checking and 279 random games, in total 750
games.

See Table 1. We observe that PGSolver is vastly outperformed by Oink and
the sequential solver of Fearnley. PGSolver timed out for 160 games, whereas
psi and parsi-seq only timed out for 1 and 5 models, respectively. We observe
similar parallel speedup for the parallel solvers, although Fearnley’s solver has
more overhead from sequential to parallel with 1 thread. This might be due
to the extra work to produce the Euler tour and to perform list ranking. The
speedup we obtain with Oink is not very impressive, but the vast majority of
the games are solved within 1 s already. Furthermore, psi and parsi-seq are
fairly close in performance. This is not a surprise, as their implementations are
similar; the main difference is that Fearnley uses a forward search and we use a
backward search. Hence, Oink is faster, but not by a large margin. Finally, we
remark that Fearnley reports excellent results for list ranking on GPUs, whereas
our algorithm is designed for a multi-core architecture.

298 T. van Dijk

5 Progress Measures

Progress measures is a technique that assigns to each vertex a monotonically
increasing measure. The measure of each vertex is lifted based on the measures
of its successors. By lifting vertices, players Even and Odd essentially play the
game backwards. The measure represents a statistic of the most optimal play so
far from the vertex, without storing the plays explicitly.

While progress measures have been used elsewhere, they were introduced
for parity games by Jurdziński [27]. Several improvements to the original algo-
rithm are due to Verver [41] and Gazda and Willemse [22]. A number of parallel
implementations have been proposed for the Playstation 3 [6], for multi-core
architectures [25,37] and for GPUs [8,24]. Furthermore, Chatterjee et al. pro-
posed an implementation using BDDs [10]. Different types of progress measures
were introduced after the recent breakthrough of a quasi-polynomial time algo-
rithm due to Calude et al. [9], which resulted in the progress measures algorithms
by Jurdziński et al. [28] and by Fearnley et al. [18]. This section studies small
progress measures [27] and quasi-polynomial progress measures [18].

5.1 Small Progress Measures

The original small progress measures algorithm is due to Jurdziński [27]. We rely
on the operational interpretation by Gazda and Willemse [22] and propose the
cap-and-carryover mechanism to further understand the algorithm.

Progress measures record how favorable the game is for one of the players.
W.l.o.g. we assume even progress measures. Given the highest priority d, define
M� ⊆ Nd ∪ {	} to be the largest set containing 	 (/∈ Nd) and only those d-
tuples with 0 (denoted as) on odd positions. An even progress measure m ∈ Nd

essentially records for a vertex v how often each even priority p is encountered
along the most optimal play (starting at v) so far, until a higher priority is
encountered, i.e., until p no longer dominates. Such a prefix of the play is called
a p-dominated stretch. Suppose that the sequence of priorities for a given play
π is 00102120232142656201, then m = { 2 3 1 2 }, since the play starts with a
0-dominated stretch containing two 0s, with a 2-dominated stretch containing
three 2s, with a 4-dominated stretch containing one 4, and with a 6-dominated
stretch containing two 6s. Furthermore, the special measure 	 represents that
the vertex can be won by player Even.

A total order � compares measures as follows. For non-	 measures m1 and
m2, m1 � m2 iff there exists a highest priority z = max { z | m1(z) �= m2(z) }
and m1(z) < m2(z). Furthermore, m � 	 for all m �= 	. We define a derived
ordering �p by restricting z to priorities ≥ p. Examples:

{1 1 1} �0 {0 0 2}
{3 2 1} �0 {0 3 1}
{1 2 1} �1 {0 2 1}
{3 3 1} �4 {0 0 1}

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 299

To compute the progress measure for vertex v when playing to vertex w,
given current measures ρ : V → M�, we define Prog(ρ, v, w) as follows:

Prog(ρ, v, w) :=

{
min{m ∈ M� | m �pr(v) ρ(w) } pr(v) is even
min{m ∈ M� | m �pr(v) ρ(w) } pr(v) is odd

Prog computes the measure of the play obtained by playing from v to the
play recorded in ρ(w). By choosing the lowest measure m according to �pr(v),
we ensure that all m(p) for p < pr(v) are set to 0. The inequality is strict for
even priorities pr(v) to ensure that m(pr(v)) increases.

Player Even wants to achieve the highest measure, whereas player Odd wants
to achieve the lowest measure. We define Lift(ρ, v) as follows:

Lift(ρ, v) =

{
ρ [v → max{ ρ(v),max{Prog(ρ, v, w) | v → w } }] if v ∈ V

ρ [v → max{ ρ(v),min{Prog(ρ, v, w) | v → w } }] if v ∈ V

By definition, the Lift operation increases measures monotonically. For the
specific algorithm described here, we also observe that Prog(ρ, v, w) �pr(v) ρ(w)
and therefore Lift would even monotonically increase ρ without taking the maxi-
mum of the current measure and the best updated successor measure in a lifting
procedure that starts with ρ = V → 0.

If we iteratively lift vertices from ρ = V → 0 using Lift, eventually some
vertex may have a measure m such that m(p) for some p is higher than the
number of vertices with priority p, i.e., m(p) > |Vp|. In this case, we know that
m represents a play that visits at least one vertex with priority p twice and thus
contains a cycle dominated by p. Furthermore, player Odd cannot escape from
this cycle unless by playing to a higher losing priority. This follows from the
fact that if player Odd could escape from the cycle, then it would not lift to
this measure. The option to play to the higher losing priority is not considered
because a measure to a higher priority is � a measure that records a cycle.

We need a mechanism to let player Odd play to the next higher priority if
it is forced into a cycle. However, we cannot let just any vertex play to a higher
priority when its measure records a cycle, since some other vertex may escape
to a lower higher priority. Therefore we need a mechanism that finds the lowest
escape for player Odd. Small progress measures achieves this using a cap-and-
carryover mechanism. M� is restricted such that values for each even priority p
may not be higher than |Vp|. When this cap is reached, Prog will naturally find
a next higher m by increasing the value of higher priorities and eventually reach
	. For example, if we have two vertices of priority 2 and two vertices of priority
4 in a game and there is a self-loop of priority 2, measures increase as follows:
{0 2 0}, {0 0 1}, {0 1 1}, {0 2 1}, {0 0 2}, {0 1 2}, {0 2 2}, 	.

Thus all vertices involved in a cycle will find their measures slowly rising until
the measure of some vertex controlled by Odd becomes equal to the measure
when playing to a vertex that is not rising. This is the lowest escape. If no such
escape is found, then the measures rise until 	 and these vertices are won by
player Even. The slowly increasing measures no longer follow the operational

300 T. van Dijk

interpretation described above, but can be understood as player Odd looking for
the lowest escape.

We refer to [27] for the proof that the fixed point of applying the above lifting
operation solves the parity game, such that vertices with measure 	 are won by
player Even and all other vertices are won by player Odd with a strategy that
chooses the successor for which Prog(ρ, v, w) is the lowest.

We implement three known improvements. Improvements 2 and 3 are also
implemented by PGSolver [19].

1. When a vertex with some even priority p is raised to 	, the cap of p may be
lowered. The reason is that if a play records priority p |Vp| times, it either
contains a vertex now won by player Even or a cycle of priority p [41].

2. Small progress measures only computes the strategy for player Odd accord-
ing to measures for player Even. We compute both even and odd measures
simultaneously to compute the strategy for both players.

3. In addition, we occasionally halt the lifting procedure to perform an attractor
computation for player Even to the set of even-liftable vertices. Any vertices
not in this set are won by player Odd. We can immediately lift these vertices to
	 in the odd measures. We perform this analysis also for odd -liftable measures
to potentially lift vertices to 	 in the even measures.

5.2 Quasi-polynomial Progress Measures

Different types of progress measures were introduced after the recent break-
through of a quasi-polynomial time algorithm due to Calude et al. [9], which
resulted in the progress measures algorithms by Jurdziński et al. [28] and by
Fearnley et al. [18]. We only briefly and informally describe the idea of [18].
(Even) measures are k-tuples M : (N∪{⊥})k∪{	}, which record that the optimal
play consists of consecutive stretches that are dominated by vertices with even
priority. For example, in the path 1213142321563212, all vertices are dominated
by each pair of underlined vertices of even priority. k is such that there are fewer
than 2k vertices with even priority in the game. An 8-tuple { 2 2 4 ⊥ 5 ⊥ 6 ⊥}
denotes a game with consecutive stretches of 1, 2, 4, 16 and 64 even vertices,
where the first dominating vertex has priority M(i) and may actually be odd
instead of even. If the first dominating vertex has an odd priority, then player
Even must reach a higher priority before continuing to build a play where they
have more dominating even vertices than are in the game. If player Even can
visit more dominating even vertices than are in the game, then at least one of
these is visited twice and therefore player Even knows that they can win and
lifts to 	.

5.3 Empirical Evaluation

We compare our implementation of small progress measures and quasi-
polynomial progress measures to the small progress measures implementation of

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 301

Table 2. Runtimes in sec. (PAR2) and number of timeouts (15 min) of PGSolver
(pgspm), pbespgsolve (pbesspm) and the implementations spm and qpt in Oink.

Model checking Equiv checking Random games Total

spm 3637 1 7035 0 168271 93 178944 94

qpt 122549 64 65310 31 66303 35 254162 130

pbesspm 38397 20 52422 27 183742 101 274561 148

pgspm 88800 45 59885 30 320666 171 469351 246

pbespgsolve that comes with the mCRL2 model checker [11,41] and the imple-
mentation of small progress measures in PGSolver [19]. Unfortunately, the solver
used in [18] contains proprietary source code and cannot be compiled and com-
pared. For this comparison, we disabled optional preprocessing, i.e., removing
self-loops, winner-controlled winning cycles and solving single-parity games.

See Table 2. Although Fearnley et al. [18] say that the QPT solver is mainly
interesting for the theoretical result rather than practical performance, we
observe that qpt outperforms the other solvers for random games. Oink is faster
than PGSolver, especially for model checking and equivalence checking.

6 Zielonka’s Recursive Algorithm

The algorithm by Zielonka [43] is a recursive solver that despite its relatively bad
theoretical complexity is known to outperform other algorithms in practice [19].
Furthermore, tight bounds are known for various classes of games [21].

Zielonka’s recursive algorithm is based on attractor computation. At each
step, given current subgame �, the algorithm removes the attractor A :=
Attr�

α(pr−1(pr(�))), i.e., all vertices attracted to the current highest vertices of
priority p := pr(�) for player α = p mod 2, and recursively computes the win-
ning regions (W ,W) of the remaining subgame � \ A. If the opponent α can
attract vertices in A to Wα, then α wins W ′

α := Attr�

α(Wα) and the solution for
the remainder � \ W ′

α is computed recursively. Otherwise, α wins A and no fur-
ther recursion is necessary. The strategies for both players are trivially obtained
during attractor computation and by assigning to winning p-vertices in A any
strategy to vertices in Wα ∪ A.

Zielonka’s original algorithm has been extended and improved over the years.
In his thesis, Verver [41] improves the partitioning of the game after computing
A by extending A with the attractors of the next highest vertices if they are
of the same parity. The original algorithm always recomputes the solution of
�\W ′

α if Wα is nonempty, even if no vertices are attracted to Wα. Liu et al. pro-
pose that this is not necessary [34]. See Algorithm 3 for the recursive algorithm
with these modifications. Other extensions that we do not consider here are the
subexponential algorithm [29] and the big steps algorithm [39] that have been
reported to perform slower than ordinary Zielonka [19]. Also, variations using
BDDs have been proposed [2,30].

302 T. van Dijk

1 def zielonka(�):
2 if � = ∅ : return ∅, ∅
3 α ← pr(�) mod 2
4 A ← attr(�, α)
5 W , W ← zielonka(� \ A)

6 W ′
α ← Attr�

α(Wα)
7 if W ′

α = Wα :
8 Wα ← Wα ∪ A
9 else:

10 W , W ← zielonka(� \ W ′
α)

11 Wα ← Wα ∪ W ′
α

12 return W , W

13 def attr(�, α):
14 A ← ∅
15 while pr(� \ A) =2 α : A ← A ∪ Attr

�\A
α (pr−1(pr(� \ A))

16 return A

Algorithm 3. The recursive Zielonka algorithm.

Although the implementation of the recursive algorithm in PGsolver [19] is
typically used for comparisons in the literature, improved implementations have
been proposed by Verver [41], Di Stasio et al. [40], Liu et al. [34], and Arcucci
et al. [1]. Verver suggests to record the number of remaining “escaping” edges for
each vertex during attractor computation, to reduce the complexity of attractor
computation at the cost of an extra integer per vertex. Di Stasio et al. avoid cre-
ating copies of the game for recursive operations by recording which vertices are
removed in a special array. Recently, Arcucci et al. extended the implementation
in [40] with a multi-core implementation of attractor computation [1].

The implementation in Oink is based upon the ideas described above. Fur-
thermore, we improve the implementation using the following techniques.

– Instead of creating copies of the “removed” array [40] for each recursive step,
we use a single “region” array that stores for each vertex that it is attracted
by the rth call to attr. This value is initially ⊥ for all vertices and is reset to
⊥ for vertices in � \ W ′

α (line 10). We record the initial r at each depth and
thus derive that all vertices with a value ≥ r or ⊥ are part of the subgame.

– As a preprocessing step, we order all vertices by priority. We can then quickly
obtain the highest vertex of each subgame.

– We eliminate the recursion using a stack.
– We implement an alternative lock-free attractor, relying on the work-stealing

library Lace [12] that provides fine-grained load balancing.

In the interest of space, we cannot describe the multi-core attractor in-depth.
This implementation is fairly straightforward. We implement the attractor recur-
sively where the work-stealing framework runs the recursive operations in paral-
lel. Like typical lock-free algorithms, we rely on the compare-and-swap operation

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 303

Table 3. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the four solvers
PGSolver (pgzlk), SPGSolver (spg), pbespgsolve (pbeszlk) and Oink (sequential zlk,
multi-core zlk-1 and zlk-8, unoptimized uzlk).

Model checking Equiv checking Random games Total

zlk-8 94 0 415 0 11 0 521 0

zlk 88 0 472 0 6 0 566 0

zlk-1 97 0 512 0 7 0 616 0

uzlk 89 0 472 0 69 0 630 0

pbeszlk 64 0 513 0 338 0 915 0

spg-seq 58 0 198 0 694 0 950 0

spg-mc 389 0 1451 0 72608 37 74447 37

pgzlk 65905 33 68013 36 41629 14 175547 83

to implement safe communication between threads. The attractor uses this oper-
ation when manipulating the number of escaping edges and to “claim” a vertex
by setting its value in the region array from ⊥ to r.

Empirical Evaluation. We compare our implementation of Zielonka’s recur-
sive algorithm with and without the optimizations of Algorithm 3 to PGSolver,
to Verver’s implementation pbespgsolve [11,41] and to SPGSolver [1,40]. Unfor-
tunately, the Java version of SPGSolver (all three variations) suffers from severe
performance degradation for unknown reasons. They also provide a C++ imple-
mentation in their online repository, which we used instead. The multi-core ver-
sion of the SPGSolver tool relies on async tasks provided by C++11. Similar
to the previous sections, we disable the optional preprocessors that solve single
parity games, remove self-loops and solve winner-controlled winning cycles.

See Table 3. The results show that the implementation in Oink outperforms
PGSolver by several orders of magnitude on all benchmark types. PGSolver
timed out for 83 of all 949 games. The solvers spg-seq and pbeszlk are faster
than Oink on the model checking and equivalence checking games, but are sig-
nificantly outperformed on random games. We also observe severe performance
degradation for spg-mc on random games. It appears that our parallel imple-
mentation of Zielonka’s algorithm also does not scale well. Finally, there seems
to be no significant difference between the optimized and unoptimized versions
of Zielonka’s algorithm, except for random games.

7 Priority Promotion

In recent work, a new family of algorithms has been proposed based on priority
promotion [5]. Priority promotion starts with a similar decomposition of the
game as Zielonka’s recursive algorithm. Priority promotion is based on the insight
that a recursive decomposition based on attractor computation leads to regions

304 T. van Dijk

Table 4. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the five priority
promotion solvers in Oink.

Model checking Equiv checking Random games Total

ppp 81 0 382 0 12 0 475 0

pp 82 0 382 0 12 0 476 0

rr 81 0 385 0 12 0 477 0

dp 84 0 389 0 15 0 488 0

rrdp 83 0 394 0 14 0 491 0

with a specific property related to the highest priority in the region, called its
measure p. This property is that all plays that stay in the region are won by
the player who wins the highest priority p, denoted by player α. The other
player α has three options. They either lose the game by staying in the region,
or they can leave the region by playing to an α-region of higher measure, or
they can leave the region to a lower region of either player via a vertex with
priority p. The goal of α is to find “closed” α-regions, where α cannot escape
to lower regions. The result is a region where player α either loses, or leaves the
region to a higher α-region which may or may not be closed. The measure of the
closed α-region is then “promoted” to the measure of the lowest higher region
to which α can escape and the attractor-based decomposition is recomputed for
all lower regions. The promoted region may now attract from regions with a
measure between its original measure and its promoted measure, thus requiring
recomputing the decomposition. When player α cannot escape from an α-region
to a higher α-region, player α is the winner of all vertices in the region.

Priority promotion was proposed in [5] and improved in [3,4]. The original PP
algorithm [5] forgets all progress (“resets”) in lower regions after promotion. The
PP+ algorithm [3] only resets lower regions of player α. The RR algorithm [4]
only resets some lower regions of player α. The DP algorithm [3] uses a heuristic
to delay certain promotions to avoid resets. We implement all four algorithms and
also combine the DP algorithm, which is based on PP+, with the RR algorithm.

Empirical Evaluation. We compare our implementation of five variations of
priority promotion in Oink. As we do not compare with other solvers, we enable
the optional preprocessors that solve single parity games, remove self-loops and
solve winner-controlled winning cycles.

See Table 4. Overall, we see that the simplest solver pp performs just as
good as the more complex solvers. The motivation for the variations is based
on crafted families that require an exponential number of promotions. The pp
solver may be most vulnerable to these crafted families, but on practical games
and random games there is no significant difference.

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 305

8 Conclusions

See Table 5 for a comparison of the five main sequential algorithms in Oink,
including the preprocessing that removes winner-controlled winning cycles, self-
loops and solves single parity games. The results show that the zlk and the
pp solvers have similar performance and outperform the other solvers. See also
Fig. 1 for a cactus plot of these five solvers.

Priority promotion is a powerful and attractive idea, as promoting closed
α-regions is similar to cap-and-carryover in small progress measures. Attractor
computation finds such regions directly whereas value iteration algorithms may
require many iterations. We confirm the observations in [5] that the algorithm
has a good performance but it is not faster than Zielonka’s algorithm.

In this work, we studied modern parity game algorithms using a new tool
named Oink. Oink is publicly available via https://www.github.com/trolando/
oink. We implemented a number of modern algorithms and provided a compre-
hensive description of these algorithms, introducing cap-and-carryover to under-
stand small progress measures. We proposed improvements to strategy improve-
ment and to Zielonka’s algorithm. We presented an empirical evaluation of Oink,
comparing its performance with state-of-the-art solvers, especially the popular
PGSolver tool. The results demonstrate that Oink is competitive with other

Table 5. Runtimes in sec. (PAR2) and number of timeouts (15min) of the sequential
implementations of the five solvers in Oink described in this paper.

Model checking Equiv checking Random games Total

pp 82 0 382 0 12 0 476 0

zlk 78 0 393 0 10 0 481 0

psi 231 0 2440 0 689 0 3359 0

spm 1007 0 3079 0 156885 87 160971 87

qpt 59559 31 60728 31 62104 33 182391 95

Fig. 1. A cactus plot of five sequential solvers implemented in Oink. The plot shows
how many games are (individually) solved within a certain amount of time.

https://www.github.com/trolando/oink
https://www.github.com/trolando/oink

306 T. van Dijk

implementations and in fact outperforms PGSolver for all algorithms, especially
Zielonka’s recursive algorithm. This result is particularly interesting considering
that many publications compare the performance of novel ideas to Zielonka’s
algorithm in PGSolver.

Acknowledgements. We thank Tim Willemse and John Fearnley for their helpful
comments and Jaco van de Pol for the use of their computer cluster.

References

1. Arcucci, R., Marotta, U., Murano, A., Sorrentino, L.: Parallel parity games: a mul-
ticore attractor for the Zielonka recursive algorithm. In: ICCS, Procedia Computer
Science, vol. 108, pp. 525–534. Elsevier (2017)

2. Bakera, M., Edelkamp, S., Kissmann, P., Renner, C.D.: Solving μ-calculus parity
games by symbolic planning. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 15–33. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00431-5 2

3. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. In: GandALF 2016. EPTCS, vol. 226, pp. 30–45 (2016)

4. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for
parity games. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp.
117–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 8

5. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
270–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 15

6. van der Berg, F.: Solving parity games on the playstation 3. In: Twente Student
Conference (2010)

7. Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210–
229 (2007)

8. Bootsma, P.: Speeding up the small progress measures algorithm for parity games
using the GPU. Master’s thesis, Eindhoven University of Technology (2013)

9. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252–263. ACM (2017)

10. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Improved set-based
symbolic algorithms for parity games. In: CSL, LIPIcs, vol. 82, pp. 18:1–18:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

11. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P.,
Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 15

12. van Dijk, T., van de Pol, J.C.: Lace: non-blocking split deque for work-stealing.
In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 206–217. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-14313-2 18

13. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy (extended
abstract). In: FOCS, pp. 368–377. IEEE Computer Society (1991)

14. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of
μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 32

https://doi.org/10.1007/978-3-642-00431-5_2
https://doi.org/10.1007/978-3-642-00431-5_2
https://doi.org/10.1007/978-3-319-49052-6_8
https://doi.org/10.1007/978-3-319-41540-6_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-319-14313-2_18
https://doi.org/10.1007/3-540-56922-7_32

Oink: An Implementation and Evaluation of Modern Parity Game Solvers 307

15. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

16. Fearnley, J.: Non-oblivious strategy improvement. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 212–230. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17511-4 13

17. Fearnley, J.: Efficient parallel strategy improvement for parity games. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 137–154.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 8

18. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: SPIN,
pp. 112–121. ACM (2017)

19. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04761-9 15

20. Friedmann, O., Lange, M.: Local strategy improvement for parity game solving.
In: GandALF. EPTCS, vol. 25, pp. 118–131 (2010)

21. Gazda, M., Willemse, T.A.C.: Zielonka’s recursive algorithm: dull, weak and soli-
taire games and tighter bounds. In: GandALF. EPTCS, vol. 119, pp. 7–20 (2013)

22. Gazda, M., Willemse, T.A.C.: Improvement in small progress measures. In:
GandALF. EPTCS, vol. 193, pp. 158–171 (2015)

23. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

24. Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Van Hung,
D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 455–459. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02444-8 34

25. Huth, M., Kuo, J.H.-P., Piterman, N.: Concurrent small progress measures. In:
Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 130–
144. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34188-5 13

26. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

27. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 24

28. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In:
LICS, pp. 1–9. IEEE Computer Society (2017)

29. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

30. Kant, G., van de Pol, J.: Generating and solving symbolic parity games. In:
GRAPHITE. EPTCS, vol. 159, pp. 2–14 (2014)

31. Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.)
FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24644-4 9

32. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

33. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-
ness. In: STOC, pp. 224–233. ACM (1998)

34. Liu, Y., Duan, Z., Tian, C.: An improved recursive algorithm for parity games. In:
TASE, pp. 154–161. IEEE Computer Society (2014)

35. Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving
parity games. CoRR abs/0806.2923 (2008)

https://doi.org/10.1007/978-3-642-17511-4_13
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-02444-8_34
https://doi.org/10.1007/978-3-642-34188-5_13
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-319-24644-4_9

308 T. van Dijk

36. Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU. In: Artho,
C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 262–267. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 17

37. van de Pol, J., Weber, M.: A multi-core solver for parity games. Electr. Notes
Theor. Comput. Sci. 220(2), 19–34 (2008)

38. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-
4 27

39. Schewe, S.: Solving parity games in big steps. J. Comput. Syst. Sci. 84, 243–262
(2017)

40. Di Stasio, A., Murano, A., Prignano, V., Sorrentino, L.: Solving parity games in
scala. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997, pp. 145–161.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15317-9 9

41. Verver, M.: Practical improvements to parity game solving. Master’s thesis,
University of Twente (2013)

42. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 18

43. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-319-15317-9_9
https://doi.org/10.1007/10722167_18
http://creativecommons.org/licenses/by/4.0/

	Oink: An Implementation and Evaluation of Modern Parity Game Solvers
	1 Introduction
	2 Preliminaries
	2.1 Solvers
	2.2 Empirical Evaluation

	3 Oink
	4 Strategy Improvement
	5 Progress Measures
	5.1 Small Progress Measures
	5.2 Quasi-polynomial Progress Measures
	5.3 Empirical Evaluation

	6 Zielonka's Recursive Algorithm
	7 Priority Promotion
	8 Conclusions
	References

