
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-016-0433-2

TACAS 2015

Sylvan: multi-core framework for decision diagrams

Tom van Dijk1 · Jaco van de Pol2

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Decision diagrams, such as binary decision dia-
grams, multi-terminal binary decision diagrams and multi-
valued decision diagrams, play an important role in various
fields. They are especially useful to represent the charac-
teristic function of sets of states and transitions in symbolic
model checking.Most implementations of decision diagrams
do not parallelize the decision diagram operations. As perfor-
mance gains in the current era nowmostly come fromparallel
processing, an ongoing challenge is to develop datastructures
and algorithms for modern multi-core architectures. The
decision diagram package Sylvan provides a contribution
by implementing parallelized decision diagram operations
and thus allowing sequential algorithms that use decision
diagrams to exploit the power of multi-core machines. This
paper discusses the design and implementation of Sylvan,
especially an improvement to the lock-free unique table
that uses bit arrays, the concurrent operation cache and the
implementation of parallel garbage collection. We extend
Sylvanwithmulti-terminal binary decision diagrams for inte-
gers, real numbers and rational numbers. This extension also
allows for customMTBDDleaves andoperations andwepro-
vide an example implementation of GMP rational numbers.

Work funded by the NWO project MaDriD, Grant Nr. 612.001.101.

B Tom van Dijk
tom@tvandijk.nl

Jaco van de Pol
J.C.vandePol@utwente.nl

1 Institute for Formal Models and Verification, Johannes Kepler
University, Linz, Austria

2 Formal Methods and Tools, University of Twente, Enschede,
The Netherlands

Furthermore, we show how the provided framework can be
integrated in existing tools to provide out-of-the-box parallel
BDD algorithms, as well as support for the parallelization of
higher-level algorithms. As a case study, we parallelize on-
the-fly symbolic reachability in the model checking toolset
LTSmin.We experimentally demonstrate that the paralleliza-
tion of symbolic model checking for explicit-state modeling
languages, as supported by LTSmin, scales well. We also
show that improvements in the design of the unique table
result in faster execution of on-the-fly symbolic reachability.

Keywords Multi-core · Parallel ·Binary decision diagrams ·
Multi-terminal binary decision diagrams · Multi-valued
decision diagrams · Symbolic model checking

1 Introduction

In model checking, we create models of complex systems
to verify that they function according to certain properties.
Systems are modeled using possible states and transitions
between these states. An important part of many model
checking algorithms is state-space exploration using a reach-
ability algorithm, to compute all states reachable from some
initial state. A major challenge is that the space and time
requirements of these algorithms increase exponentially with
the size of themodels.Onemethod to alleviate this problem is
symbolic model checking [12], where states are not treated
individually but as sets of states, stored in binary decision
diagrams (BDDs). For many symbolic model checking algo-
rithms, most time is spent in the BDD operations. Another
method uses parallel computation, e.g., in computer systems
with multiple processors. In [21,23,26], we combined both
approaches by parallelizing BDD operations in the parallel
BDD library Sylvan.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0433-2&domain=pdf


T. van Dijk, J. van de Pol

Contributions This paper is an extended version of [26].
We refer also to the PhD thesis of the first author [21] for a
more extensive treatment of multi-core decision diagrams.

In [26], we presented an extension to Sylvan that imple-
ments operations on list decision diagrams (LDDs). We
also investigated applying parallelism on a higher level
than the BDD/LDD operations. Since computing the full
transition relation is expensive, the model checking toolset
LTSmin [7,24,38,42] has the notion of transition groups,
which disjunctively partition the transition relation. We
exploited the fact that partitioned transition relations can be
applied in parallel and showed that this results in improved
scalability. In addition, LTSmin supports learning transi-
tion relations on-the-fly, which enables the symbolic model
checking of explicit-state models. We implemented a spe-
cialized operationcollect, which combinesenumerate
and union, to perform parallel transition learning and we
showed that this results in good parallel performance.

Since [26], we equipped Sylvan with a versatile imple-
mentation of MTBDDs, allowing symbolic computations on
integers, floating-points, rational numbers and other types.
We discuss the design and implementation of our MTBDD
extension, as well as an example of custom MTBDD leaves
with theGMP library. Furthermore,we redesigned the unique
table to require fewer cas operations per created node. We
also describe the operation cache and parallel garbage col-
lection in Sylvan.

Experiments on the BEEMdatabase of explicit-statemod-
els show that parallelizing the higher level algorithms in
LTSmin pays off, as the parallel speedup increases from
5.6× to 16×, while the sequential computation time (with
1 worker) stays the same. The experiments also show that
LDDs perform better than BDDs for this set of bench-
marks. In addition to the experiment performed in [26], we
include additional experiments using the new hash table.
These benchmark results show that the new hash table results
in a 21 % faster execution for 1 worker, and a 30 % faster
execution with 48 workers, improving the parallel speedup
from 16× to 18×.

Outline This paper is organized as follows. After a review
of the relatedwork in Sect. 2, we introduce decision diagrams
and parallel programming in Sect. 3. Section 4 discusses
how we use work-stealing to parallelize operations. Sec-
tion 5 presents the implementation of the datastructures of
the unique table and the operation cache, aswell as the imple-
mentation of parallel garbage collection in Sylvan. Section 6
discusses the implementation of specific decision diagram
operations, especially the BDD and MTBDD operations.
In Sect. 7, we apply parallelization to on-the-fly symbolic
reachability in LTSmin. Section 8 shows the results of sev-
eral experiments using the BEEM database of explicit-state

models tomeasure the effectiveness of our approach. Finally,
Sect. 9 summarizes our findings and reflections.

2 Related work

This section is largely based on earlier literature reviews we
presented in [23,26].

Massively parallel computing (early ’90s) In the early
’90s, researchers tried to speed up BDD manipulation by
parallel processing. The first paper [39] views BDDs as
automata, and combines them by computing a product
automaton followed by minimization. Parallelism arises by
handling independent subformulae in parallel: the expansion
and reduction algorithms themselves are not parallelized.
They use locks to protect the global hash table, but this still
results in a speedup that is almost linear with the number of
processors. Most other work in this era implemented BFS
algorithms for vector machines [47] or massively parallel
SIMD machines [13,32] with up to 64K processors. Exper-
iments were run on supercomputers, like the Connection
Machine. Given the large number of processors, the speedup
(around 10–20) was disappointing.

Parallel operations and constructions An interesting con-
tribution in this period is the paper by Kimura et al. [40].
Although they focus on the construction of BDDs, their
approach relies on the observation that suboperations from a
logic operation can be executed in parallel and the results can
be merged to obtain the result of the original operation. Our
solution to parallelizing BDD operations follows the same
line of thought, although the work-stealing method for effi-
cient load balancing that we use was first published 2 years
later [8]. Similar to [40], Parasuram et al. implement parallel
BDD operations for distributed systems, using a “distributed
stack” for load balancing, with speedups from 20–32 on a
CM-5 machine [50]. Chen and Banerjee implemented the
parallel construction of BDDs for logic circuits using lock-
based distributed hash tables, parallelizing on the structure
of the circuits [14]. Yang and O’Hallaron [60] parallelized
breadth-first BDD construction on multi-processor systems,
resulting in reasonable speedups of up to 4× with 8 proces-
sors, although there is a significant synchronization cost due
to their lock-protected unique table.

Distributed memory solutions (late ’90s) Attention shifted
towards Networks of Workstations, based on message pass-
ing libraries. The motivation was to combine the collective
memory of computers connected via a fast network. Both
depth-first [3,5,57] and breadth-first [53] traversal have been
proposed. In the latter, BDDs are distributed according to
variable levels. A worker can only proceed when its level

123



Sylvan: multi-core framework for decision diagrams

has a turn, so these algorithms are inherently sequential.
The advantage of distributed memory is not that multi-
ple machines can perform operations faster than a single
machines, but that their memory can be combined in to han-
dle larger BDDs. For example, even though [57] reports a
nice parallel speedup, the performance with 32 machines is
still 2× slower than the non-parallel version. BDDNOW [46]
is the first BDDpackage that reports some speedup compared
to the non-parallel version, but it is still very limited.

Parallel symbolic reachability (after 2000) After 2000,
research attention shifted from parallel implementations of
BDDoperations towards the use ofBDDs for symbolic reach-
ability in distributed [15,33] or shared memory [18,28].
Here, BDD partitioning strategies such as horizontal slic-
ing [15] and vertical slicing [35] were used to distribute
the BDDs over the different computers. Also, the satura-
tion algorithm [16], an optimal iteration strategy in symbolic
reachability, was parallelized using horizontal slicing [15]
and using the work-stealer Cilk [28], although it is still dif-
ficult to obtain good parallel speedup [18].

Multi-core BDD algorithms There is some recent research
on multi-core BDD algorithms. There are several implemen-
tations that are thread-safe, i.e., they allow multiple threads
to use BDD operations in parallel, but they do not offer paral-
lelized operations. In a thesis on the BDD library JINC [49],
Chapter 6 describes a multi-threaded extension. JINC’s par-
allelism relies on concurrent tables and delayed evaluation. It
does not parallelize the basic BDD operations, although this
is mentioned as possible future research. Also, a recent BDD
implementation in Java called BeeDeeDee [43] allows exe-
cution of BDDoperations frommultiple threads, but does not
parallelize singleBDDoperations. Similarly, thewell-known
sequential BDD implementation CUDD [56] supports multi-
threaded applications, but only if each thread uses a different
“manager”, i.e., unique table to store the nodes in. Except
for our contributions [23,24,26] related to Sylvan, there is
no recent published research on modern multi-core shared-
memory architectures that parallelizes the actual operations
on BDDs. Recently, Oortwijn [48] continued our work by
parallelizingBDDoperations on sharedmemory abstractions
of distributed systems using remote direct memory access.
Also, Velev and Gao [58] have implemented parallel BDD
operations on a GPU using a parallel cuckoo hash table.

Finally, we refer to Somenzi [55] for a detailed paper on
the implementation of decision diagrams, and to the PhD
thesis of the first author [21] onmulti-core decision diagrams.

3 Preliminaries

This section presents the definitions of binary decision dia-
grams (BDDs), multi-valued decision diagrams (MDDs),

multi-terminal binary decision diagrams (MTBDDs) and list
decision diagrams (LDDs) from the literature [4,6,11,37].
Furthermore, we discuss parallel programming.

3.1 Decision diagrams

Binary decision diagrams (BDDs) are a concise and canon-
ical representation of Boolean functions BN → B [2,11].
They are a basic structure in discrete mathematics and com-
puter science. A (reduced, ordered) BDD is a rooted directed
acyclic graph with leaves 0 and 1. Each internal node has
a variable label xi and two outgoing edges labeled 0 and 1,
called the “low” and the “high” edge. Furthermore, variables
are encountered along each directed path according to a fixed
variable ordering. Duplicate nodes (two nodes with the same
variable label and outgoing edges) and nodeswith two identi-
cal outgoing edges (redundant nodes) are forbidden. It is well
known that, given a fixed variable ordering, every Boolean
function is represented by a unique BDD [11].

In addition, we use complement edges [10] as a prop-
erty of an edge to denote the negation of a BDD, i.e., the
leaf 1 is interpreted as 0 and vice versa, or in general, each
leaf is interpreted as its negation. This is a well-known tech-
nique. We write ¬ to denote toggling this property on an
edge. BDDs with complement edges require an extra rule to
remain canonical representations of Boolean functions: the
complement markmust be forbidden on either the high or the
low edges.We choose to forbid complement edges on the low
edges. BDDs with complement edges are interpreted as fol-
lows: if the high edge has a complement mark, then the BDD
node represents the Boolean function x¬ fx=1 ∨ x fx=0, oth-
erwise x fx=1∨x fx=0, where fx=1 and fx=0 are computed by
interpreting the BDDs obtained by following the high and the
low edges. See Fig. 1 for several examples of simple BDDs,
with and without the use of complement edges.

In addition to BDDs with leaves 0 and 1, multi-terminal
binary decision diagrams (MTBDDs) have been proposed [4,
19] with arbitrary leaves, representing functions from the
Boolean space BN onto any set. For example, MTBDDs can
have leaves representing integers (encoding B

N → N), real
numbers (encoding BN → R) and rational numbers (encod-
ing BN → Q). In our implementation of MTBDDs, we also
allow for partially defined functions, using a leaf⊥. SeeFig. 2
for an example of an MTBDD.

Multi-valued decision diagrams (MDDs, sometimes also
called multi-way decision diagrams) are a generalization of
BDDs to the other domains, such as integers [37]. Whereas
BDDs represent functions BN → B, MDDs represent func-
tions D1 × · · · × DN → B, for finite domains D1, . . . ,DN .
They are typically used to represent functions on integer
domains like (N<v)

N . Rather than two outgoing edges, each
internal MDD node with variable xi has ni labeled outgoing
edges. For example for integers, these edges could be labeled

123



T. van Dijk, J. van de Pol

x x1 ∧ x2 x1 ∨ x2 x1 ⊕ x2

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

0

x

0

x2

x1

0

x2

x1

0

x2

x1

Fig. 1 Binary decision diagrams for several Boolean functions, with-
out complement edges (above) and with complement edges (below).
Internal nodes are drawn as circles with variables, and leaves as boxes.
High edges are drawn solid, and low edges are drawn dashed. BDDs
are evaluated by following the high edge when a variable x is true, or
the low edge when it is false

x1

x2 x2

⊥ 1 0.5 0.33333

Fig. 2 The MTBDD for a function that maps x1x2 to 1, x1x2 to 0.5,
and x1x2 to 0.33333. The function is undefined for the input x1x2

x1

x2x2 x2 x2

1

0 1 3 5 6

0 2
4 2 4 0 1 1

Fig. 3 Edge-labeledMDD (hiding paths to 0) for the set {〈0, 0〉, 〈0, 2〉,
〈0, 4〉, 〈1, 0〉, 〈1, 2〉, 〈1, 4〉, 〈3, 2〉, 〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}

0 to ni−1. See Fig. 3 for anMDD representing a set of integer
pairs, where we hide edges to 0 to improve the readability.

As an alternative toMDDs, list decision diagrams (LDDs)
represent sets of integer vectors, such as sets of states in
model checking. List decision diagrams encode functions
(N<v)

N → B, and were initially described in [6, Sect. 5]. A
list decision diagram is a rooted directed acyclic graph with
leaves 0 and 1. Each internal node has a value v and two out-

x1 : 0 1 3 5 6

x2 : 0 2 4 0 1

0

0 0

1 1 1 1 1

Fig. 4 LDD representing the set {〈0, 0〉, 〈0, 2〉, 〈0, 4〉, 〈1, 0〉, 〈1, 2〉,
〈1, 4〉, 〈3, 2〉, 〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}. We draw the same leaf mul-
tiple times for aesthetic reasons

going edges labeled> and =, also called the “right” and the
“down” edge. Along the “right” edges, values v are encoun-
tered in ascending order. The “down” edge never points to
leaf 0 and the “right” edge never points to leaf 1. Duplicate
nodes are forbidden. See Fig. 4 for an example of an LDD
that represents the same set as the MDD in Fig. 3.

LDD nodes have a property called a level (and its dual,
depth), which is defined as follows: the root node is at the
first level, nodes along “right” edges stay in the same level,
while “down” edges lead to the next level. The depth of an
LDD node is the number of “down” edges to leaf 1.

LDDs compared to MDDs A typical method to store
MDDs in memory stores the variable label xi plus an array
holding allni edges (pointers to nodes), e.g., in [45]:struct
node { int lvl; node* edges[]; }.Newnodes
are allocated dynamically using malloc and a hash table
ensures that no duplicate MDD nodes are created. Alterna-
tively, one could use a large int[] array to store all MDDs
(each MDD is represented by ni + 1 consecutive integers)
and represent edges to an MDD as the index of the first inte-
ger. In [17], the edges are stored in a separate int[] array
to allow the number of edges ni to vary. Implementations of
MDDs that use arrays to implement MDD nodes have two
disadvantages. (1) For sparse sets (where only a fraction of
the possible values are used, and outgoing edges to 0 are not
stored) using arrays is a waste of memory. (2) MDD nodes
typically have a variable size, complicating memory man-
agement.

List decision diagrams can be understood as a linked-
list representation of “quasi-reduced”MDDs. Quasi-reduced
MDDs are a variation of normal (fully-reduced) MDDs.
Instead of forbidding redundant nodes (with identical out-
going edges), quasi-reduced MDDs forbid skipping lev-
els. They are canonical representations, like fully-reduced
MDDs. An advantage of quasi-reduced MDDs is that, for
some applications, edges that do not skip levels can be eas-
ier to manage [17]. Also, variables labels do not need to be
stored as they follow implicitly from the depth of the MDD.

LDDs have several advantages compared to MDDs [6].
LDD nodes are binary, so they have a fixed node size which
is easier for memory allocation. They are better for sparse

123



Sylvan: multi-core framework for decision diagrams

1 def apply(x , y, F):
2 if x and y are leaves or trivial : return F(x, y)
3 normalize/simplify parameters
4 if result ← cache[(x, y,F)] : return result
5 v = topvar(x ,y)
6 low ← apply(xv=0, yv=0, F)
7 high ← apply(xv=1, yv=1, F)
8 result ← lookupBDDnode(v, low, high)
9 cache[(x, y,F)] ← result

10 return result

Algorithm 1 Example of a parallelized BDD algorithm: apply a binary
operator F to BDDs x and y

sets: valuations that lead to 0 simply do not appear in the
LDD. LDDs also have more opportunities for the sharing
of nodes, as demonstrated in the example of Fig. 4, where
the LDD encoding the set {2, 4} is used for the set {0, 2, 4}
and reused for the set {〈3, 2〉 , 〈3, 4〉}, and similarly, the LDD
encoding {1} is used for {0, 1} and for {〈6, 1〉}. A disadvan-
tage of LDDs is that their linked-list style introduces edges
“inside” the MDD nodes, requiring more memory pointers,
similar to linked lists compared with arrays.

3.2 Decision diagram operations

Operations on decision diagrams are typically recursively
defined. Suboperations are computed based on the subgraphs
of the inputs, i.e., the decision diagrams obtained by follow-
ing the two outgoing edges of the root node, and their results
are used to compute the result of the full operation. In this
subsection we look at Algorithm 1, a generic example of a
BDD operation. This algorithm takes as inputs the BDDs
x and y (with the same fixed variable ordering), to which a
binary operationF is applied.We assume that, given the same
parameters, F always returns the same result. Therefore, we
use a cache to store the results of (sub)operations. This is in
fact required to reduce the complexity class of many BDD
operations from exponential time to polynomial time.

Most decision diagram operations first check if the oper-
ation can be applied immediately to x and y (line 2). This
is typically the case when x and y are leaves. Often there
are also other trivial cases that can be checked first. After
this, the operation cache is consulted (lines 3–4). In cases
where computing the result for leaves or other cases takes
a significant amount of time, the cache should be consulted
first. Often, the parameters can be normalized in some way
to increase the cache efficiency. For example, a∧b and b∧a
are the same operation. In that case, normalization rules can
rewrite the parameters to some standard form to increase
cache utilization, at line 3. A well-known example is the if-
then-else algorithm, which rewrites using rewrite rules called
“standard triples” as described in [10].

If x and y are not leaves and the operation is not trivial or
in the cache, we use a function topvar (line 5) to determine

1 def lookupBDDnode(x , low, high):
2 if low = high : return low
3 if complement(low) :
4 return ¬lookupBDDnode(x , ¬low, ¬high)
5 try :
6 return find-or-insert ({x, low, high})
7 catch TableFull :
8 garbage-collect()
9 return find-or-insert ({x, low, high})
Algorithm 2 The BDDnode method creates a BDD node using the
hash table find-or-insert method (Algorithm 3) to ensure that
there are no duplicate nodes. Line 2 ensures that there are no redundant
nodes

the first variable of the root nodes of x and y. If x and y have
a different variable in their root node, topvar returns the
first one in the variable ordering of x and y. We then compute
the recursive application of F to the cofactors of x and y with
respect to the variable v in lines 6–7.We write xv=i to denote
the cofactor of x where variable v takes value i . Since x and y
are ordered according to the same fixed variable ordering, we
can easily obtain xv=i . If the root node of x is on the variable
v, then xv=i is obtained by following the low (i = 0) or high
(i = 1) edge of x . Otherwise, xv=i equals x . After computing
the suboperations, we compute the result by either reusing
an existing or creating a new BDD node (line 8). This is done
by the operation lookupBDDnode which, given a variable
v and the BDDs of resultv=0 and resultv=1, returns the BDD
for result. Finally, the result is stored in the cache (line 9) and
returned (line 10).

The operationlookupBDDnode is given inAlgorithm2.
This operation ensures that there are no redundant nodes
(line 2) and no complement mark on the low edge (lines 3–4)
and employs themethod find-or-insert (implemented
by the unique table, see Sect. 5) to ensure that there are no
duplicate nodes (lines 6 and 9). If the hash table is full, then
garbage collection is performed (line 8).

3.3 Parallel programming

In parallel programs,memory accesses can result in race con-
ditions or data corruption, for examplewhenmultiple threads
write to the same memory location. Often datastructures are
protected against race conditions using locking techniques.
While locks are relatively easy to implement and reason
about, they can severely cripple parallel performance, espe-
cially as the number of threads increases. Threads must wait
until the lock is released, and locks can be a bottleneck when
many threads try to acquire the same lock. Also, locks can
sometimes cause spurious delays that smarter datastructures
could avoid, for example by recognizing that someoperations
do not interfere even though they access the same resource.

123



T. van Dijk, J. van de Pol

A standard technique that avoids locks uses the atomic
compare-and-swap (cas) operation,which is supported
by many modern processors.

1 def compare-and-swap(address, expected,
newval):

2 value ← *address
3 if value 	= expected : return False
4 *address ← newval
5 return True

This operation atomically compares the contents of a given
location in sharedmemory to some given expected value and,
if the contents match, changes the contents to a given new
value. If multiple processors try to change the same bytes in
memory using cas at the same time, then only one succeeds.

Datastructures that avoid locks are called non-blocking or
lock-free. Such datastructures often use the atomiccas oper-
ation tomake progress in an algorithm, rather than protecting
a part that makes progress. For example, when modifying a
shared variable, an approach using locks would first acquire
the lock, then modify the variable, and finally release the
lock. A lock-free approach would use atomic cas to modify
the variable directly. This requires only one memory write
rather than three, but lock-free approaches are typically more
complicated to reason about, and prone to bugs that are more
difficult to reproduce and debug.

There is a distinction between different levels of lock free-
dom. We are concerned with three levels:

– In blocking datastructures, it may be possible that no
threadsmake progress if a thread is suspended. If an oper-
ation may be delayed forever because another thread is
suspended, then that operation is blocking.

– In lock-free datastructures, if any thread working on the
datastructure is suspended, then other threads must still
be able to perform their operations. An operation may
be delayed forever, but if this is because another thread
is making progress and never because another thread is
suspended, then that operation is lock-free.

– Inwait-free datastructures, every thread can complete its
operation within a bounded number of steps, regardless
of the other threads; all threads make progress.

3.4 System architecture

This paper assumes a cache coherent sharedmemoryNUMA
architecture, i.e., there are multiple processors and multiple
memories, with a hierarchy of caches, all connected via inter-
connect channels. The sharedmemory is divided into regions
called cachelines, which are typically 64 bytes long. Only
whole cachelines are communicated between processors and
with the memory. Datastructures designed for multi-core
shared-memory architectures should aim to minimize the

number of cacheline transfers to be efficient. We also assume
the x86 TSO memory model [54]. In this memory model,
memorywrites of each processor are not reordered, butmem-
ory writes can be buffered. The datastructures presented in
this paper rely on compare-and-swap instructions and
assume total store ordering for their correctness.

4 Parallel operations using work-stealing

This section describes how we use work-stealing to execute
operations on decision diagrams in parallel.

We implement recursively defined operations such as
Algorithm 1 as independent tasks using a task-based parallel
framework. For task parallelism that fits a “strict” fork-join
model, i.e., each task creates the subtasks that it depends on,
work-stealing is well known to be an effective load balanc-
ing method [8], with implementations such as Cilk [9,31]
and Wool [29,30] that allow writing parallel programs in a
style similar to sequential programs [1]. Work-stealing has
been proven to be optimal for a large class of problems and
has tight memory and communication bounds [8].

In work-stealing, tasks are executed by a fixed number of
workers, typically equal to the number of processor cores.
Each worker owns a task pool into which it inserts new sub-
tasks created by the task it currently executes. Idle workers
steal tasks from the task pools of other workers. Workers
are idle either because they do not have any tasks to per-
form (e.g., at the start of a computation), or because all their
tasks have been stolen and they have to wait for the result
of the stolen tasks to continue the current task. Typically,
one worker starts executing a root task and the other workers
perform work-stealing to acquire subtasks.

We use do in parallel to denote that tasks are executed
in parallel. Programs in the Cilk/Wool style are then imple-
mented like in Fig. 5. The SPAWN keyword creates a new
task. The SYNC keyword matches with the last unmatched
SPAWN, i.e., operating as if spawned tasks are stored on a
stack. It waits until that task is completed and retrieves the
result. Every SPAWN during the execution of the program
must have a matching SYNC. The CALL keyword skips the
task stack and immediately executes a task.

Decision diagram operations like Algorithm 1 are paral-
lelized by executing lines 6–7 in parallel:

Fig. 5 The algorithm (left) is implemented (right) using SPAWN,
SYNC and CALL

123



Sylvan: multi-core framework for decision diagrams

6 do in parallel:
7 low ← apply(xv=0, yv=0, F)
8 high ← apply(xv=1, yv=1, F)

This is equivalent to the following:
6 SPAWN(apply, xv=0, yv=0, F)
7 high ← CALL(apply, xv=1, yv=1, F)
8 low ← SYNC

We substituted the work-stealing framework Wool [29],
that we used in the first published version of Sylvan [23], by
Lace [25], which we developed based on ideas to minimize
interactions between workers and with the shared memory.
Lace is based around a novel work-stealing queue, which
is described in detail in [25]. Lace also implements extra
features necessary for parallel garbage collection.

To implement tasks, Lace provides C macros that require
only few modifications of the original source code. One
helpful feature for garbage collection in Sylvan that we
implemented in Lace is a feature that suspends all current
tasks and starts a new task tree. Lace implements a macro
NEWFRAME(...) that starts a new task tree, where one
worker executes the given task and all other workers per-
form work-stealing to help execute this task in parallel. The
macro TOGETHER(...) also starts a new task tree, but all
workers execute a local copy of the given task.

Sylvan uses the NEWFRAMEmacro as part of garbage col-
lection, and theTOGETHERmacro to perform thread-specific
initialization. Programs that use Sylvan can also use the Lace
framework to parallelize their high-level algorithms.We give
an example of this in Sect. 7.

5 Concurrent datastructures

This section describes the concurrent datastructures required
to parallelize decision diagram operations. Every operation
requires a scalable concurrent unique table for the BDD
nodes and a scalable concurrent operation cache. We use a
single unique table for all BDD nodes and a single operation
cache for all operations.

The parallel efficiency of a task-based parallelized algo-
rithm depends largely on the contents of each task. For
example, tasks that performmany processor calculations and
few memory operations typically result in good speedups.
Also, tasks that have many subtasks provide load balancing
frameworks with ample opportunity to execute independent
tasks in parallel. If the number of subtasks is small and the
subtasks are relatively shallow, i.e., the “task tree” has a low
depth, then parallelization is more difficult.

BDD operations typically perform few calculations and
are memory-intensive, since they consist mainly of calls to
the operation cache and the unique table. Furthermore, BDD
operations typically spawn only one or two independent sub-

tasks for parallel execution, depending on the inputs and the
operation. Hence the design of scalable concurrent datastruc-
tures (for the cache and the unique table) is crucial for the
parallel performance of BDD implementation.

5.1 Representation of nodes

This subsection discusses how BDD nodes, LDD nodes and
MTBDD nodes are represented in memory. We use 16 bytes
for all types of nodes, so we can use the same unique table
for all nodes and have a fixed node size. As we see below,
not all bits are needed; unused bits are set to 0. Also, with
16 bytes per node, this means that 4 nodes fit exactly in a
cacheline of 64 bytes (the size of the cacheline for many
current computer architectures, in particular the x86 family
that we use), which is very important for performance. If the
unique table is properly aligned in memory, then only one
cacheline needs to be accessed when accessing a node.

We use 40 bits to store the index of a node in the unique
table. This is sufficient to store up to 240 nodes, i.e. 16 ter-
abytes of nodes, excluding overhead in the hash table (to store
all the hashes) and other datastructures. As we see below,
there is sufficient space in the nodes to increase this to 48 bits
per node (up to 4096 terabytes), although that would have
implications for the performance (more difficult bit opera-
tions) and for the design of the operation cache.

Edges to nodes Sylvan defines the type BDD as a 64-bit
integer, representing an edge to a BDD node. The lowest
40 bits represent the location of the BDD node in the nodes
table, and the highest-significant bit stores the complement
mark [10]. The BDD 0 is reserved for the leaf false, with
the complemented edge to 0 (i.e.0x8000000000000000)
meaning true. We use the same method for MTBDDs and
LDDs, although most MTBDDs do not have complemented
edges. LDDs do not have complemented edges at all. The
LDD leaf false is represented as 0, and theLDD leaf true
is represented as 1. For the MTBDD leaf ⊥ we use the leaf 0
that represents Boolean false as well. This has the advan-
tage that Boolean MTBDDs can act as filters for MTBDDs
with theMTBDDoperation times. The disadvantage is that
partial Boolean MTBDDs are not supported by default, but
can easily be implemented using a custom MTBDD leaf.

Internal BDDnodes Internal BDDnodes store the variable
label (24 bits), the low edge (40 bits), the high edge (40 bits),
and the complement bit of the high edge (the first bit below).

high edge variable low edge

123



T. van Dijk, J. van de Pol

MTBDD leaves For MTBDDs we use a bit that indicates
whether a node is a leaf or not. MTBDD leaves store the leaf
type (32 bits), the leaf contents (64 bits) and the fact that they
are a leaf (1 bit, set to 1):

leaf type leaf value

Internal MTBDD nodes Internal MTBDD nodes store the
variable label (24 bits), the low edge (40 bits), the high edge
(40 bits), the complement bit of the high edge (1 bit, the first
bit below) and the fact they are not a leaf (1 bit, the second
bit below, set to 0).

high edge variable low edge

Internal BDD nodes are identical to internal MTBDD
nodes, as unused bits are set to 0. Hence, the BDD 0 can be
used as a terminal for Boolean MTBDDs, and the resulting
BooleanMTBDD is identical to a BDD of the same function.

Internal LDD nodes Internal LDD nodes store the value
(32 bits), the down edge (40 bits) and the right edge (40 bits):

right edge value down edge

5.2 Scalable unique table

This subsection describes the hash tables that we use to store
the unique decision diagram nodes. We refer to [21] for a
more extensive treatment of these hash tables.

The hash tables store fixed-size decision diagram nodes
(16 bytes for each node) and strictly separate lookup and
insertion of nodes from a stop-the-world garbage collection
phase, during which the table may be resized. From the per-
spective of the nodes table algorithms (and correctness), all
threads of the program are in one of two phases:

1. During normal operation, threads only call the method
find-or-insert, which takes as input the node and
either returns a unique identifier for the data, or raises the
TableFull signal if the algorithm fails to insert the data.

2. Duringgarbage collection,find-or-insert is never
called.

This simplifies the requirements for the hash tables. The
find-or-insert operation must have the following
property: if the operation returns a value for some given data,
then other find-or-insert operations may not return

72 73 74 75 76 77 78 79

232 233 234 235 236 237 238 239

296 297 298 299 300 301 302 303

Order of buckets:
236–239, 232–235,
297–303, 296,
77–79, 72–76

Fig. 6 Example of the walking-the-line probe sequence, with the start-
ing buckets 236, 297 and 77 based on the first three hash values of the
data

Fig. 7 Layout of the hash table in [41] using a separate hash array and
data array

the same value for a different input, or return a different
value for the same input. This property must hold between
garbage collections; garbage collection obviously breaks the
property for nodes that are not kept during garbage collec-
tion, as nodes are removed from the table to make room for
new data.

In [26], we implemented a hash table based on the lock-
less hash table presented in [41]. The datastructures in [41]
and [26] are based on the following ideas:

– Using a probe sequence called “walking-the-line” that is
efficient with respect to transferred cachelines. See also
Fig. 6.

– Using a light-weight parametrised local “writing lock”
when inserting data, which almost always only delays
threads that insert the same data.

– Separating the stored data in a “data array” and the hash
of the data in the “hash array” so directly comparing the
stored data is often avoided. See also Fig. 7.

Probe sequence Every hash table needs to implement a
strategy to deal with hash table collisions, i.e., when differ-
ent data hashes to the same location in the table. To find
a location for the data in the hash table, some hash tables
use open addressing: they visit buckets in the hash table in
a deterministic order called the probe sequence. One of the
simplest probe sequences is linear probing, where the data
is hashed once to obtain the first bucket (e.g., bucket 61),

123



Sylvan: multi-core framework for decision diagrams

and the probe sequence consists of all buckets from that first
bucket (e.g., 61, 62, 63...). An alternative to linear probing
is walking-the-line, proposed in [41]. Since data in a com-
puter is transferred in blocks called cachelines, it is more
efficient to use the entire cacheline instead of only a part
of the cacheline. Walking-the-line is similar to linear prob-
ing, but continues at the beginning of the cacheline when the
end has been reached. After the whole cacheline has been
checked, a new hash value is computed for the next bucket.
See Fig. 6 for an example of walking-the-line.

Writing lock When multiple workers simultaneously
access the hash table to find or insert data, there must be
some mechanism to avoid race conditions, such as insert-
ing the same data twice, or trying to insert different data at
the same location simultaneously. Rather than using a global
lock on the entire hash table or regions of the hash table,
or a non-specific local lock on each bucket, the hash table
of [41] combines a short-lived local lock with a hash value
of the data that is inserted. This way, threads that are finding
or inserting data with a different hash value know that they
can skip the locked bucket in their search.

An empty bucket is first locked using an atomiccas oper-
ation that sets the lockwith the hash value of the inserted data,
then writes the data, and then releases the lock. Only work-
ers that are finding or inserting data with the same hash as
the locked bucket need to wait until the lock is released. This
approach is not lock-free. The authors state that a mechanism
could be implemented that ensures local progress (making
the algorithm wait-free), however, this is not needed, since
the writing locks are rarely hit under normal operation [41].

Separated arrays The hash table stores the hash of the
data and the short-lived lock separated from the stored data.
The idea is that the find-or-insert algorithm does not
need to access the stored data if the stored hash does not
matchwith the hashof the data given tofind-or-insert.
This reduces the number of accessed cachelines during
find-or-insert. See also Fig. 7. Each bucket i in the
hash array matches with the bucket i in the data array. The
hash that is stored in the hash array is independent of the
hash value used to determine the starting bucket in the probe
sequence, although in practice hash functions give a 64-bit
or 128-bit hash that we can use both to determine the starting
bucket in the probe sequence and the 31-bit hash for the hash
array.

The hash table presented in [26] stores independent loca-
tions for the bucket in the hash array and in the data array. The
idea is that the location of the decision diagram node in the
data array is used for the node identifier and that nodes can
be reinserted into the hash array without changing the node
identifier. This is important, since garbage collection is per-
formed often and nodes identifiers should remain unchanged

Fig. 8 Layout of the hash table [26] with hash array h and data array
d. The field D of hash bucket i controls whether the data bucket i is
used; the field H of hash bucket i controls whether the hash bucket i is
used, i.e., the fields hash and index

during garbage collection, i.e., nodes should not be moved.
To implement this feature, the buckets from the hash array
are extended to contain the index in the data array where the
corresponding data is stored, as well as a bit that controls
whether the bucket in the data array with the same index is
in use (see Fig. 8). See further [26].

In this paper, we present a redesigned version of the hash
table that uses bit arrays to control access to the data array.

The hash table in [26] has the drawback that the specu-
lative insertion and uninsertion into the data array requires
atomic cas operations, once for the insertion, once for the
uninsertion. Instead of using a field D in the hash array, we
use a separate bit array databits to implement a parallel
allocator for the data array. Furthermore, to avoid having to
use cas for every change to databits, we divide this bit
array into regions, such that every region matches exactly
with one cacheline of the databits array, i.e., 512 buckets
per region if there are 64 bytes in a cacheline, which is the
case for most current architectures. Every worker has exclu-
sive access to one region, which is managed with a second
bit array regionbits. Only changes to regionbits (to
claim a new region) require an atomic cas. The new version
therefore, only uses normal writes for insertion and uninser-
tion into the data array, and only occasionally an atomic cas
during speculative insertion to obtain exclusive access to the
next region of 512 buckets.

A claimed region is not given back until garbage col-
lection, which resets claimed regions. On startup and after
garbage collection, the regionbits array is cleared and
all threads claim a region using the claim-next-region
method in Algorithm 3. All threads start at a different posi-
tion (distributed over the entire table) for their first claimed
region, to minimize the interactions between threads. The
databits array is empty at startup and during garbage col-
lection threads use atomic cas to set the bits in databits
of decision diagram nodes that must be kept in the table. In
addition, the bit of the first bucket is always set to 1 to avoid
using the index 0 since this is a reserved value in Sylvan.

123



T. van Dijk, J. van de Pol

1 def find-or-insert(data):
2 index ← 0
3 h ← hash(data)
4 for s ∈ probe-sequence(data) :
5 V ← harray[s]
6 if V = 0 :
7 if index = 0 :
8 index ← reserve-data-bucket()
9 darray[index] ← data
10 if cas(harray[s], 0, {h, index}) : return index
11 else: V ← harray[s]
12 if V.hash = h ∧ darray[V.index] = data :
13 if index 	= 0 : free-data-bucket(index)
14 return V.index
15 raise TableFull

16 def reserve-data-bucket():
17 loop:
18 if myregion has a bit set to 0 :
19 i ← first bit in myregion that is 0
20 set-bit(databits, 512 × myregion + i, 1)
21 return 512 × myregion + i
22 else: myregion ← claim-next-region(myregion)

23 def free-data-bucket(d):
24 set-bit(databits, d, 0)

25 def claim-next-region(oldregion):
26 newregion ← (oldregion + 1) mod (tablesize/512)
27 while newregion 	= oldregion :
28 loop:
29 if the bit for newregion is 1 : break
30 if set-bit-cas(regionbits, newregion, 0, 1) :

return newregion
31 newregion ← (newregion + 1) mod (tablesize/512)
32 raise TableFull

Algorithm 3 Algorithm for parallel find-or-insert of the hash
table, with 512 buckets per region. The variable myregion is a thread-
specific variable

Fig. 9 Layout of the hash array and data array in the new hash table
design

The layout of the hash array and the data array is given in
Fig. 9. We also remove the field H, which is obsolete as we
use a hash function that never hashes to 0 andwe forbid nodes
with the index 0 because 0 is a reserved value in Sylvan. The
fields hash and index are therefore, never 0, unless the hash
bucket is empty, so the field H to indicate that hash and
index have valid values is not necessary. Manipulating the

hash array bucket is also simpler, since we no longer need to
take into account changes to the field D.

Inserting data into the hash table consists of three steps.
First the algorithm determines whether the data is already
in the table. If this is not the case, then a new bucket
in the data array is reserved in the current region of
the thread with reserve-data-bucket. If the current
region is full, then the thread claims a new region with
claim-next-region. It may be possible that the next
region contains used buckets, if there has been a garbage
collection earlier, or even that it is already full for this
reason. When the data has been inserted into an available
bucket in the the data array, the (hash and index of) the
data is also inserted into the hash array. Sometimes, the
data has been inserted concurrently (by another thread) and
then the bucket in the data array is freed again with the
free-data-bucket function, so it is available the next
time the thread wants to insert data.

Themainmethodof thehash table isfind-or-insert.
See Algorithm 3. The algorithm uses the local variable
“index” to keep track of whether the data is inserted into
the data array. This variable is initialized to 0 (line 2) which
signifies that data is not yet inserted in the data array. For
every bucket in the probe sequence, we first check if the
bucket is empty (line 6). In that case, the data is not yet in the
table. If we did not yet write the data in the data array, thenwe
reserve the next bucket and write the data (lines 7–9). We use
atomic cas to insert the hash and index into the hash array
(line 10). If this is successful, then the algorithm is done and
returns the location of the data in the data array. If the cas
operation fails, some other thread inserted data here and we
refresh our knowledge of the bucket (line 11) and continue
at line 12. If the bucket is not or no longer empty, then we
compare the stored hash with the hash of our data, and if
this matches, we compare the data in the data array with the
given input (line 12). If this matches, then we may need to
free the reserved bucket (line 13) and we return the index
of the data in the data array (line 14). If we finish the probe
sequence without inserting the data, we raise the TableFull
signal (line 15).

The find-or-insert method relies on the methods
reserve-data-bucket and free-data-bucket,
which are also given in Algorithm 3. They are straightfor-
ward.

The claim-next-region method searches for the
first 0-bit in theregionbits array.Thevaluetablesize
here represents the size of the entire table. We use a simple
linear search and a cas-loop to actually claim the region.
Note that we may be competing with threads that are trying
to set the bit of a different region, since the smallest range
for the atomic cas operation is 1 byte or 8 bits.

The algorithms in Algorithm 3 are wait-free. The method
claim-next-region is wait-free, since the number of

123



Sylvan: multi-core framework for decision diagrams

cas failures is bounded: regions are only claimed and not
released (until garbage collection), and the number of regions
is bounded, so the maximum number of cas failures is the
number of regions. The free-data-bucket is trivially
wait-free: there are no loops.Thereserve-data-bucket
method contains a loop, but since claim-next-region
iswait-free and thenumber of timesclaim-next-region
returns a value instead of raising the TableFull signal is
bounded by the number of regions, reserve-data-
bucket is also wait-free. Finally the find-or-insert
method only relies on wait-free methods and has only one
for-loop (line 4) which is bounded by the number of items in
the probe sequence. It is therefore, also wait-free.

5.3 Scalable operation cache

The operation cache is a hash table that stores intermediate
results of BDD operations. It is well known that an operation
cache is required to reduce the worst-case time complexity of
BDD operations from exponential time to polynomial time.

In practice, we do not guarantee this property. Since Syl-
van is a parallel package, it is possible that multiple workers
compute the same operation simultaneously. While opera-
tions could use the operation cache to “claim” a computation
(using a dummy result and promising a real result later), we
found that the amount of duplicate work due to parallelism is
limited. In addition, to guarantee polynomial time, the oper-
ation cache must store every subresult. In practice, we find
that we obtain a better performance by caching only many
results instead of all results, and by allowing the cache to
overwrite earlier results when there is a hash collision.

In [55], Somenzi writes that a lossless computed table
guarantees polynomial cost for the basic synthesis opera-
tions, but that lossless tables (that do not throw away results)
are not feasible when manipulating many large BDDs and in
practice lossy computed tables (that may throw away results)
are implemented. If the cost of recomputing subresults is suf-
ficiently small, it can payoff to regularly delete results or even
prefer to sometimes skip the cache to avoid data races. We
design our operation cache below to abort operations as fast
as possible when there may be a data race or the data may
already be in the cache.

On top of this, our BDD implementation implements
caching granularity, which controls when results are cached.
Most BDD operations compute a result on a variable xi ,
which is the top variable of the inputs. For granularity G,
a variable xi is in the cache block i mod G. Then each BDD
suboperation only uses the cache once for each cache block,
by comparing the cache block of the parent operation and of
the current operation.

This is a deterministic method to use the operation cache
only sometimes rather than always. In practice, we see that
this technique improves the performance of BDD operations.

Fig. 10 Layout of the operation cache

If the granularity G is too large, the cost of recomputing
results becomes too high, though, so care must be taken to
keep G at a reasonable value.

We use an operation cache which, like the hash tables
described above, consists of two arrays: the hash array and
the data array. See Fig. 10 for the layout. Since we implement
a lossy cache, the design of the operation cache is extremely
simple. We do not implement a special strategy to deal with
hash collisions, but simply overwrite the old results. There
is a trade-off between the cost of recomputing operations
and the cost of synchronizing with the cache. For example,
the caching granularity increases the number of recomputed
operations but improves the performance in practice.

The most important concern for correctness is that every
result obtained via cache-get was inserted earlier with
cache-put, and the most important concern for perfor-
mance is that the number of memory accesses is as low as
possible. To ensure this, we use a 16-bit “version tag” that
increments (modulo 4096) with every update to the bucket,
and check this value before reading and after reading the
cache to check if the obtained result is valid. The chance
of obtaining an incorrect result is astronomically small, as
this requires precisely 4096 cache-put operations on the
same bucket by other workers between the first and the sec-
ond time the tag is read in cache-get, and the last of these
4096 other operationsmust have exactly the same hash value.
Using a “version tag” like this is a well-known technique that
goes back to as early as 1975 [36, p. 125].

We reserve 24 bytes of the bucket for the operation and
its parameters. We use the first 64-bit value to store a BDD
parameter and the operation identifier. The remaining 128
bits store other parameters, such as up to two 64-bit values,
or up to three BDDs (123 bits, with 41 bits per BDD with a
complement edge). The same holds forMTBDDs and LDDs.
The result of the operation can be any 64-bit value or a BDD.
Note that with 32 bytes per bucket and a properly aligned
array, accessing a bucket requires only 1 cacheline transfer.
As there are two buckets per cacheline, there is a tiny possi-
bility for “false sharing” causing performance degradation,
but due to the nature of hash tables, this should only rarely
occur.

123



T. van Dijk, J. van de Pol

1 def cache-put(key, value):
2 h, location ← hash(key)
3 s ← harray[location]
4 if s.lock : return
5 if s.hash = h : return
6 if not cas(harray[location], s, {1, h, s.tag + 1}) : return
7 darray[location] ← {key, value}
8 harrray[location] ← {0, h, s.tag + 1}
Algorithm 4 The cache-put algorithm

SeeAlgorithm4 for thecache-put algorithmandAlgo-
rithm 5 for the cache-get algorithm. The algorithms
are quite straight-forward. We use a 64-bit hash function
that returns sufficient bits for the 15-bit h value and the
location value. The h value is used for the hash in the
hash array, and the location for the location of the bucket
in the table. The cache-put operation aborts as soon as
some problem arises, i.e., if the bucket is locked (line 4), or
if the hash of the stored key matches the hash of the given
key (line 5), or if the cas operation fails (line 6). If the cas
operation succeeds, then the bucket is locked. The key-value
pair is written to the cache array (line 7) and the bucket is
unlocked (line 8, by setting the locked bit to 0).

In the cache-get operation, when the bucket is locked
(line 4), we abort instead of waiting for the result. We also
abort if the hashes are different (line 5). We read the result
(line 6) and compare the key to the requested key (line 7). If
the keys are identical, then we verify that the cache bucket
has not been manipulated by a concurrent operation by com-
paring the “tag” counter (line 8).

As discussed above, it is possible that between lines 6–8
of the cache-get operation, exactly 4096 cache-put
operations are performed on the same bucket by other work-
ers, where the last one has exactly the same hash. The
chances of this occurring are astronomically small. The rea-
son we choose this design is that this implementation of
cache-get only reads from memory and never writes.
Memory writes cause additional communication between
processors and with the memory when writing to the cache-
line, and also force other processor caches to invalidate their
copy of the bucket. We also want to avoid locking buckets
for reading, because locking often causes bottlenecks. Since

1 def cache-get(key):
2 h, location ← hash(key)
3 s ← harray[location]
4 if s.lock : return ⊥
5 if s.hash 	= h : return ⊥
6 storedkey, value ← darray[location]
7 if storedkey 	= key : return ⊥
8 if s 	= harray[location] : return ⊥
9 return value

Algorithm 5 The cache-get algorithm

there are no loops in either algorithm, both algorithms are
wait-free.

5.4 Garbage collection

Operations on decision diagrams typically create many new
nodes and discard old nodes. Nodes that are no longer ref-
erenced are called “dead nodes”. Garbage collection, which
removes dead nodes from the unique table, is essential for the
implementation of decision diagrams. Since dead nodes are
often reused in later operations, garbage collection should be
delayed as long as possible [55].

There are various approaches to garbage collection. For
example, a reference count could be added to each node,
which records how often a node is referenced. Nodes with a
reference count of zero are either immediately removedwhen
the count decreases to zero, or during a separate garbage col-
lection phase. Another approach is mark-and-sweep, which
marks all nodes that must be kept and removes all unmarked
nodes. We refer to [55] for a more in-depth discussion of
garbage collection.

For a parallel implementation, reference counts can incur
a significant cost, as accessing nodes implies continuously
updating the reference count, increasing the amount of com-
munication between processors, as writing to a location in
memory requires all other processors to refresh their view
on that location. This is not a severe issue with only one
processor, but with many processors this results in excessive
communication, especially for nodes that are often used.

When parallelizing decision diagram operations, we can
choose to perform garbage collection “on-the-fly”, allow-
ing other workers to continue inserting nodes, or we can
“stop-the-world” and have all workers cooperate on garbage
collection. We use a separate garbage collection phase, dur-
ing which no new nodes are inserted. This greatly simplifies
the design of the hash table, and we see no major advantage
to allow some workers to continue inserting nodes during
garbage collection.

Somedecision diagram implementations use a global vari-
able that counts how many buckets in the nodes table are in
use and triggers garbage collection when a certain percent-
age of the table is in use. We want to avoid global counters
like this and instead use a bounded probe sequence for the
nodes table: when the algorithm cannot find an empty bucket
in the first K buckets, garbage collection is triggered. In sim-
ulations and experiments, we find that this occurs when the
hash table is between 80 and 95 % full.

As described above, decision diagramnodes are stored in a
“data array”, separated from themetadata of the unique table,
which is stored in the “hash array”. Nodes can be removed
from the hash tablewithout deleting them from the data array,
simply by clearing the hash array. The nodes can then be
reinserted during garbage collection, without changing their

123



Sylvan: multi-core framework for decision diagrams

location in the data array, thus preserving the identity of the
nodes.

We use a mark-and-sweep approach, where we keep track
of all nodes that must be kept during garbage collection. Our
implementation of parallel garbage collection consists of the
following steps:

1. Initiate the operation using the Lace framework to
arrange the “stop-the-world” interruption of all ongoing
tasks.

2. Clear the hash array of the unique table, and clear the
operation cache. The operation cache is cleared instead of
checking each entry individually after garbage collection,
although that is also possible.

3. Mark all nodes that wewant to keep, using various mech-
anisms that keep track of the decision diagram nodes that
we want to keep (see below).

4. Count the number of kept nodes and optionally increase
the size of the unique table. Also optionally change the
size of the operation cache.

5. Rehash marked nodes in the hash array of the unique
table.

To mark all used nodes, Sylvan has a framework that
allows custom mechanisms for keeping track of used nodes.
During the “marking” step of garbage collection, themarking
callback of each mechanism is called and all used decision
diagram nodes are recursively marked. Sylvan itself imple-
ments four suchmechanisms (also forMTBDDs and LDDs):

– The sylvan_protect and sylvan_unprotect
methods maintain a set of pointers. During garbage col-
lection, each pointer is inspected and the BDD is marked.
This method is preferred for long-lived external refer-
ences.

– Each thread has a thread-local BDD stack, operated using
the methods bdd_refs_push and bdd_refs_pop.
This method is preferred to store intermediate results in
BDD operations.

– Each thread has a thread-local Task stack, operated using
the methods bdd_refs_spawn and bdd_refs_
sync. Tasks that return BDDs are stored in the stack,
and during garbage collection the results of finished tasks
are marked. This method is required when using SPAWN
and SYNC on a task that returns a BDD.

– The sylvan_ref and sylvan_deref methods
maintain a set of BDDs to be marked during garbage col-
lection. This is a standard method offered by many BDD
implementations, but we recommend using sylvan_
protect and sylvan_unprotect instead.

To initiate garbage collection, we use a feature in the
Lace framework that suspends all current work and starts

a new task tree. This task suspension is a cooperative mech-
anism. Workers often check whether the current task tree is
being suspended, either explicitly using the parallel frame-
work, or implicitly when creating or synchronizing on tasks.
Implementations of BDD operations make sure that all used
BDDs are accounted for, typically with bdd_refs_push
and bdd_refs_spawn, before such checks.

The garbage collection process itself is also executed in
parallel. Removing all nodes from the hash table and clearing
the operation cache is an instant operation that is amortized
over time by the operating system by reallocating the mem-
ory (see below). Marking nodes that must be kept occurs in
parallel, mainly by implementing the marking operation as
a recursive task using Lace. Counting the number of used
nodes and rehashing all nodes (steps 4–5) is also parallelized
using a standard binary divide-and-conquer approach, which
distributes the memory pages over all workers.

5.5 Memory management

Memory in modern computers is divided into regions called
pages that are typically (but not always) 4096 bytes in size.
Furthermore, computers have a distinction between “virtual”
memory and “real” memory. It is possible to allocate much
more virtual memory than we really use. The operating sys-
tem is responsible for assigning real pages to virtual pages
and clearingmemory pages (to zero) when they are first used.

We use this feature to implement resizing of our unique
table and operation cache. We preallocate memory accord-
ing to a maximum number of buckets. Via global variables
table_size and max_sizewe control which part of the
allocated memory is actually used.When the table is resized,
we simply change the value of table_size. To free pages,
the kernel can be advised to free real pages using amadvise
call (in Linux), but Sylvan only implements increasing the
size of the tables, not decreasing their size.

Furthermore, when performing garbage collection, we
clear the operation cache and the hash array of the unique
table by reallocating the memory. Then, the actual clearing
of the used pages only occurs on demand by the operating
system, when new information is written to the tables.

6 Algorithms on decision diagrams

The current section discusses various operations that we
implement in Sylvan on binary decision diagrams, multi-
terminal binary decision diagrams and list decision diagrams.

6.1 BDD algorithms

Sylvan implements the basic BDD operations (Table 1)
and, not and xor, the if-then-else (ite) operation, and

123



T. van Dijk, J. van de Pol

Table 1 Basic BDD operations on the input BDDs x , y, z

Operation Implementation

x ∧ y and(x, y)

x ∨ y not(and(not(x),not(y)))

¬(x ∧ y) not(and(x, y))

¬(x ∨ y) and(not(x),not(y))

x ⊕ y xor(x, y)

x ↔ y not(xor(x, y))

x → y not(and(x,not(y)))

x ← y not(and(not(x), y))

if x then y else z ite(x, y, z)

∃v : x exists(x, v)

∀v : x not(exists(not(x), v))

1 def and(x , y):
2 if x = 1 : return y
3 if y = 1 ∨ x = y : return x
4 if x = 0 ∨ y = 0 ∨ x = ¬y : return 0
5 if result ← cache[(x, y)] : return result
6 v = topvar(x ,y)
7 do in parallel:
8 low ← and(xv=0, yv=0)
9 high ← and(xv=1, yv=1)
10 result ← lookupBDDnode(v, low, high)
11 cache[(x, y)] ← result
12 return result

Algorithm 6 Parallelized BDD algorithm and, with as parameters the
BDDs x and y. The result is a BDD representing x ∧ y

exists. Implementing the basic operations in this way is
common for BDD packages. Negation¬ (not) is performed
using complement edges, and is essentially free.

The parallelization of these functions is straightforward.
See Algorithm 6 for the parallel implementation of and.
This algorithm checks the trivial cases (lines 2–4) before the
operation cache (line 5), and then runs the two independent
suboperations (lines 8–9) in parallel.

Another operation that is parallelized similarly is the
compose operation, which performs functional composi-
tion, i.e., substitute occurrences of variables in a Boolean
formula by Boolean functions. For example, the substitu-
tion [x1 := x2 ∨ x3, x2 := x4 ∨ x5] applied to the function
x1 ∧ x2 results in the function (x2 ∨ x3) ∧ (x4 ∨ x5). Syl-
van offers a functional composition algorithm based on a
“BDDMap”. This structure is not a BDD itself, but uses
BDD nodes to encode a mapping from variables to BDDs.
A BDDMap is based on a disjunction of variables, but with
the “high” edges going to BDDs instead of the terminal 1.
This method also implements substitution of variables, e.g.
[x1 := x2, x2 := x3]. See Algorithm 7 for the algorithm
compose. This parallel algorithm is similar to the algo-
rithms described above, with the composition functionality

1 def compose(x , M):
2 if x = 0 ∨ x = 1 ∨ M = 0 : return x
3 v = var(x)
4 while M 	= 0 ∧ var(M) < v : M ← low(M)
5 if M = 0 : return x
6 if result ← cache[(x,M)] : return result
7 do in parallel:
8 low ← compose(low(x), M)
9 high ← compose(high(x), M)
10 if v = var(M) : result ← ite(high(M), high, low)
11 else: result ← lookupBDDnode(v, low, high)
12 cache[(x,M)] ← result
13 return result

Algorithm 7 Apply functional composition x[M], where M is a map-
ping from variables to Boolean functions

at lines 10–11. If the variable is in the mapping M , then we
use the if-then-else method to compute the substitu-
tion. If the variable is not in the mapping M , then we simply
compute the result using lookupBDDnode.

Sylvan also implements parallelized versions of the BDD
minimization algorithmsrestrict andconstrain (also
called generalized cofactor), based on sibling-substitution,
which are described in [20] and parallelized similarly as the
and algorithm above.

Relational products In model checking using decision dia-
grams, relational products play a central role. Relational
products compute the successors or the predecessors of (sets
of) states. Typically, states are encoded using Boolean vari-
ables �x = x1, x2, . . . , xN . Transitions between these states
are represented using Boolean variables �x for the source
states and variables �x ′ = x ′

1, x
′
2, . . . , x

′
N for the target states.

Given a set of states Si encoded as a BDD on variables �x , and
a transition relation R encoded as a BDD on variables �x ∪ �x ′,
the set of states S′

i+1 encoded on variables �x ′ is obtained by
computing S′

i+1 = ∃�x : (Si ∧ R). BDD packages typically
implement an operation and_exists that combines ∃ and
∧ to compute S′

i+1.
Typically, we want the BDD of the successors states

defined on the unprimed variables �x instead of the primed
variables �x ′, so the and_exists call is then followed by a
variable substitution that replaces all occurrences of variables
from �x ′ by the corresponding variables from �x . Furthermore,
the variables are typically interleaved in the variable order-
ing, like x1, x ′

1, x2, x
′
2, . . . , xN , x

′
N , as this often results in

smaller BDDs. Sylvan implements specialized operations
relnext and relprev that compute the successors and
the predecessors of sets of states, where the transition relation
is encoded with the interleaved variable ordering. See Algo-
rithm 8 for the implementation of relnext. This function
takes as input a set S, a transition relation R, and the set of
variables V , which is the union of the interleaved sets �x and �x ′
(the variables on which the transition relation is defined). We

123



Sylvan: multi-core framework for decision diagrams

1 def relnext(S, R, V):
2 if S = 0 ∨ R = 0 : return 0
3 if S = 1 ∧ R = 1 : return 1
4 v = topvar(S,R)
5 while var(V) < v : V ← next(V)

// if V = ∅, we assume R is irrelevant
6 if V = ∅ : return S
7 if result ← cache[(S, R, V )] : return result
8 if v = var(V) :
9 x, x’ ← unprimed v, primed v

10 V’ ← V without x and x’
11 do in parallel:
12 a ← relnext(Sx=0, Rx=0,x ′=0, V ′)
13 b ← relnext(Sx=1, Rx=1,x ′=0, V ′)
14 c ← relnext(Sx=0, Rx=0,x ′=1, V ′)
15 d ← relnext(Sx=1, Rx=1,x ′=1, V ′)
16 do in parallel:
17 low ← or(a, b)
18 high ← or(c, d)
19 result ← lookupBDDnode(x , low, high)
20 else:

// v is not in R, by assumption
21 do in parallel:
22 low ← relnext(Sv=0, R, V)
23 high ← relnext(Sv=1, R, V)
24 result ← lookupBDDnode(v, low, high)
25 cache[(S, R, V )] ← result
26 return result

Algorithm 8 The parallel algorithm relnext, which given the BDDs
S (representing a set of states), R (representing a transition relation) and
V (the cube of interleaved variables �x∪�x ′) computes the set of successor
states defined on �x , i.e., (∃�x : (S ∧ R)

)[�x ′ := �x]. We assume that all
variables in R are also in V

first check for terminal cases (lines 2–3). These are the same
cases as for the ∧ operation. Then we process the set of vari-
ables V to skip variables that are not in S and R (lines 5–6).
After consulting the cache (line 7), either the current variable
is in the transition relation, or it is not. If it is not, we perform
the usual recursive calls and compute the result (lines 21–24).
If the current variable is in the transition relation, then we let
x and x ′ be the two relevant variables (either of these equals
v) and compute four subresults, namely for the transition (a)
from 0 to 0, (b) from 1 to 0, (c) from 0 to 1, and (d) from 1 to
1 in parallel (lines 11–15). We then abstract from x ′ by com-
puting the existential quantifications in parallel (lines 16–18),
and finally compute the result (line 19). This result is stored
in the cache (line 25) and returned (line 26). We implement
relprev similarly.

6.2 MTBDD algorithms

Although multi-terminal binary decision diagrams are often
used to represent functions to integers or real numbers, they
could be used to represent functions to any domain. In prac-
tice, the well-known BDD package CUDD [56] implements
MTBDDs with double (floating-point) leaves. For some
applications, other types of leaves are required, for example

to represent rational numbers or integers. To allow differ-
ent types of MTBDDs, we designed a generic customizable
framework. The idea is that anyone can use the given func-
tionality or extend it with other leaf types or other operations.

By default, Sylvan implements five types of leaves:

Leaf type Function type

BDDs false and true Total functions BN → B (BDDs)
64-bit integer (uint64) Partial functions BN → N

Floating-point (double) Partial functions BN → R

Rational leaves Partial functions BN → Q

GMP library leaves (mpq) Partial functions BN → Q

The BDDs false and true (complemented false)
are not encoded as MTBDD leaves as in Sect. 5.1, but we
reuse the BDD 0 that is reserved for the leaf false. For
the rational leaves we use 32 bits for the numerator and 32
bits for the denominator. Sylvan also implements the leaf
type mpqwhich uses the GMP library for arbitrary precision
arithmetic, i.e., an arbitrary number of bits for the numera-
tor and the denominator. The framework supports partially
defined functions, reusing the BDD false to mean ⊥ for
non-Boolean functions.

Sylvan implements a generic binary apply function, a
generic monadic apply function, and a generic abstraction
algorithm. The implementation of binary apply is similar
to Algorithm 1. See Algorithm 9 for the implementation of
abstraction. On top of these generic algorithms, we imple-
mented basic operators plus, times, min and max for
the default leaf types. For all valuations of MTBDDs x and
y that end in leaves a and b, they compute a + b, a × b,
min(a, b) and max(a, b). For Boolean MTBDDs, the plus
and times operators are similar to ∨ and ∧. When using

1 def abstract(x , V , F):
2 if x = 0 ∨ x = 1 ∨ V = ∅ : return x
3 if result ← cache[(x, V,F)] : return result
4 if x is a leaf or var(V) < topvar(x) :
5 sub ← abstract(x , next(V), F)
6 result ← F(sub, sub)
7 elif var(V) = topvar(x) :
8 do in parallel:
9 low ← abstract(xv=0, next(V), F)

10 high ← abstract(xv=1, next(V), F)
11 result ← F(low, high)
12 else:
13 do in parallel:
14 low ← abstract(xv=0, V , F)
15 high ← abstract(xv=1, V , F)
16 result ← lookupMTBDDnode(v, low, high)
17 cache[(x, V,F)] ← result
18 return result

Algorithm 9 Parallel MTBDD algorithm that applies the abstraction
F for the variables in V

123



T. van Dijk, J. van de Pol

timeswith a BooleanMTBDD (or a BDD) and anMTBDD
of some other type, it acts as a filter, removing the subgraphs
where the BDD is false.

Sylvan supports custom leaves with 64-bit values. These
64-bit values can also be pointers. In that case, for the canon-
ical representation of leaves it is not sufficient to compare the
64-bit values,which is the default behavior.Also, the pointers
typically point to dynamically allocated memory that must
be freed when the leaf is deleted. To support custom leaves,
Sylvan implements a framework where custom callbacks are
registered for each leaf type. These custom callbacks are:

– hash(value, seed) computes a 64-bit hash for the
leaf value and the given 64-bit seed.

– equals(value1, value2) returns 1 if the two val-
ues encode the same leaf, and 0 otherwise. The default
implementation simply compares the two values.

– create(pointer) is called when a new leaf is cre-
ated with the 64-bit value references by the pointer; this
allows implementations to allocate memory and replace
the referenced value with the final value.

– destroy(value) is called when the leaf is garbage
collected so the implementation can free memory allo-
cated by create.

We use this functionality to implement the GMP leaf type.
TheGMP leaf type is essentially a pointer to a different datas-
tructure to support arbitrary precision arithmetic. The above
functions are implemented as follows:

– hash follows the pointer and hashes the contents of the
mpq datastructure.

– equals follows the pointers and compares their con-
tents.

– create clones the mpq datastructure and writes the
address of the clone to the given new leaf.

– destroy frees the memory of the cloned datastructure.

6.3 LDD algorithms

We implemented various LDD operations that are required
for model checking in LTSmin (see Sect. 7), such as the set
operations union, intersect, and minus. We imple-
mented project (existential quantification), enumerate
(for enumeration of elements in a set) and the two relational
operations relprod and relprev. These operations are
all recursive and hence trivial to parallelize using the work-
stealing framework Lace and the datastructures earlier devel-
oped for the BDD operations.

7 Application: parallelism in LTSMIN

One major application for which we developed Sylvan is
symbolic model checking. This section describes one of

the main algorithms in symbolic model checking, which is
symbolic reachability.Wedescribe the implementation of on-
the-fly symbolic reachability in the model checking toolset
LTSmin, and show howwe parallelize symbolic reachability
using the disjunctive partitioning of transition relations that
LTSmin offers, and how we parallelize on-the-fly transition
learning using a custom BDD operation.

7.1 On-the-fly symbolic reachability in LTSMIN

In model checking, we create models of complex systems
to verify that they function according to certain properties.
Systems are modeled as a set of possible states of the system
and a set of transitions between these states. Many model
checking algorithms depend on state-space generation using
a reachability algorithm, for example to calculate all states
that are reachable from the initial state of the system, or to
check if an invariant is always true, and so forth.

The Pins interface The model checking toolset LTSmin
provides a language independent Partitioned Next-State
Interface (Pins), which connects various input languages to
model checking algorithms [7,24,38,42,44]. In Pins, the
states of a system are represented by vectors of N inte-
ger values. Furthermore, transitions are distinguished in K
disjunctive “transition groups”, i.e., each transition in the sys-
tem belongs to one of these transition groups. The transition
relation of each transition group usually only depends on a
subset of the entire state vector called the “short vector”. This
enables the efficient encoding of transitions that only affect
some integers of the state vector. Variables in the short vector
are further distinguished by the notions of read dependency
and write dependency [44]: the variables that are inspected
or read to obtain new transitions are in the “read vector” of
the transition group, and the variables that can be modified
by transitions in the transition group are in the “write vec-
tor”. An example of a variable that is only in the read vector
is a guard; when a variable is only in the write vector, then
its original value is irrelevant. Computing short vectors from
long vectors is called “projection” in LTSmin and is similar
to existential quantification.

Learning transitions Initially, LTSmin does not have
knowledge of the transitions in each transition group, and
only the initial state is known. As the model is explored, new
transitions are learned via the Pins interface and added to the
transition relation. Every Pins language module implements
a next-state function. This next-state function
takes as input the source state (as a read vector) and the tran-
sition group. The next-state function then produces all
target states (as write vectors) that can be reached from the
source state. Algorithms in LTSmin thus learn new transi-
tions on-the-fly. Internally, LTSmin offers various backends

123



Sylvan: multi-core framework for decision diagrams

1 def reachable(initial):
// global variables: relations[K], K

2 states ← initial
3 frontier ← initial
4 while frontier 	= ∅ :
5 for k ∈ {0, . . . ,K−1} :
6 learn-transitions (frontier, k)
7 next[k] ← relnext (frontier, relations[k])
8 frontier ← big-union (next, 0, K)
9 frontier ← minus (frontier, states)

10 states ← union (states, frontier)
11 return states

Algorithm 10 Symbolic on-the-fly reachability algorithm (using a
frontier set) with K transition groups. Computes the set of states reach-
able from the initial state. The transition relations are updated with
on-the-fly learning (line 6)

to store discovered states and transitions, including binary
decision diagrams and list decision diagrams from Sylvan.
With list decision diagrams, integers from the state vector
can be used directly in the decision diagram nodes. With
binary decision diagrams, the integers must be represented
in binary form, typically using a fixed number of bits per
integer.

The symbolic reachability algorithm with K transition
groups and on-the-fly learning is given in Algorithm 10.
This algorithm is an extension of the standard breadth-
first-search (BFS) reachability algorithm with a frontier set.
Algorithm 10 iteratively discovers new states until no new
states are found (line 4). For every transition group (line 5),
the transition group is updated with new transitions learned
from the frontier set (line 6). The updated transition relation
relations[k] is then used to symbolically find all suc-
cessors of the states in the frontier set (line 7). This uses the
relnext operation that is described in Sect. 6.1. The sets of
new states discovered for every transition group are pair-wise
merged into the new set frontier (line 8). Successors that
have been found in earlier iterations are removed (line 9).
All new states are then added to the set of discovered states
states (line 10). When no new states are discovered, the
set of discovered states is returned (line 11).

7.2 Parallel on-the-fly symbolic reachability

Even with parallel BDD operations, the parallel speedup of
model checking in LTSmin is limited, especially for smaller
models, where the size of “work units” (between sequen-
tial points in the algorithm) is small and when there are few
independent tasks. Experiments in [23] demonstrate this lim-
itation. This is expected: if a parallel program consists of
many small operations between sequential points, or if small
input BDDs result in few independent tasks, then we expect
limited parallel scalability.

∪
∪

∪

successors[0]

successors[1]

successors[2]

successors[3]

relnext

relnext

relnext

relnext

learn(next, 0)

learn(next, 1)

learn(next, 2)

learn(next, 3)

\ frontier

Fig. 11 Schematic overview of parallel on-the-fly reachability

1 def par-next(frontier, i, k):
2 if k = 1 :
3 learn-transitions (frontier, i)
4 next ← relnext(frontier, relations[i])
5 return next
6 else:
7 do in parallel:
8 left ← par-next(frontier, i, k/2)
9 right ← par-next(frontier, i + k/2, k − k/2)
10 return union(left, right)

11 def reachable(initial):
12 states ← initial
13 frontier ← initial
14 while frontier 	= ∅ :
15 frontier ← par-next(frontier, 0, K)
16 frontier ← minus(frontier, states)
17 states ← union (states, frontier)
18 return states

Algorithm 11 Parallel symbolic on-the-fly reachability with K transi-
tion groups

Since LTSmin partitions the transition relation in tran-
sition groups, many small BDD operations are executed in
sequence, for each transition group. To improve the parallel
speedups, we execute lines 5–9 of Algorithm 10 in parallel,
as in Fig. 11. See Algorithm 11 for the resulting algorithm
for parallel reachability. This strategy decreases the number
of sequential points and thus increases the size of work units.
It also increases the amount of parallelism in the task tree.
We therefore, expect improved parallel scalability.

In addition, we parallelize the learning algorithm, using
a special BDD algorithm collect that combines enumer-
ation and union. In the new implementation, the callback
for enumeration does not add the learned transitions to the
transition relation, which would result in race conditions,
but returns the learned transitions as a BDD or LDD. These
sets of transitions are then merged by collect. See Algo-
rithm 12. This algorithm uses the “states” BDD and the set
of variables “vars” to generate all state vectors “vec”. For
every state in the set of states, a callback is called (line 2).
The callback next-state returns a BDD containing the
transitions from the given short state. All learned transitions
are then merged and returned (line 8).

Using the framework offered by Sylvan, parallel on-the-
fly symbolic reachability is straightforward to implement.We
use the Lace work-stealing framework to parallelize certain
parts of the reachability algorithm. The collect method
is the only custom decision diagram operation needed and

123



T. van Dijk, J. van de Pol

1 def collect(states, vars, callback, vec={}):
2 if vars = ∅ : return callback(vec)
3 if states = false : return ∅
4 v, vars ← head(vars), tail(vars)
5 do in parallel:
6 R0 ← collect(statesv=0, vars, callback, vec+{0})
7 R1 ← collect(statesv=1, vars, callback, vec+{1})
8 return union(R0, R1)

Algorithm 12 The parallel collect algorithm (BDD version) com-
bining enumerate and union. The callback is called for every state
and returns the set of transitions from that state to its successors. The
returned sets are pairwise merged and returned

is about 25 lines of code long, including some overhead to
manage internal references for garbage collection.

8 Experimental evaluation

In the current section, we evaluate the LDD extension of
Sylvan, and the application of parallelization to LTSmin.
Compared to [26], we add benchmark results with the new
unique table, using LDDs and the fully parallel strategy. We
use the same machine as in [26] and confirmed that the orig-
inal benchmarks still yield comparable results.

The experimental evaluation is based on the BEEMmodel
database [51]. Of the 300 models, 269 were successfully
explored in [26]. The plc and train-gatemodels had an
unfortunate parsing error in the Pins wrapper. Several other
models timed out (with a timeout of 1200 s). We perform
the experiments on a 48-core machine, consisting of 4 AMD
OpteronTM 6168 processors with 12 cores each and 128 GB
of internal memory. We perform symbolic reachability in
LTSmin toolset with the following command:

dve2lts-sym -rgs --order=<order>
--vset=lddmc <model>.dve

We select as the fixed size of the unique table 230 buckets
and as of the operation cache also 230 buckets (24 GB for the
unique table and 36 GB for the operation cache). Using the
parameter–orderweeither select thepar-prevvariation
or the bfs-prev variation. The bfs-prev variation does
not have parallelism in LTSmin, but uses the parallelized
LDD operations, including collect. This means that there
is parallel learning, but only for one transition group at a
time. In the par-prev variation, learning and computing
the successors are performed for all transition groups in par-
allel.

The full experiment data and benchmark scripts can be
found online.1

1 For the benchmarks from [26] at https://github.com/utwente-fmt/
sylvan-tacas2015 and at https://github.com/utwente-fmt/sylvan-sttt for
the benchmarks presented here.

8.1 Comparing par-prev and bfs-prev

The following table summarizes the runtimes on all 269
benchmark models using the bfs-prev and par-prev
variations, and shows in particular the results of a few
selected instances. We measure the time spent to exe-
cute symbolic reachability, excluding time spent initializing
LTSmin. Each data point is the average of at least three mea-
surements. We used the old version of the hash table [26] to
obtain these results.

Experiment T1 T48 T1/T48

blocks.4 (par) 629.54 16.58 38.0
blocks.4 (bfs) 630.04 21.69 29.0
lifts.8 (par) 377.52 12.03 31.4
lifts.8 (bfs) 377.36 26.11 14.5
firewire_tree.1 (par) 16.40 0.99 16.5
firewire_tree.1 (bfs) 16.43 11.35 1.4
Sum of all par-prev 20,756 1298 16.0
Sum of all bfs-prev 20,745 3737 5.6

Model blocks.4 results in the highest speedup of
38.0×. The model lifts.8 has a speedup of 14.5× with
bfs-prev andmore than twicewithpar-prev. The over-
head (difference in T1) between the “sequential” bfs-prev
and “parallel” par-prev versions is negligible. For all
models, the speedup either improves with par-prev, or
stays the same.

For an overview of the obtained speedups on the entire
benchmark set, see Fig. 12. Here we see that “larger” mod-
els (higher T1) are associated with a higher parallel speedup.
This plot also shows the benefit of adding parallelism on
the algorithmic level, as many models in the fully parallel
version have higher speedups. One of the largest improve-
ments was obtained with the firewire_tree.1 model,
which went from 1.4× to 16.5×. We conclude that the
lack of parallelism is a bottleneck, which can be alleviated
by exploiting the disjunctive partitioning of the transition
relation.

8.2 Comparing the old and the new unique table

We repeated the benchmarks on all 269 benchmark models
using the par-prev variation and the new unique table.
Each new data point is the average of at least 18 measure-
ments.

Experiment T1 T48 T1/T48

Sum of all benchmarks (old) 20,756 1298 16.0
Sum of all benchmarks (now) 16,357 907 18.0

123

https://github.com/utwente-fmt/sylvan-tacas2015
https://github.com/utwente-fmt/sylvan-tacas2015
https://github.com/utwente-fmt/sylvan-sttt


Sylvan: multi-core framework for decision diagrams

0
4
8

12
16
20
24
28
32
36
40

16 128 1024
time with 1 worker (seconds)

Sp
ee
du
p
w
ith

48
w
or
ke
rs

0
4
8

12
16
20
24
28
32
36
40

16 128 1024
time with 1 worker (seconds)

Sp
ee
du
p
w
ith

48
w
or
ke
rs

Fig. 12 Results of the 269benchmarkmodels,with fully parallel learn-
ing and parallel transition groups (above), and with only parallel BDD
operations (below)

We observe that the benchmarks run faster and result in
an improved parallel speedup. We suggest that this is mostly
due to the different unique table design, as there are no
major changes to the implementation of LDD operations or
in LTSmin for these benchmarks.

For a more insightful comparison of the previous and the
current benchmark results, see Fig. 13. The results suggest
that smaller benchmark models benefit more from the new
hash table design. See Fig. 14 for a speedup graph of a selec-
tion of the models with the highest speedups. The point of
this speedup graph is that most likely further speedups would
be obtained after 48 cores for the selected models. In earlier
work [23], we already determined that the obtained speedup
strongly depends on the size of the models.

8.3 Comparing BDDs and LDDs

Finally, we compared the performance of our multi-core
BDD and LDD variants for the par-prev variation of
on-the-fly symbolic reachability. Figure 15 shows that the
majority of models, especially larger models, are performed
up to several orders of magnitude faster using LDDs. The
most extreme example is model frogs.3, which has for
BDDs T1 = 989.40, T48 = 1005.96 and for LDDs T1 =

1

10

100

1000

1 10 100 1000
Old time with 1 worker (s)

N
ew

tim
e
(s
)

1

10

100

1 10 100
Old time with 48 workers (s)

N
ew

tim
e
(s
)

Fig. 13 Comparison between the benchmark results of [26] and new
results, for 1 worker (above) and for 48 workers (below)

0

10

20

30

40

0 10 20 30 40 50
Workers

Sp
ee
du
p

Model

blocks.4

collision.5

exit.4

lann.6

lifts.8

mcs.5

rether.6

telephony.5

Fig. 14 Speedup graphs of some of the models, using LDDs and the
fully parallel strategy. Each data point is an average of at least 18 mea-
surements

61.01, T48 = 9.36. The large difference suggests that LDDs
are a more efficient representation for the models of the
BEEM database.

8.4 Recent experiments in related work

Sylvan has also been used as a symbolic backend in themodel
checker IscasMC, a probabilisticmodel checker [34]written
in Java. A recent study [22] compared the performance of the
BDD libraries CUDD, BuDDy, CacBDD, JDD, Sylvan, and
BeeDeeDeewhen used as the symbolic backend of IscasMC

123



T. van Dijk, J. van de Pol

2

16

128

1024

2 16 128 1024

BDD T48 (seconds)

LD
D
T 4

8
(s
ec
on
ds
)

Fig. 15 Results of the models that did not time out for both BDDs and
LDDs, comparing time with 48 workers

and performing symbolic reachability. They summarize the
overall runtimes on all experiments (excluding failures) by
the following table [22]:

Backend Time (s) Backend Time (s)

sylvan-7 608 buddy 2156
cacbdd 1433 jdd 2439
cudd-bdd 1522 beedeedee 2598
sylvan-1 1838 cudd-mtbdd 2837

This result was produced with a version of Sylvan before
the extensions that we present in the current paper. As the
results show, Sylvan is competitive with other BDD imple-
mentations when used sequentially (with 1 worker) and
benefits from parallelism (with 7 workers they obtained a
speedup of 3×).

Recently, we used Sylvan for the implementation of sym-
bolic bisimulation minimization [27]. For this particular
application of binary decision diagrams, it is very beneficial
to develop custom BDD operations and to use the MTBDD
implementation we present in the current paper, especially
for Continuous TimeMarkov Chains and InteractiveMarkov
Chains models, for which support for rational numbers in the
MTBDD leaves is highly preferred. Compared to the state of
the art tool Sigref [59] that relies on a version of CUDD,
we obtained a sequential speedup of up to 95× and a parallel
speedup of up to 17× using 48 workers on benchmarks from
the literature [27].

9 Conclusion

This paper presented the design and implementation of a
multi-core framework for decision diagrams, called Sylvan.
Sylvan already supported parallel operations for (binary)
BDDs and (multi-way)MDDs in the formof (list) LDDs. The
most recent extension is the support for multiple terminals,

i.e., a new framework for MTBDDs that supports various
types of MTBDD leaves and was designed for customiza-
tion. We discussed several BDD and MTBDD operations
and offered an example implementation of custom MTBDD
leaves and operations using the GMP library. We also dis-
cussed a new hash table design for Sylvan and showed clear
improvements over the previous version. The new table sup-
ports parallelized garbage collection for decision diagrams
and offers extensive support for customizable “marking”
mechanisms.

Using Sylvan, one can very easily speedup sequential
symbolic algorithms, by replacing the BDD operations by
calls to their parallel implementation in Sylvan. On top of
this, the framework also supports the parallelization of the
higher-level algorithm itself, by allowing concurrent calls to
BDD operations. This integration is based on our customiz-
able work-stealing task scheduler Lace. We demonstrated
this for parallel symbolic model checking with LTSmin.
Experimentally, we demonstrated a speedup of up to 38×
(with 48 cores) for fully parallel on-the-fly symbolic reach-
ability in LTSmin, and an average of 18× for all the BEEM
benchmark models using the new hash table.

Initially, it was not clear whether a BDD package
could significantly profit from parallelization on a multi-
core shared memory computer. BDD operations are highly
memory-intensive and show irregular memory access pat-
terns, so they belong to the hardest class to achieve practical
speedup. We believe that there are three ingredients that
enabled us to achieve efficient parallelism: The first is that we
adapted the scalable, lockless hash-table design that already
proved its value in explicit-state model checking [41]. The
second is that we carefully designed the work-stealing task
scheduler Lace [25] to handle the very small individual
BDD steps. Finally, we followed a pragmatic approach: for
instance, we just give up cache operations in case of race
conditions, rather than retrying them. The experiments in
this paper show that further improvements in the concurrent
hash-table and cache design not only led to reduced running
times sequentially, but even to a higher speedup.

Our measurements in recent papers and in the current
paper show that sequential symbolic algorithms benefit from
the “automatic” parallelization provided by the parallel deci-
sion diagram operations in Sylvan. We also demonstrated
that adding parallelism to higher-level algorithms can result
in even higher speedups. In general, multi-core decision dia-
grams can speed up symbolic model checking considerably.

Sylvan is available online2 and is released under the
Apache 2.0 License, so that anyone can freely use it and
extend it. It comes with an example of a simple BDD-based
reachability algorithm, which demonstrates how to use Syl-
van to “automatically” parallelize sequential algorithms. A

2 See https://github.com/utwente-fmt/sylvan.

123

https://github.com/utwente-fmt/sylvan


Sylvan: multi-core framework for decision diagrams

more elaborate example of how applications can add custom
BDD operations can be found in the SigrefMC3 tool.

An interesting extension of ourworkwould be the addition
of dynamic variable reordering. This could either be achieved
by a parallel implementation of the sifting algorithm [52],
or by a parallel investigation of different variable orderings.
Another interesting research questionwould be to investigate
whether the experimental speedups can be maintained for
smarter exploration strategies. These strategies determine in
which order the symbolic sub-transitions are fired. We have
investigated the BFS and chaining strategies, since they are
external to the decision diagram implementation. It is still
open whether the full saturation strategy [16] also profits
from parallelization, but this requires a tight integration of
the exploration strategy into the multi-core decision diagram
operations.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Scheduling parallel
programs by work stealing with private deques. In: PPOPP, pp.
219–228. ACM (2013)

2. Akers, S.: Binary decision diagrams. IEEE Trans. Comput. C-
27(6), 509–516 (1978)

3. Arunachalam, P., Chase, C.M., Moundanos, D.: Distributed binary
decision diagrams for verification of large circuit. In: ICCD, pp.
365–370 (1996)

4. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E.,
Pardo, A., Somenzi, F.: Algebraic decision diagrams and their
applications. In: ICCAD 1993, pp. 188–191 (1993)

5. Bianchi, F., Corno, F., Rebaudengo, M., Reorda, M.S., Ansaloni,
R.: Boolean function manipulation on a parallel system using
BDDs. In: HPCN Europe, pp. 916–928 (1997)

6. Blom, S., van de Pol, J.: Symbolic reachability for process algebras
with recursive data types. In: ICTAC, LNCS, vol. 5160, pp. 81–95.
Springer (2008)

7. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and
symbolic reachability. In: CAV, LNCS, vol. 6174, pp. 354–359.
Springer (2010)

8. Blumofe, R.D.: Scheduling multithreaded computations by work
stealing. In: FOCS, pp. 356–368. IEEE Computer Society (1994)

9. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Ran-
dall, K.H., Zhou, Y.: Cilk: an efficient multithreaded runtime
system. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

10. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation
of a BDD package. In: DAC, pp. 40–45 (1990)

11. Bryant, R.E.: Graph-based algorithms for Boolean functionmanip-
ulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)

3 See https://github.com/utwente-fmt/sigrefmc.

12. Burch, J., Clarke, E., Long, D., McMillan, K., Dill, D.: Symbolic
model checking for sequential circuit verification. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 13(4), 401–424 (1994)

13. Cabodi, G., Gai, S., Sonza Reorda, M.: Boolean function manip-
ulation on massively parallel computers. In: Proceedings of 4th
Symposium on Frontiers of Massively Parallel Computation, pp.
508–509. IEEE (1992)

14. Chen, J., Banerjee, P.: Parallel construction algorithms for BDDs.
In: ISCAS 1999, pp. 318–322. IEEE (1999)

15. Chung,M.Y., Ciardo, G.: SaturationNOW. In: QEST, pp. 272–281.
IEEE Computer Society (2004)

16. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient
iteration strategy for symbolic state-space generation. In: TACAS,
LNCS, vol. 2031, pp. 328–342 (2001)

17. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: Saturation
unbound. In: TACAS 2003, pp. 379–393 (2003)

18. Ciardo, G., Zhao, Y., Jin, X.: Parallel symbolic state-space explo-
ration is difficult, but what is the alternative? In: PDMC, pp. 1–17
(2009)

19. Clarke, E.M.,McMillan, K.L., Zhao, X., Fujita,M., Yang, J.: Spec-
tral transforms for large Boolean functions with applications to
technology mapping. In: DAC, pp. 54–60 (1993)

20. Coudert, O., Madre, J.C.: A unified framework for the formal veri-
fication of sequential circuits. In: ICCAD1990, pp. 126–129. IEEE
Computer Society (1990)

21. van Dijk, T.: Sylvan: Multi-core decision diagrams. Ph.D. thesis,
University of Twente (2016)

22. van Dijk, T., Hahn, E.M., Jansen, D.N., Li, Y., Neele, T., Stoelinga,
M., Turrini, A., Zhang, L.: A comparative study of BDD packages
for probabilistic symbolic model checking. In: SETTA, LNCS, vol.
9409, pp. 35–51. Springer (2015)

23. van Dijk, T., Laarman, A., van de Pol, J.: Multi-core BDD opera-
tions for symbolic reachability. ENTCS 296, 127–143 (2013)

24. van Dijk, T., Laarman, A.W., van de Pol, J.: Multi-core and/or
symbolic model checking. ECEASST 53 (2012)

25. vanDijk, T., vandePol, J.: Lace: non-blocking split deque forwork-
stealing. In: MuCoCoS, LNCS, vol. 8806, pp. 206–217. Springer
(2014)

26. van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams.
In: TACAS, LNCS, vol. 9035, pp. 677–691. Springer (2015)

27. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation min-
imisation. In: TACAS, LNCS, vol. 9636, pp. 332–348. Springer
(2016)

28. Ezekiel, J., Lüttgen, G., Ciardo, G.: Parallelising symbolic state-
space generators. In: CAV, LNCS, vol. 4590, pp. 268–280 (2007)

29. Faxén, K.: Efficient work stealing for fine grained parallelism. In:
ICPP 2010, pp. 313–322. IEEE Computer Society (2010)

30. Faxén, K.F.: Wool—a work stealing library. SIGARCH Comput.
Archit. News 36(5), 93–100 (2008)

31. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of
the Cilk-5 multithreaded language. In: PLDI, pp. 212–223. ACM
(1998)

32. Gai, S., Rebaudengo, M., Sonza Reorda, M.: An improved data
parallel algorithm for Boolean function manipulation using BDDs.
In: Proceedings ofEuromicroWorkshoponParallel andDistributed
Processing, pp. 33–39. IEEE (1995)

33. Grumberg, O., Heyman, T., Schuster, A.: A work-efficient distrib-
uted algorithm for reachability analysis. Form. Methods Syst. Des.
29(2), 157–175 (2006)

34. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasmc: A
web-based probabilistic model checker. In: FM, LNCS, vol. 8442,
pp. 312–317. Springer (2014)

35. Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scal-
ability in parallel reachability analysis of very large circuits. In:
CAV, LNCS, vol. 1855, pp. 20–35. Springer, Berlin/Heidelberg
(2000)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/utwente-fmt/sigrefmc


T. van Dijk, J. van de Pol

36. IBM: IBM System/370, Principles of Operation. IBM Publication
No. GA22-7000-4 (1975)

37. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.:
Multi-valued decision diagrams: theory and applications. Mult.
Valued Log. 4(1), 9–62 (1998)

38. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S.,
van Dijk, T.: LTSmin: high-performance language-independent
model checking. In: TACAS 2015, LNCS, vol. 9035, pp. 692–707.
Springer (2015)

39. Kimura, S., Clarke, E.M.: A parallel algorithm for constructing
binary decision diagrams. In: Proceedings of International Con-
ference on Computer Design: VLSI in Computers and Processors
ICCD, pp. 220–223 (1990)

40. Kimura, S., Igaki, T., Haneda, H.: Parallel binary decision diagram
manipulation. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E75-A(10), 1255–1262 (1992)

41. Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reach-
ability performance with shared hash tables. In: FMCAD 2010, pp.
247–255. IEEE (2010)

42. Laarman, A.W., van de Pol, J., Weber, M.: Multi-core LTSmin:
marrying modularity and scalability. In: NFM 2011, LNCS, vol.
6617, pp. 506–511. Springer (2011)

43. Lovato, A., Macedonio, D., Spoto, F.: A thread-safe library for
binary decision diagrams. In: SEFM, LNCS, vol. 8702, pp. 35–49.
Springer (2014)

44. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy
dependencies for symbolic model checking. In: Yahav, E. (ed.)
HVC, LNCS, vol. 8855, pp. 204–219. Springer (2014)

45. Miller, D.M., Drechsler, R.: On the construction ofmultiple-valued
decision diagrams. In: ISMVL, pp. 245–253 (2002)

46. Milvang-Jensen, K., Hu,A.J.: BDDNOW: a parallel BDDpackage.
In: FMCAD, pp. 501–507 (1998)

47. Ochi, H., Ishiura, N., Yajima, S.: Breadth-first manipulation of
SBDD of Boolean functions for vector processing. In: DAC, pp.
413–416 (1991)

48. Oortwijn, W.: Distributed symbolic reachability analysis. Master’s
thesis, University of Twente, Dept. of C.S. (2015)

49. Ossowski, J.: JINC—a multi-threaded library for higher-order
weighted decision diagram manipulation. Ph.D. thesis, Rheinis-
chen Friedrich-Wilhelms-Universität Bonn (2010)

50. Parasuram, Y., Stabler, E.P., Chin, S.K.: Parallel implementation
of BDD algorithms using a distributed shared memory. In: HICSS,
vol. 1, pp. 16–25 (1994)

51. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In:
SPIN, pp. 263–267. Springer-Verlag, Berlin, Heidelberg (2007)

52. Rudell, R.: Dynamic variable ordering for ordered binary decision
diagrams. In: ICCAD, pp. 42–47 (1993)

53. Sanghavi, J.V., Ranjan, R.K., Brayton, R.K., Sangiovanni-
Vincentelli, A.L.: High performance BDD package by exploiting
memory hiercharchy. In: DAC, pp. 635–640 (1996)

54. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.:
x86-TSO: a rigorous and usable programmer’s model for x86 mul-
tiprocessors. Commun. ACM 53(7), 89–97 (2010)

55. Somenzi, F.: Efficient manipulation of decision diagrams. STTT
3(2), 171–181 (2001)

56. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0.
http://vlsi.colorado.edu/~fabio/CUDD/ (2015)

57. Stornetta, T., Brewer, F.: Implementation of an efficient parallel
BDD package. In: DAC, pp. 641–644 (1996)

58. Velev, M.N., Gao, P.: Efficient parallel GPU algorithms for BDD
manipulation. In: ASP-DAC, pp. 750–755. IEEE (2014)

59. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker,
B.: Sigref—a symbolic bisimulation tool box. In: ATVA, LNCS,
vol. 4218, pp. 477–492. Springer (2006)

60. Yang, B., O’Hallaron, D.R.: Parallel breadth-first BDD construc-
tion. In: PPOPP, pp. 145–156 (1997)

123

http://vlsi.colorado.edu/~fabio/CUDD/

	Sylvan: multi-core framework for decision diagrams
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Decision diagrams
	3.2 Decision diagram operations
	3.3 Parallel programming
	3.4 System architecture

	4 Parallel operations using work-stealing
	5 Concurrent datastructures
	5.1 Representation of nodes
	5.2 Scalable unique table
	5.3 Scalable operation cache
	5.4 Garbage collection
	5.5 Memory management

	6 Algorithms on decision diagrams
	6.1 BDD algorithms
	6.2 MTBDD algorithms
	6.3 LDD algorithms

	7 Application: parallelism in LTSmin
	7.1 On-the-fly symbolic reachability in LTSmin
	7.2 Parallel on-the-fly symbolic reachability

	8 Experimental evaluation
	8.1 Comparing par-prev and bfs-prev
	8.2 Comparing the old and the new unique table
	8.3 Comparing BDDs and LDDs
	8.4 Recent experiments in related work

	9 Conclusion
	References




