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Abstract Decision diagrams such as binary decision diagrams and multi-
valued decision diagrams play an important role in various fields, includ-
ing symbolic model checking. An ongoing challenge is to develop data-
structures and algorithms for modern multi-core architectures. The BDD
package Sylvan provides one contribution by implementing parallelized
BDD operations and thus allowing sequential algorithms to exploit the
power of multi-core machines.
We present several extensions to Sylvan. We implement parallel opera-
tions on list decision diagrams, a variant of multi-valued decision dia-
grams that is useful for symbolic model checking. We also substitute
several core components of Sylvan by new designs, such as the work-
stealing framework, the unique table and the operation cache. Further-
more, we combine parallel operations with parallelization on a higher
level, by partitioning the transition relation. We show that this results
in an improved speedup using the model checking toolset LTSmin. We
also demonstrate that the parallelization of symbolic model checking for
explicit-state modeling languages with an on-the-fly next-state function,
as supported by LTSmin, scales well.

1 Introduction

A core problem in model checking is that space and time requirements increase
exponentially with the size of the models. One method to alleviate this problem
is symbolic model checking, where sets of states are stored in binary decision
diagrams (BDDs). Another method uses parallel computation, e.g., in computer
systems with multiple processors. In [9,11], we combined both approaches by
parallelizing BDD operations in the parallel BDD library Sylvan.

In the literature, there is some early work involving parallel BDD opera-
tions [18,27,23]. Alternative approaches for parallel symbolic reachability use
partitioning strategies [26,15]. Also saturation, an optimal iteration strategy,
was parallelized using Cilk [7,13]. More recently, a thesis on JINC [24] describes
a multi-threaded extension, but does not actually parallelize the BDD opera-
tions. Also, a recent BDD implementation in Java called BeeDeeDee [21] allows
execution of BDD operations from multiple threads, but does not parallelize the
BDD operations. See also [11] for an overview of earlier approaches to parallel-
izing symbolic model checking and/or binary decision diagrams.
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In the current paper, we present several extensions to Sylvan, in particular
integration with the work-stealing framework Lace, an improved unique table,
and the implementation of operations on list decision diagrams (LDDs), a variant
of multi-valued decision diagrams (MDDs) useful in symbolic model checking.

We also investigate applying parallelism on a higher level than the BDD
operations. Since calculating the full transition relation is expensive in symbolic
model checking, our model checking toolset LTSmin [3,20,10,17] has the notion
of transition groups, which disjunctively partition the transition relations. We
exploit the fact that partitioned transition relations can be applied in parallel
and show that this strategy results in improved scalability.

In addition, LTSmin supports learning transition relations on-the-fly, which
enables the symbolic model checking of explicit-state models, such as Promela,
DVE and mCRL2 models. We implement a specialized operation collect, which
is a combination of enumerate and union, to perform parallel transition learning
and we show that this results in good parallel performance.

This paper is organized as follows. We review background knowledge about
BDDs, MDDs and LDDs in Section 2, as well as background information on sym-
bolic model checking and LTSmin. Section 3 discusses the design of our parallel
library Sylvan, with an emphasis on the new unique table and the implement-
ation of LDD operations. Section 4 introduces parallelism on the algorithmic
level in the model checking toolset LTSmin in order to run parallel symbolic
on-the-fly reachability. Section 5 shows the results of several experiments using
the BEEM database of explicit-state models to measure the effectiveness of our
approach. Finally, Section 6 summarizes our findings and reflections.

2 Preliminaries

2.1 Symbolic Reachability

In model checking, we create abstractions of complex systems to verify that
they function according to certain properties. Systems are modeled as a set of
possible states of the system and a set of transitions between these states. A
core component of model checking is state-space generation using a reachability
algorithm, to calculate all states reachable from the initial state of the system.

One major problem in model checking is the size of the transition system.
The memory required to store all explored states and transitions increases ex-
ponentially with the size of the models. One way to deal with this is symbolic
model checking [6], which represents states as sets rather than storing them
individually.

An efficient method to store sets of states uses Boolean functions S : BN → B.
Every state for which the function S is true is in the set. Boolean functions can
be stored efficiently using binary decision diagrams (BDDs). Similarly, states
can also be represented using functions S : NN → B, which can be stored using
multi-valued decision diagrams (MDDs) or list decision diagrams (LDDs).
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2.2 Binary decision diagrams and multi-valued decision diagrams

Binary decision diagrams (BDDs) were introduced by Akers [1] and developed
by Bryant [5].

Definition 1 (Binary decision diagram). An (ordered) BDD is a directed
acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.
2. Each non-terminal node p has a variable label xi and two outgoing edges,

labeled 0 and 1; we write lvl(p) = i and p[v] = q, where v ∈ {0, 1}.
3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).
4. There are no duplicate nodes, i.e.,
∀p∀q · (lvl(p) = lvl(q) ∧ p[0] = q[0] ∧ p[1] = q[1])→ p = q.

Furthermore, either of two reductions ensures canonicity:

Definition 2 (Fully-reduced/Quasi-reduced BDD). Fully-reduced BDDs
forbid redundant nodes, i.e., nodes with p[0] = p[1]. Quasi-reduced BDDs keep
all redundant nodes, i.e., skipping levels is forbidden.

Multi-valued decision diagrams (MDDs, also called multi-way decision dia-
grams) are a generalization of BDDs to the integer domain [16].

Definition 3 (Multi-valued decision diagram). An (ordered) MDD is a
directed acyclic graph with the following properties:

1. There is a single root node and terminal nodes 0 and 1.
2. Each non-terminal node p has a variable label xi and ni outgoing edges,

labeled from 0 to ni − 1; we write lvl(p) = i and p[v] = q, where 0 ≤ v < ni.
3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).
4. There are no duplicate nodes, i.e.,
∀p∀q · (lvl(p) = lvl(q) ∧ ∀v · p[v] = q[v])→ p = q.

Similar to BDDs, fully-reduced and quasi-reduced MDDs can be defined:

Definition 4 (Fully-reduced/Quasi-reduced MDD). Fully-reduced MDDs
forbid redundant nodes, i.e., nodes where for all v, w, p[v] = p[w]. Quasi-reduced
MDDs keep all redundant nodes, i.e., skipping levels is forbidden.

See Fig. 1 for an example of an MDD representing a set.
In [8], Ciardo et al. mention advantages of quasi-reduced MDDs: edges that

skip levels are more difficult to manage and quasi-reduced MDDs are cheaper
than alternatives to keep saturation operations correct. In [2], Blom et al. prefer
quasi-reduced MDDs since the set of possible values at each level is dynamic and
extending the set of values requires an update of every diagram in a fully-reduced
setting, while having no impact in the quasi-reduced setting.

A typical method to store MDDs in memory is to store the variable la-
bel xi plus an array holding all ni edges, e.g., in C: struct node { int lvl;

struct node* edges[0]; } as in [22]. New nodes are dynamically allocated us-
ing malloc and a hash table ensures that no duplicate MDD nodes are created.
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Figure 1. Edge-labeled MDD hiding paths to 0 (left) and LDD (right) representing
the set {〈0, 0〉, 〈0, 2〉, 〈0, 4〉, 〈1, 0〉, 〈1, 2〉, 〈1, 4〉, 〈3, 2〉, 〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}. For
simplicity, we hide paths to 0 and 1; the p[xi > v] edge of the last node in each “linked
list” goes to 0, and every p[xi = v] edge on the last level goes to 1.

Alternatively, one could use a large int[] array to store all MDDs (each MDD
is represented by ni + 1 consecutive integers) and represent edges to an MDD
as the index of the first integer. In [8], the edges are stored in a separate int[]

array to allow the number of edges ni to vary.

2.3 List decision diagrams

Implementations of MDDs that use arrays to implement MDD nodes have two
disadvantages. (1) For sparse sets (where only a fraction of the possible values are
used) using arrays is a waste of memory. (2) MDD nodes typically have a variable
size, complicating memory management. An alternative method uses list decision
diagrams (LDDs), which can be understood as a linked-list representation of
quasi-reduced MDDs. LDDs were initially described in [2, Sect. 5].

Definition 5 (List decision diagram). A List decision diagram (LDD) is a
directed acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.
2. Each non-terminal node p is labeled with a value v, denoted by val(p) = v,

and has two outgoing edges labeled = and > that point to nodes denoted by
p[xi = v] and p[xi > v].

3. For all non-terminal nodes p, p[xi = v] 6= 0 and p[xi > v] 6= 1.
4. For all non-terminal nodes p, val(p[xi > v]) > v.
5. There are no duplicate nodes.

An LDD can be constructed from a quasi-reduced MDD by dropping all edges
to 0 and creating an LDD node for each edge, using the edge label as the value
in the LDD node. In a quasi-reduced BDD/MDD, every path from the root to a
terminal encounters every variable (in the same order). Hence the variable label
xi follows implicitly from the depth of the node. We therefore do not store it in
the LDD nodes either. The root node is at level 0, non-terminal nodes following

4



1 def reachable(initial, trans, K):
2 states = {initial}
3 next = states
4 while next != ∅:
5 for k in (0..K-1):
6 learn(next, k)
7 successors[k] = relprod(next, trans[k])
8 successors[k] = minus(successors[k], states)
9 next = union(successors[0], ..., successors[K-1])

10 states = union(states, next)
11 return states

Figure 2. Symbolic on-the-fly reachability algorithm with transition groups: compute
the set of all states reachable from the initial state. The transition relations are updated
on-the-fly (line 6) and the algorithm relies on BDD operations relprod (relational
product), minus (“diff”) and union (“or”). See Fig. 9 for learn.

>-edges have the same level and non-terminal nodes following =-edges have the
next level. See Fig. 1 for an example of an MDD and an LDD representing the
same set of integer pairs.

2.4 LTSmin and partitioned transition relations

The model checking toolset LTSmin1 provides a language independent Parti-
tioned Next-State Interface (Pins), which connects various input languages to
model checking algorithms [3,20,10,17]. In Pins, states are vectors of N in-
teger values. Furthermore, transitions are distinguished in disjunctive transition
groups. The transition relation of each transition group is defined on a subset of
the entire state vector, enabling efficient encoding of transitions that only affect
a few integers of the state. For example, in a model of a software program, there
could be a separate transition group for every line of source code.

Every language module implements a NextState function, which computes
the successors of a state for each transition group. Algorithms in LTSmin thus
learn new transitions on-the-fly. The reachability algorithm for symbolic model
checking using BDD operations is given in Fig. 2.

3 Sylvan: Parallel BDD and LDD operations

In [11], we implemented Sylvan2, a parallel BDD package, which parallelizes BDD
operations using lock-less data structures and work-stealing. Work-stealing [4] is
a task-based load balancing method that involves breaking down a calculation
into an (implicit) tree of (small) tasks. Independent subtasks are stored in queues
and idle processors steal tasks from the queues of busy processors. Most BDD
operations in Sylvan are implemented as recursive tasks, where operations are

1 Available from https://github.com/utwente-fmt/ltsmin (open source).
2 Available from https://github.com/utwente-fmt/sylvan (open source).
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1 def ite(A,B,C):
2 if A = 1: return B
3 if A = 0: return C
4 result = cache_lookup(A,B,C)
5 if result = None:
6 x = min(var(A), var(B), var(C))
7 do in parallel:
8 Rlow = ite(low(A, x), low(B, x), low(C, x))
9 Rhigh = ite(high(A, x), high(B, x), high(C, x))

10 result = uniqueBDDnode(x, Rlow, Rhigh)
11 cache_store(A,B,C,result)
12 return result

Figure 3. The ite algorithm calculating (A → B) ∧ (A → C) is used to implement
binary operations like and, or. The recursive calls to ite are executed in parallel. BDDs
are automatically fully-reduced by the uniqueBDDnode method using a hash table.

1 def uniqueBDDnode(var, edgelow, edgehigh):
2 if edgelow = edgehigh: return edgelow
3 node = {var, edgelow, edgehigh}
4 try:
5 return nodestable.insert-or-find(node)
6 catch TableFull:
7 garbagecollect()
8 return nodestable.insert-or-find(node)

Figure 4. The uniqueBDDnode method creates a BDD node using the hash table insert
method (Fig. 6) to ensure that there are no duplicate nodes. Line 2 ensures that there
are no redundant nodes.

performed on the two subtasks in parallel, and the final result is computed using
a hash table. See Fig. 3 for the ite algorithm. Other algorithms such as relational
product and existential quantification are implemented similarly. To ensure that
the results of BDD operations are canonical, reduced BDDs, they use a method
uniqueBDDnode that employs a hash table as in Fig. 4.

We substituted the work-stealing framework Wool [14], that we used in the
original version of Sylvan, by Lace [12], which we developed based on some ideas
to minimize interactions between different workers and with memory. Lace is
based around a novel work-stealing queue, which is described in detail in [12].

The parallel efficiency of a task-based parallelized algorithm depends in part
on the contents of each task. If parallelized tasks mainly perform processor cal-
culations and depend on many subtasks in a predictable or regular fashion, then
they result in good speedups. However, if the number of subtasks is small and
the subtasks are relatively shallow, i.e., the “task tree” has a low depth, then
parallelization is more difficult. BDD tasks typically “spawn” only one or two
subtasks for parallel execution, depending on the operation and the input BDDs.

BDD operations are also memory-intensive, since they consist mainly of op-
erations on two data structures: a unique table that stores the unique BDD nodes
and an operation cache that stores the results of BDD operations. The unique
table is a hash table with support for garbage collection. The operation cache is a
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Figure 5. Layout of the new lock-less hash table using a separate hash array h and data
array d. h[n].D controls whether d[n] is used; h[n].H controls whether h[n] is used, i.e.,
the hash and index values correspond with an existing entry in the hash table. Every
modification of h[n] must be performed using a compare and swap operation.

simplified hash table that overwrites on collision. Hence the design of concurrent
scalable hash tables is crucial for a scalable BDD implementation.

3.1 Lock-less hash table

In parallel programs, memory accesses are typically protected against race con-
ditions using locking techniques. Locking severely cripples parallel performance,
therefore Sylvan implements lock-less data structures that rely on the atomic
compare and swap (cas) memory operation and short-lived local cas-locks to
ensure parallel correctness as well as scalable performance.

Compared to [11], we implemented a new hash table based on the lock-less
hash table presented in [19]. The new hash table consists of a hash array and
a data array, as in Fig. 5. The data array simply stores fixed-sized data, such
as BDD nodes and LDD nodes. We preallocate this data array to avoid losing
scalability due to complex memory allocation management systems. Data can
be stored at any position in the data array, and this position is recorded in the
index field of the hash array. The advantage of storing data at any position is
that this allows rehashing all BDD nodes without changing their position in the
data array, which is important for efficient garbage collection.

The state of the buckets is manipulated using straight-forward cas-operations.
Inserting data consists of three steps: searching whether the data is already in
the table, claiming a bucket in the data array to store the data, and inserting
the hash in the hash array. See Fig. 6.

First, the algorithm obtains a hash value of the data and a probe sequence
similar to [19], which makes optimal use of memory management in modern
systems. See further [19] for more details. The algorithm checks whether one of
the hash buckets in the probe sequence already contains an entry with the same
hash and with matching data in the data array. If so, it terminates.

If an empty hash bucket is reached, it searches for an empty data bucket
(where D=0 in the hash array) and uses cas to set D=1, then writes the data.
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1 def insert-or-find(data):
2 h = calculate_hash(data)
3 ps = probe_sequence(data):
4 while ps != empty:
5 s, ps = head(ps), tail(ps)
6 V = hasharr[s]
7 if V.H = 0: goto EmptyBucketFound
8 if V.hash = h && dataarr[V.index] = data: return V.index
9 raise TableFull # abort: table full!

11 label EmptyBucketFound:
12 for d in (0..N): # note: traverse in smart order
13 W = hasharr[d]
14 if W.D=0:
15 if cas(hasharr[d],W,W[D=1]):
16 dataarr[idx]=data
17 goto EmptyDataSlotFound

19 label EmptyDataSlotFound:
20 while ps != empty: # note: continue same probe sequence
21 V = hasharr[s]
22 if V.H=0:
23 if cas(hasharr[s],V,V[H=1,hash=h,index=d]): return d
24 else:
25 if V.H = h && dataarr[V.index] = data:
26 W = hasharr[d]
27 while !cas(hasharr[d],W,W[D=0]): W = hasharr[d]
28 return V.index
29 s, ps = head(ps), tail(ps)
30 W = hasharr[d]
31 while !cas(hasharr[d],W,W[D=0]): W = hasharr[d]
32 raise TableFull # abort: table full!

Figure 6. Algorithm for parallel insert of the lock-less hash table.

The position in the data array can be any position. In practice, we record the
empty data bucket of the previous insert call in a thread-specific variable, and
continue from there. Initial values for this thread-specific variable are chosen
such that all threads start at a different position in the data array.

After adding the entry in the data array, the algorithm continues with the
probe sequence, starting where it found the empty hash bucket in the first step,
to search either a matching hash with matching data (written by a concurrent
thread), or an empty hash bucket. In the first case, the algorithm releases the
data bucket by setting D=0 using cas. In the second case, it uses cas to set the
values H, hash and index at once.

3.2 Sylvan API

Sylvan is released under the Apache 2.0 License, which means that anyone can
freely use it and extend it. It comes with an example of a simple BDD-based
reachability algorithm, which demonstrates how to use Sylvan to “automatically”
parallelize sequential algorithms.
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F R V D

4 44 32 44

16 bytes

Figure 7. Layout of an LDD node in memory. The F field is reserved for flags, such as
“marked”, and to indicate possible special node types. The R field contains the index of
the LDD node p[xi > v] and the D field contains the index of the LDD node p[xi = v]
in the LDD node table. The V field contains the 32-bit v value.

To use Sylvan, simply include sylvan.h or lddmc.h and initialize Lace and
Sylvan. There is an API that exposes familiar BDD algorithms, such as ite,
exists, constrain, compose, satcount and relprod, a specialized relational
product for paired (xi, x

′
i) variables. There is also functionality for drawing DOT

graphs and writing/loading BDDs to/from disk. It is easy to add new algorithms
by studying the implementation of current algorithms.

Sylvan is distributed with the work-stealing framework Lace. Lace can be
integrated in other projects for out-of-the-box task-based parallelism. There are
additional methods to integrate Lace worker threads with existing parallel ap-
proaches. Furthermore, we developed bindings for Java JNI3 and Adam Walker
developed bindings for Haskell4, allowing parallelization of algorithms developed
in those languages. Extending Sylvan with other types of decision diagrams re-
quires copying files sylvan.h and sylvan.c and modifying the new files for the
different algorithms, similar to what we did with LDDs.

3.3 LDDs in Sylvan

We extended Sylvan with an implementation of LDDs and various LDD al-
gorithms. To represent LDD nodes in memory we use the layout described in
Fig. 7. The size of each LDD node is 16 bytes and we allocate 32 bits to hold
value v, i.e., the integer values of the state vector in Pins. In our design, 44 bits
are reserved to store edges, which is sufficient for up to 244 LDD nodes, i.e., 256
terabytes of just LDD nodes.

We implemented various LDD operations that are required for model check-
ing in LTSmin, especially union, intersection, minus, project (existential
quantification), enumerate and relprod (relational product). These operations
are all recursive and hence trivial to parallelize using the work-stealing frame-
work Lace and the datastructures earlier developed for the BDD operations.

4 Parallelism in LTSmin

4.1 Parallel symbolic reachability

Even with parallel operations, parallel scalability of model checking in LTSmin
is limited, especially in smaller models, when the size of “work units” (between

3 Available from https://github.com/utwente-fmt/jsylvan.
4 Available from https://github.com/adamwalker/sylvan-haskell.
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Figure 8. Schematic overview of parallel symbolic reachability. Note that the relprod

and ∪ operations are also parallel operations internally.

1 def learn(states, i):
2 shorts = project(states, vars[i])
3 shorts = minus(shorts, visited[i])
4 visited[i] = union(visited[i], shorts)
5 enumerate(shorts, NextStateWrapper[i])

Figure 9. On-the-fly learning in LTSmin; enumerate calls NextStateWrapper[i] for
each “short” state, which adds new transitions to trans[i].

1 def learn_par(states, i):
2 shorts = project(states, vars[i])
3 shorts = minus(shorts, visited[i])
4 visited[i] = union(visited[i], shorts)
5 temp = collect(shorts, NextStateWrapperPar[i])
6 trans[i] = union(trans[i], temp)

Figure 10. Parallel on-the-fly learning in LTSmin. The collect method combines
enumerate and union.

sequential points) is small and when the amount of parallelism in the work units
is insufficient. Experiments in [11] demonstrate this limitation.

This is expected: if a parallel program consists of many small operations
between sequential points, then we expect limited parallel scalability. If there
are relatively few independent tasks in the “task tree” of a computation, then
we also expect limited parallel scalability.

Since LTSmin partitions the transition relation in transition groups (see Sec-
tion 2.4), many small BDD operations are executed in sequence, for each trans-
ition group. We propose to calculate these operations in parallel and merge their
results pairwise, as in Fig. 8. In Fig. 2, this corresponds to executing lines 7 and 8
in parallel. This strategy decreases the number of sequential points and thus in-
creases the size of “work units”. It also increases the amount of parallelism in
the “task tree”. We therefore expect improved parallel scalability.

4.2 Parallel on-the-fly learning

As described in Section 2.4, algorithms in LTSmin learn new transitions on-the-
fly, using a NextState function. The implementation of the learn algorithm
used in Fig. 2, is given in Fig. 9. In LTSmin, the transition relation of each
transition group is only defined on a subset of the variables in the state vector.
First the set of states is “projected” (using existential quantification) such that
it is defined only on the variables relevant in transition group i. The visited
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1 def collect(states, callback, vec={}):
2 if states = 1: return callback(vec)
3 if states = 0: return ∅
4 do in parallel:
5 R0 = collect(follow-0(states), callback, vec+{0})
6 R1 = collect(follow-1(states), callback, vec+{1})
7 return union(R0, R1)

Figure 11. The parallel collect algorithm (BDD version) combining enumerate and
union. The callback is called for every state and the returned set is pairwise merged .

set is used to remove all “short states” that were seen before. The enumerate

method enumerates all states described by the BDD or LDD, i.e., all vari-
able assignments that result in 1. For each state, it calls the supplied callback
NextStateWrapper[i]. This method performs a union with trans[i] and
every single discovered transition one by one. Note that this is not thread-safe.

Similar to calculating the relational product for every transition group in
parallel, we can perform on-the-fly transition learning for every transition group
in parallel. However, there are more opportunities for parallelism.

In Fig. 9, the project (existential quantification), minus (“diff”) and union

(“or”) operations are already parallelized. The enumerate method is trivial to
parallelize, but the callback wrappper is not thread-safe. We substituted this
implementation by a new design that uses a method collect. See Fig. 10. The
NextStateWrapperPar callback in Fig. 10 adds all transitions for a state
to a small temporary decision diagram and returns this decision diagram to the
caller. The method collect (Fig. 11) performs enumeration in parallel (lines 4–
6), and performs a union on the results of the two subtasks.

This method works in LTSmin for all language modules that are thread-safe,
and has been tested for mCRL2 and DVE models.

5 Experimental evaluation

In the current section, we evaluate the presented LDD extension of Sylvan, and
the application of parallelization to LTSmin. As in [11], we base our experi-
mental evaluation mostly on the BEEM model database [25], but in contrast
to [11], we use the entire BEEM model database rather than a selection of mod-
els. We perform these experiments on a 48-core machine, consisting of 4 AMD
OpteronTM 6168 processors with 12 cores each and 128 GB of internal memory.

5.1 Fully parallel on-the-fly symbolic model checking

We perform symbolic reachability using the LTSmin toolset using the following
command: dve2lts-sym --order=<order> --vset=lddmc -rgs <model>.dve.

We also select as size of the unique table 230 buckets and as size of the
operation cache also 230 buckets. Using parameter --order we either select the
par-prev variation or the bfs-prev variation. The bfs-prev variation does
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Experiment T1 T16 T24 T32 T48 Speedup T48/T1

blocks.4 (par) 629.54 41.61 29.26 23.04 16.58 38.0

blocks.4 (bfs) 630.04 45.88 33.24 27.01 21.69 29.0

telephony.8 (par) 843.70 58.17 41.17 32.76 24.68 34.2

telephony.8 (bfs) 843.06 66.28 47.91 39.17 31.10 27.1

lifts.8 (par) 377.52 25.92 18.68 15.18 12.03 31.4

lifts.8 (bfs) 377.36 36.61 30.06 27.68 26.11 14.5

firewire tree.1 (par) 16.40 1.09 0.97 0.94 0.99 16.5

firewire tree.1 (bfs) 16.43 11.24 11.12 11.36 11.35 1.4

Sum of all par-prev 20756 1851 1552 1403 1298 16.0

Sum of all bfs-prev 20745 3902 3667 3625 3737 5.6

Figure 12. Results of running symbolic reachability on 269 models of the BEEM da-
tabase. Each value Tn is the result of at least 3 measurements and is in seconds.
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Figure 13. Results of all models in the BEEM database that did not time out, with
fully parallel learning and parallel transition groups (par-prev) on the left, and only
parallel BDD operations (bfs-prev) on the right.

not have parallelism in LTSmin, but it uses the parallelized LDD operations,
including collect. This means that there is parallel learning, but only for one
transition group at a time. In the par-prev variation, learning and calculating
the successors are performed for all transition groups in parallel.

We measure the time spent to execute symbolic reachability, excluding time
spent initializing LTSmin. We use a timeout of 1200 seconds. Of all models
in the BEEM database, only 7 timed out: collision.6, driving phils.3,
driving phils.5, elevator.5, frogs.4, hanoi.3, and public subscribe.5.
We present here the results for the remaining 269 models. Each benchmark is
performed at least 3 times.

See Fig. 12 for the results of this benchmark. Model blocks.4 results in the
highest speedup with par-prev, which is 38.0x. We also highlight the model
lifts.8 which has a speedup of 14.5x with bfs-prev and more than twice as
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Figure 14. Results of all models that did not time out for both BDDs and LDDs,
comparing time with 48 workers (left) and obtained speedups (right).

high with par-prev. Fig. 13 shows that “larger” models are associated with a
better parallel performance.

Fig. 13 also shows that adding parallellism on the algorithmic level benefits
the parallel performance of many models. One of the largest improvements was
obtained with the firewire tree.1 model, which went from 1.4x to 16.5x. We
conclude that the bottleneck was the lack of parallelism.

In addition, Fig. 12 shows that the overhead between the “sequential” bfs-prev
and “parallel” par-prev versions is negligible. Taking the time spent for the en-
tire benchmark set, we see that the speedup of the entire benchmark is 16.0x
for the fully parallelized version. For all models, the speedup improves with
par-prev. The only exception is peg solitaire.1, for which T48 = 2.38 with
par-prev, and T48 = 2.35 with bfs-prev, which is within measurement error.

5.2 BDDs and LDDs

We now compare the performance of our multi-core BDD and LDD variants. We
do this for the par-prev algorithm. Fig. 14 shows that the majority of models,
especially larger models, are performed up to several orders of magnitude faster
using LDDs. The most extreme example is model frogs.3, which has for BDDs
T1 = 989.40, T48 = 1005.96 and for LDDs T1 = 61.01, T48 = 9.36. Some models
are missing that timed out for BDDs but did not time out for LDDs, for example
model blocks.4.

6 Conclusions

In the current paper we presented several modifications to Sylvan, such as a new
hash table implementation for Sylvan and the replacement of the work-stealing
framework by Lace. We also discussed how we extended Sylvan to implement
parallel LDD operations and the specialized BDD/LDD method collect that
parallelizes on-the-fly transition learning. We measured the performance of this
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implementation using symbolic reachability in LTSmin applied to models from
the BEEM model benchmark database. This resulted in a speedup of up to
38.0x when also applying parallelism on the algorithmic level in LTSmin, or
up to 29.0x when just using parallelized operations in an otherwise sequential
symbolic reachability algorithm.

BDDs and other decision diagrams are also important in other domains. We
conclude that sequential algorithms benefit from “automatic” parallelization us-
ing parallel BDD and LDD operations in Sylvan. We also conclude that addi-
tional parallelism at the algorithmic level results in significant improvements.

Our parallel BDD package is open-source and publicly available online and
is easy to integrate with existing software, also using Java JNI bindings and
Haskell bindings.
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