UNIVERSITY OF TWENTE.

Lace: Non-Blocking Split Deque for Work-Stealing

Tom van Dijk
Jaco van de Pol

MuCoCos August 26, 2014

2/1

Background

Background

» Formal Methods & Tools, University of Twente

» Symbolic Model Checking

» Multi-core (Binary) Decision Diagrams

» BDD algorithms: recursive — task-based — work-stealing

3/1

Task parallelism

def fib(n):
if n < 2: return n
spawn fib(n - 1)
y = fib(n - 2)
X = sync
return x + y

4/1

Example: calculate £ib (11)

Task graph:

Task stack:

(ofsfefaf2] [[[[|

5/1

6/1

Deques for work-stealing

Deques

A deque is a double-ended queue.
Every worker has a deque to store tasks in.
Workers steal tasks from each other when they have no work.

> push: add a task at the head (end) of the deque
> pop: remove the task at the head of the deque
> steal: steal the task at the tail of the deque

Implementations (blue = non-blocking)

» Fully shared deque: Frigo ea ('Cilk’ 1998), ABP (1998),
Chase and Lev (2005), Hendler ea (2006)

» Private deque: Acar ea (2013)

» Split deque: Faxén ("Wool' 2008, 2010), Dinan ea (2009)

7/1

Deques for work-stealing

Challenges

» Avoid hidden and unnecessary communication
> false sharing (variables accessed by thieves / owner)
> unnecessary memory writes

» Avoid using locks/mutexes

> Avoid overhead, especially if most tasks are never stolen
» Disadvantages of shared deques [Acar et al, PPoPP 2013]

> Difficult to support strategies such as steal-multiple
> Require expensive memory fences (in every pop)
For example, in the THE protocol of Cilk

8/1

Implemented non-blocking split deque in Lace.
Deque is described by variables tail (t), split (s), head (h).

t S h

mofs 6 a2 [[T [7]

v

Everything before s is shared.

Everything before t is stolen.
steal:

> if t < s: steal with atomic cas (t,s) — (t+1,s)
> if t > s: set flag splitreqg

Thieves can only increase t, not modify s or h.
Thieves access t and s on a separate cacheline from owner.

Stolen tasks stay in the deque!

9/1

Push/pop a task

> push: write task at h and increase h.
> pop: if h > s, return task at h and decrease h.

_sh
[« 1 [[[[|

S h

| ~

(7))
>

| ~+
S

~
)
>

| ~
S
N

10/1

Grow and shrink

> grow: set s between t and h (round up).

» shrink: set s between t and h—1 (round up).

t_sh
(ofsfel4| [[[[[|
ts h

O I N Y I R

1/1

Shrink conflict (x86 load-before-store)

> steal during shrink on tasks beyond new s

» solution: wait in memory fence and check t

t _sh
(o864 [[[T []

s t h
oreer 4+ [[1 [1 |

ts h
orefe|+ [[T T T]

tsh
ofefs| [[[[[T]

12/1

Private deque by Acar et al (2013)

Also implemented in Lace framework for comparison.

Every worker has a request cell r and a transfer cell t.

>
>
» A thief writes atomically (cas) to r of a victim and waits.
» The victim writes result in t of the thief.

>

Workers must regularly check r to communicate tasks.

13/1

14/1

Experimental results

Benchmarks
» f£ib(50) — 20,365,011,073 tasks
» N-queens(15) — 171,129,071 tasks
» uts(T3L) — Unbalanced Tree Search, 111,345,630 tasks
» matmul(4096) — 3,595,117 tasks
» No cut-off point
» Fine-grained, very small tasks.

Measurements

» Compare Lace split deque to private deque (and to Wool)
» 48-core AMD machine (4 sockets, 12 cores per socket)

> Wallclock time around parallel part, 48 workers.

15/1

Experimental results

Lace Speedup
Benchmark Ts T Ts To/Tas | T1/Taa
fib 50 149.2 | 144 | 4.13 34.5 34.9
uts T3L 4311 | 442 | 2.23 18.7 19.9
uts T3L * 43.11 | 443 | 1.154 | 374 * 38.2
queens 15 533 602 | 12.63 | 42.2 47.7

matmul 4096 | 773 781 | 16.46 47.0 475
Private deque

fib 50 149.2 | 208 | 5.22 23.2 39.8
uts T3L 43.11 | 44.8 | 2.55 17.3 175
uts T3L * 4311 | 448 | 1.240 | 348 * 36.2
queens 15 533 541 | 11.34 | 433 47.7

matmul 4096 | 773 774 | 16.34 47.3 47.4

* = with extension to fix issues with leapfrogging (next slides)

16/1

Scalability

Scalability T1/T, (relative to itself; does not show overhead)

50
40 4
Name
2 30+ —o— fib
=
§ A fib-ri
(%20 - —#- uts-t3l
—= uts-t3l-ri
10
0 -
T T T T T T
0 10 20 30 40 50
Workers

17/1

Scalability

Scalability Ts/ T, (relative to sequential; shows overhead)

50
40 4
Name
2 30+ —o— fib
=
§ A fib-ri
(%20 - —#- uts-t3l
—= uts-t3l-ri
10
0 -
T T T T T T
0 10 20 30 40 50
Workers

18/1

19/1

Leapfrogging

Leapfrogging

» Waiting for stolen work? Steal from thief!
> Advantage: gives nice upper bound on deque size!
> Disadvantage: steal chaining...

w0 wl w2 w3 w4 wbh

3|

wll w10 w9 w8 w7 wob

Ne——1

> New tasks by wll are stolen by wl0...

> New tasks by w10 are then stolen by wll... and w9...
> New tasks by w9 are then stolen by w10... and w8...
» Work does not trickle down fast enough!

20/1

Leapfrogging

Leapfrogging
> Leapfrogging results in steal chaining.
Transitive Leapfrogging (by Faxén)

» |If thief has no work, steal from thief of thief.
» Implemented in Wool, works well!

» Disadvantage: requires more communication.

Leapfrogging into random stealing

» If thief has no work, steal from random target.
» Very simple and works well!

» Disadvantage: no guarantee on deque size upper bound.

21/1

Leapfrogging

Evaluation
Algorithm T1 Tas Ts/T48 T1/T48
Old Lace 442 | 2.23 18.7 19.9
Old Private Deque | 44.8 | 2.55 17.3 17.5
Old Wool 443 | 2.12 19.4 20.9
Lace 4426 | 1.154 37.4 38.3
Private Deque 44.83 | 1.240 34.8 36.2
Wool 4427 | 1.172 36.8 37.8

> All algorithms similar speedup

> Peak stack depth from 6500-12500 tasks to 17000-21000
tasks (1 MB)

2/1

23/1

Conclusions

Conclusions
» Non-blocking split deque has low overhead and good speedup
> Leapfrogging plus random stealing solves steal chaining
» Only require memory fence in shrink
> Lace can be found at:

> http://fmt.ewi.utwente.nl/tools/lace
> http://github.com/trolando/lace
> Feel free to reproduce results (bench.py)

> Lace is used in our parallel BDD implementation Sylvan

2 /1

Conclusions

Conclusions

» Non-blocking split deque has low overhead and good speedup
> Leapfrogging plus random stealing solves steal chaining

» Only require memory fence in shrink
> Lace can be found at:

> http://fmt.ewi.utwente.nl/tools/lace
> http://github.com/trolando/lace
> Feel free to reproduce results (bench.py)

> Lace is used in our parallel BDD implementation Sylvan

Future directions

» Distributed memory (with a shared memory abstraction)

» Non-uniform task size

24 /1

Conclusions

Conclusions

» Non-blocking split deque has low overhead and good speedup
> Leapfrogging plus random stealing solves steal chaining

» Only require memory fence in shrink
> Lace can be found at:

> http://fmt.ewi.utwente.nl/tools/lace
> http://github.com/trolando/lace
> Feel free to reproduce results (bench.py)

> Lace is used in our parallel BDD implementation Sylvan

Future directions

» Distributed memory (with a shared memory abstraction)
» Non-uniform task size
» Try it in Eve? And in parallel FaSE? ;)

24 /1

Algorithm outline

def steal():
if allstolen: return None
(t,s) = (tail,split)
if t < s:

if cas((tail,split), (t,s), (t+l,s)):
return Task (t)
else: return None
if ! splitreq: splitreg=1
return None

def push (data) :

if head == size: return FULL

write task data at head

head = head + 1

if o_allstolen:
(tail, split) = (head-1,head)
allstolen = 0
if splitreq: splitreg=0
o_split = head
o_allstolen = 0

elif splitreqg: grow_shared()

25/1

Algorithm outline

def pop():
if head = 0: return EMPTY, -
if o_allstolen: return STOLEN, Task (head-1)
if o_split = head:
if shrink_shared(): return STOLEN, Task (head-1)
head = head-1
if splitreqg: grow_shared()
return WORK, Task (head)

def pop_stolen():
head = head-1
if ! o_allstolen:
allstolen = 1
o_allstolen = 1

2 /1

Algorithm outline

def grow_shared() :

new_s = (o_split+head+l) /2
split = new_s
o_split = new_s

splitreq = 0

def shrink_shared() :
(t,s) = (tail,split)
if t != s:
new_s = (t+s)/2
split = new_s
o_split = new_s
MFENCE
t = tail # read again
if t != s:
if t > new_s:
new_s = (t+s)/2
split = new_s
o_split = new_s
return False
allstolen =1
o_allstolen =1
return True

27 /1

