
Lace: Non-Blocking Split Deque for Work-Stealing

Tom van Dijk
Jaco van de Pol

MuCoCos August 26, 2014



Outline

2 / 1



Background

Background

I Formal Methods & Tools, University of Twente
I Symbolic Model Checking
I Multi-core (Binary) Decision Diagrams
I BDD algorithms: recursive → task-based → work-stealing

3 / 1



Task parallelism

def fib(n):
if n < 2: return n
spawn fib(n - 1)
y = fib(n - 2)
x = sync
return x + y

7

6

5

4

3

2 1

2

3

2 1

4

3

2 1

2

5

4

3

2 1

2

3

2 1

4 / 1



Example: calculate fib(11)

Task graph:
11

10 9

8 7

6 5

4 3

2 1

Task stack:

10 8 6 4 2

5 / 1



Outline

6 / 1



Deques for work-stealing

Deques
A deque is a double-ended queue.
Every worker has a deque to store tasks in.
Workers steal tasks from each other when they have no work.

I push: add a task at the head (end) of the deque
I pop: remove the task at the head of the deque
I steal: steal the task at the tail of the deque

Implementations (blue = non-blocking)

I Fully shared deque: Frigo ea (’Cilk’ 1998), ABP (1998),
Chase and Lev (2005), Hendler ea (2006)

I Private deque: Acar ea (2013)
I Split deque: Faxén (’Wool’ 2008, 2010), Dinan ea (2009)

7 / 1



Deques for work-stealing

Challenges

I Avoid hidden and unnecessary communication
I false sharing (variables accessed by thieves / owner)
I unnecessary memory writes

I Avoid using locks/mutexes
I Avoid overhead, especially if most tasks are never stolen
I Disadvantages of shared deques [Acar et al, PPoPP 2013]

I Difficult to support strategies such as steal-multiple
I Require expensive memory fences (in every pop)

For example, in the THE protocol of Cilk

8 / 1



Deque in Lace

Implemented non-blocking split deque in Lace.
Deque is described by variables tail (t), split (s), head (h).

t s h
10 8 6 4 2

I Everything before s is shared.
I Everything before t is stolen.
I steal:

I if t < s: steal with atomic cas 〈t, s〉 → 〈t + 1, s〉
I if t ≥ s: set flag splitreq

I Thieves can only increase t, not modify s or h.
I Thieves access t and s on a separate cacheline from owner.
I Stolen tasks stay in the deque!

9 / 1



Deque in Lace

Push/pop a task

I push: write task at h and increase h.
I pop: if h > s, return task at h and decrease h.

t s h
10 8 6 4

t s h
10 8 6 4 2

t s h
10 8 6 4

t sh
10 8 6

10 / 1



Deque in Lace

Grow and shrink

I grow: set s between t and h (round up).

ts h
10 8 6 4 2

t s h
10 8 6 4 2

I shrink: set s between t and h − 1 (round up).

t sh
10 8 6 4

ts h
10 8 6 4

11 / 1



Deque in Lace

Shrink conflict (x86 load-before-store)

I steal during shrink on tasks beyond new s
I solution: wait in memory fence and check t

t sh
10 8 6 4

s t h
10 8 6 4

ts h
10 8 6 4

tsh
10 8 6

12 / 1



Private deque

Private deque by Acar et al (2013)

I Also implemented in Lace framework for comparison.
I Every worker has a request cell r and a transfer cell t.
I A thief writes atomically (cas) to r of a victim and waits.
I The victim writes result in t of the thief.
I Workers must regularly check r to communicate tasks.

13 / 1



Outline

14 / 1



Experimental results

Benchmarks

I fib(50) – 20,365,011,073 tasks
I N-queens(15) – 171,129,071 tasks
I uts(T3L) – Unbalanced Tree Search, 111,345,630 tasks
I matmul(4096) – 3,595,117 tasks
I No cut-off point
I Fine-grained, very small tasks.

Measurements

I Compare Lace split deque to private deque (and to Wool)
I 48-core AMD machine (4 sockets, 12 cores per socket)
I Wallclock time around parallel part, 48 workers.

15 / 1



Experimental results

Benchmark TS
Lace Speedup

T1 T48 TS/T48 T1/T48
fib 50 149.2 144 4.13 34.5 34.9
uts T3L 43.11 44.2 2.23 18.7 19.9
uts T3L * 43.11 44.3 1.154 37.4 * 38.2
queens 15 533 602 12.63 42.2 47.7
matmul 4096 773 781 16.46 47.0 47.5

Private deque
fib 50 149.2 208 5.22 23.2 39.8
uts T3L 43.11 44.8 2.55 17.3 17.5
uts T3L * 43.11 44.8 1.240 34.8 * 36.2
queens 15 533 541 11.34 43.3 47.7
matmul 4096 773 774 16.34 47.3 47.4

* = with extension to fix issues with leapfrogging (next slides)

16 / 1



Scalability

Scalability T1/Tn (relative to itself; does not show overhead)

17 / 1



Scalability

Scalability TS/Tn (relative to sequential; shows overhead)

18 / 1



Outline

19 / 1



Leapfrogging

Leapfrogging

I Waiting for stolen work? Steal from thief!
I Advantage: gives nice upper bound on deque size!
I Disadvantage: steal chaining...

w0 w1 w2 w3 w4 w5

w6w7w8w9w10w11

I New tasks by w11 are stolen by w10...
I New tasks by w10 are then stolen by w11... and w9...
I New tasks by w9 are then stolen by w10... and w8...
I Work does not trickle down fast enough!

20 / 1



Leapfrogging

Leapfrogging

I Leapfrogging results in steal chaining.

Transitive Leapfrogging (by Faxén)

I If thief has no work, steal from thief of thief.
I Implemented in Wool, works well!
I Disadvantage: requires more communication.

Leapfrogging into random stealing

I If thief has no work, steal from random target.
I Very simple and works well!
I Disadvantage: no guarantee on deque size upper bound.

21 / 1



Leapfrogging

Evaluation

Algorithm T1 T48 TS/T48 T1/T48
Old Lace 44.2 2.23 18.7 19.9
Old Private Deque 44.8 2.55 17.3 17.5
Old Wool 44.3 2.12 19.4 20.9
Lace 44.26 1.154 37.4 38.3
Private Deque 44.83 1.240 34.8 36.2
Wool 44.27 1.172 36.8 37.8

I All algorithms similar speedup
I Peak stack depth from 6500-12500 tasks to 17000-21000

tasks (1 MB)

22 / 1



Outline

23 / 1



Conclusions

Conclusions

I Non-blocking split deque has low overhead and good speedup
I Leapfrogging plus random stealing solves steal chaining
I Only require memory fence in shrink
I Lace can be found at:

I http://fmt.ewi.utwente.nl/tools/lace
I http://github.com/trolando/lace
I Feel free to reproduce results (bench.py)

I Lace is used in our parallel BDD implementation Sylvan

Future directions

I Distributed memory (with a shared memory abstraction)
I Non-uniform task size
I Try it in Eve? And in parallel FaSE? ;)

24 / 1



Conclusions

Conclusions

I Non-blocking split deque has low overhead and good speedup
I Leapfrogging plus random stealing solves steal chaining
I Only require memory fence in shrink
I Lace can be found at:

I http://fmt.ewi.utwente.nl/tools/lace
I http://github.com/trolando/lace
I Feel free to reproduce results (bench.py)

I Lace is used in our parallel BDD implementation Sylvan

Future directions

I Distributed memory (with a shared memory abstraction)
I Non-uniform task size

I Try it in Eve? And in parallel FaSE? ;)

24 / 1



Conclusions

Conclusions

I Non-blocking split deque has low overhead and good speedup
I Leapfrogging plus random stealing solves steal chaining
I Only require memory fence in shrink
I Lace can be found at:

I http://fmt.ewi.utwente.nl/tools/lace
I http://github.com/trolando/lace
I Feel free to reproduce results (bench.py)

I Lace is used in our parallel BDD implementation Sylvan

Future directions

I Distributed memory (with a shared memory abstraction)
I Non-uniform task size
I Try it in Eve? And in parallel FaSE? ;)

24 / 1



Algorithm outline

def steal():
if allstolen: return None
(t,s) = (tail,split)
if t < s:

if cas((tail,split), (t,s), (t+1,s)):
return Task(t)

else: return None
if ! splitreq: splitreq=1
return None

def push(data):
if head == size: return FULL
write task data at head
head = head + 1
if o_allstolen:

(tail,split) = (head-1,head)
allstolen = 0
if splitreq: splitreq=0
o_split = head
o_allstolen = 0

elif splitreq: grow_shared()

25 / 1



Algorithm outline

def pop():
if head = 0: return EMPTY,-
if o_allstolen: return STOLEN, Task(head-1)
if o_split = head:

if shrink_shared(): return STOLEN, Task(head-1)
head = head-1
if splitreq: grow_shared()
return WORK, Task(head)

def pop_stolen():
head = head-1
if ! o_allstolen:

allstolen = 1
o_allstolen = 1

26 / 1



Algorithm outline
def grow_shared():

new_s = (o_split+head+1)/2
split = new_s
o_split = new_s
splitreq = 0

def shrink_shared():
(t,s) = (tail,split)
if t != s:

new_s = (t+s)/2
split = new_s
o_split = new_s
MFENCE
t = tail # read again
if t != s:

if t > new_s:
new_s = (t+s)/2
split = new_s
o_split = new_s

return False
allstolen = 1
o_allstolen = 1
return True

27 / 1


