
Multi-Core BDD Operations
for Symbolic Reachability

Tom van Dijk1, Alfons Laarman1 and Jaco van de Pol1

Formal Methods and Tools, Dept. of EEMCS, University of Twente
P.O.-box 217, 7500 AE Enschede, The Netherlands

Abstract

This paper presents scalable parallel BDD operations for modern multi-core hardware. We aim at increasing
the performance of reachability analysis in the context of model checking. Existing approaches focus on
performing multiple independent BDD operations rather than parallelizing the BDD operations themselves.
In the past, attempts at parallelizing BDD operations have been unsuccessful due to communication costs in
shared memory.
We solved this problem by extending an existing lockless hashtable to support BDDs and garbage collection
and by implementing a lockless memoization table. Using these lockless hashtables and the work-stealing
framework Wool, we implemented a multi-core BDD package called Sylvan.
We provide the experimental results of using this multi-core BDD package in the framework of the model
checker LTSmin. We measured the runtime of the reachability algorithm on several models from the BEEM
model database on a 48-core machine, demonstrating speedups of over 30 for some models, which is a
breakthrough compared to earlier work.
In addition, we improved the standard symbolic reachability algorithm to use a modified BDD operation that
calculates the relational product and the variable substitution in one step. We show that this new algorithm
improves the performance of symbolic reachability and decreases the memory requirements by up to 40%.

Keywords: multi-core, BDD, symbolic reachability, parallel model checking, lockless hashtable, garbage
collection, LTSmin, WOOL, Sylvan

1 Introduction

In model checking, we create abstractions of complex systems to verify that they

function according to certain properties. Systems are modelled as a set of possible

states the system can be in and a set of transitions between these states. States and

transitions form a transition system that describes system behavior. The core of

model checking is the reachability algorithm, which calculates all reachable states, i.e.,

all possible states a system can be in, based on the initial states and the transitions.

One major problem in model checking is the size of the transition system. Even

with small systems, the memory required to store all explored states increases

1 Email: {tdijk,a.w.laarman,vdpol}@cs.utwente.nl.
The first author is supported by the NWO project MaDriD, grant nr. 612.001.101

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 296 (2013) 127–143

1571-0661 © 2013 Elsevier B.V. 

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.07.009
Open access under CC BY-NC-ND license. 

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.07.009
http://dx.doi.org/10.1016/j.entcs.2013.07.009
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


exponentially. One way to deal with this is to represent all states using Boolean

functions, instead of storing them individually. This is called symbolic model check-

ing [7]. Boolean functions can be stored in memory efficiently using Binary Decision

Diagrams (BDDs) [1,6].

To manipulate Boolean functions stored using BDDs a large variety of BDD

algorithms exist. To calculate all reachable states, only four algorithms are necessary:

∧, ∨, ∃ and variable substitution. Common BDD implementations also include a

special algorithm to calculate the relational product which combines ∧ and ∃. The
first contribution of this paper is a new algorithm that combines this relational

product with variable substitution. With experiments we show that this algorithm

is faster and requires up to 40% less memory than performing the two operations

separately.

Since model checking has huge computational requirements, techniques that

increase the performance of model checking tools are constantly being developed.

Until the last decade, the usual approach for better performance was to increase

CPU frequencies. Algorithms were optimized for a single processor and processors

implemented various hardware optimizations, such as out-of-order execution and

pipelining. Recent developments in hardware introduce the necessity of multi-

core and multi-processor architectures for future performance gains. In order to

use the computational power of all cores we need to parallelize our software, i.e.,

divide algorithms into smaller parts that can be executed in parallel by multiple

workers to achieve maximum speedup. In the literature, limited speedups for BDD

operations have been attributed to the irregular memory access pattern. Symbolic

state-space generation results in high parallel overhead, due to load imbalance and

the scheduling of many small computations. Also, synchronisation on the symbolic

data structure [16] incurs extra overhead. To maximize speedup we need to minimize

this overhead by developing new data structures and algorithms.

The second contribution of this paper is Sylvan, a multi-core implementation of

BDD algorithms using the task-based work-stealing framework Wool and scalable

data structures that we developed. These data structures are based on the lockless

paradigm, which avoids mutual exclusion and depends on atomic operations. We

have performed experiments with state-space generation on several models from

the BEEM database [31] using the LTSmin toolset [4] extended to support our

experimental BDD package Sylvan. We obtain a speedup of up to 32 on 48 cores

with the best benchmark model (average of 5 runs) relative to the runtime on 1 core.

We compared the results to the performance of the same reachability algorithm

using the popular BDD package BuDDy as the backend for symbolic model checking.

The results show that compared to an optimized sequential package, our approach

still gives a significant speedup of up to 12 times on 48 cores.

This paper is structured as follows. We summarize preliminaries on BDDs

and reachability in Section 2 and present a new BDD algorithm RelProdS that

reduces the memory requirements of symbolic model checking in Section 3. Section 4

discusses two approaches to parallelizing the BDD operations and we present a

lockless memoization table and a lockless hashtable that supports garbage collection

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143128



with reference counting in Section 5. In Section 6 we present our experimental

results. We finish this paper with related work and conclusions in Section 7 and

Section 8.

2 Preliminaries

2.1 Symbolic reachability using Boolean functions

Let S = B
n be the set of all states, consisting of vectors of n Booleans. A transition

relation is a binary relation R ⊆ S × S, representing transitions between states. A

transition system given vector size n is a pair (SI , R), where SI ⊆ S is a set of initial

states and R ⊆ S × S is a transition relation. The set of reachable states is the

reflexive, transitive closure of R applied to SI .

Generally, sets of states are either stored explicitly, i.e., every state is stored

individually, or symbolically, i.e., the set of states is represented by a Boolean

function [7]. A subset V ⊆ S can be denoted by a Boolean function F : Bn → B,

such that, given a state s, F (s) ⇔ s ∈ V . The transition relation R ⊆ S × S can be

denoted by a Boolean function T : Bn × B
n → B, such that, given states s and s′,

T (s, s′) ⇔ (s, s′) ∈ R.

Given Boolean functions F (s) and T (s, s′), the T -successors of F are obtained as

F ′(s) = ∃s′. F (s′) ∧ T (s′, s). The set of reachable states is computed with symbolic

breadth-first search as the fixed point of the following series:

Fi+1(s) = Fi(s) ∨ (∃s′. Fi(s
′) ∧ T (s′, s)) (1)

Given state vector s, we write s[i ← v] for the vector equal to s, except si = v.

With si we denote si = 0. We define the restriction (also called cofactor) of a

function as Fi=v(s)
def
= F (s[i ← v]). The following identity is known as Shannon’s

expansion [35].

F (s) ⇐⇒ (
(si ∧ Fi=1(s)) ∨ (si ∧ Fi=0(s))

)
(2)

2.2 Binary decision diagrams

Binary decision diagrams (BDDs) were introduced by Akers [1] and developed

by Bryant [6]. Their major advantage is that sets of states are often concisely

represented. In addition, since reduced ordered BDDs are canonical, testing equality

of two sets is trivial.

A BDD is a directed acyclic graph with leaves 0 and 1, and a set of internal vertices

V , equipped with a variable label and two outgoing edges. So BDDs are defined as

tuples (V, high, low, var), where high, low : V → V ∪{0, 1} are functions representing

the high and low edges of a node, and var indicates the variable associated to a

vertex. Every node in a BDD represents a Boolean function according to its Shannon

expansion (2). In particular, if var(B) = x, high(B) = B1 and low(B) = B0, then

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 129



x x1 ∧ x2 x1 ∨ x2 (x1 ∧ x2) ∨ (x1 ∧ x2)

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

Figure 1. Binary decision diagrams for some Boolean functions. Internal nodes are drawn as circles with
variables, and leaves as boxes. High edges are drawn solid, and low edges are drawn dashed.

B represents the function F , such that Fx=1 represents B1 and Fx=0 represents B0.

Examples of simple BDDs are given in Figure 1.

Given a total ordering < of the variables, an ordered BDD is a BDD in which

the variables occur in increasing order along all paths from root to leaf. An ordered

BDD is called reduced, if it has no redundant nodes (with two identical children),

and no duplicate nodes (with the same variable, high and low edges). All examples

in Figure 1 are ordered and reduced. Reduced and ordered BDDs are canonical

representations of Boolean functions.

Implementation. BDD nodes are stored using memory arrays. An edge or

reference to a BDD is the index in that memory array [22]. A single BDD node

consists of three integers, representing the variable and the outgoing edges.

A BDD package must ensure the invariant that BDDs are reduced and ordered all

the time. To this end, BDD implementations typically contain a method MK(x, T, F )

that returns a unique BDD node with variable x, a high outgoing edge to BDD T

and a low outgoing edge to BDD F . This function guarantees that the returned

BDD is a reduced BDD. To implement MK, a Unique Table is necessary, usually

implemented using a hashtable. Alternatively, one can also store the nodes in this

hashtable, eliminating the node array. This simplifies the implementation.

Garbage collection is essential for BDDs. Modifying a subgraph in a BDD

typically implies modifying all ancestors, since BDD nodes are usually immutable.

Therefore, BDD operations modify entire BDDs. The consequence is that the data

structures used to store BDDs need to support garbage collection, for example using

reference counting or mark-and-sweep approaches. However, Somenzi mentions that

unused BDD nodes are often reused later and that garbage collection should only be

performed when there are enough unused BDD nodes to justify the cost of garbage

collection and recreating nodes that were deleted during garbage collection [36].

2.3 Relational product

The set of successors F ′(s) = ∃s′.F (s′)∧T (s′, s) in Equation (1) is usually computed

in two steps. The starting point are BDDs F (X) and T (X,X ′). First, the BDD

algorithm RelProd efficiently combines conjunction and existential quantification,

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143130



to obtain a BDD representing ∃X.F (X)∧ T (X,X ′). Note that this BDD is phrased

in variables X ′. In the second step, the variables X are substituted for X ′. As a

consequence, the BDD is created twice, using different sets of variables.

Definition 2.1 [RelProd algorithm] Given a set of variables Xn = {x1, . . . , xn}, a
set X∃ ⊆ Xn, and BDDs F (X) and G(X), the RelProd algorithm returns a BDD

R(Xn \X∃), representing

R(Xn \X∃) = ∃X∃
(
F (Xn) ∧G(Xn)

)

A simplified (non-optimized) implementation of this algorithm is given in Al-

gorithm 1. Here x is a variable, and X is a collection of variables. In l. 9, when

x ∈ X, we compute ∃xR as the disjunction Rx=0 ∨Rx=1. When x /∈ X, the result

is calculated as a BDD with a root node with variable x.

Algorithm 1 RelProd: Calculate ∃X(F ∧G)
Input: BDD F, BDD G, Set X

1: if F = 1 ∧G = 1 then return 1
2: if F = 0 ∨G = 0 then return 0
3: if memo.get(F,G,X,R) then return R
4: x← first(var(F ), var(G))
5: 〈F0, F1〉 ← if x = var(F ) then 〈low(F ), high(F )〉 else 〈F, F 〉
6: 〈G0, G1〉 ← if x = var(G) then 〈low(G), high(G)〉 else 〈G,G〉
7: R0 ← RelProd(F0, G0, X)
8: R1 ← RelProd(F1, G1, X)
9: if x ∈ X then R← R0 ∨R1 else R← MK(x,R1, R0)

10: memo.put(F,G,X,R)
11: return R

Dynamic programming is used to make the algorithm polynomial in the size of

the input BDDs. To this end, memo.get and memo.put (l. 3, 10) manipulate the

memoization table, which is used to store all intermediate results for later reference.

low and high follow the low and high edges of a BDD node, var returns the variable

of a BDD node, first returns the first variable according to < and MK is the method

that creates or retrieves unique BDD nodes.

3 Improving reachability using RelProdS

We present a new algorithm that combines the relational product and substitution,

eliminating the unnecessary creation of the BDD in X ′. It is a modification of the

original RelProd algorithm. We use a variable substitution (an injective function

S : X → X) which is directly applied when creating the BDD nodes of the result.

Note that in MDD-based model checking in SMART [11], as described else-

where [13], the creation of these unnecessary BDD nodes is already avoided by

storing normal and primed variables in the transition relation together and evaluat-

ing them in one step. Our solution is more general, allowing any substitution S as

long as it preserves <.

Definition 3.1 [RelProdS algorithm] The RelProdS takes as input BDDs F and G,

a set of variables X, a set of variables X∃ ⊆ X, and an injective function S : X → X,

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 131



Algorithm 2 RelProdS: Calculate ∃X(F ∧G) and apply substitution S

Input: BDD F, BDD G, Set X, Substitution S

1: if F = 1 ∧G = 1 then return 1
2: if F = 0 ∨G = 0 ∨ F = complement(G) then return 0
3: if G = 1 then return RelProdS(1, F,X, S)
4: if F = G then return RelProdS(1, G,X, S)
5: if F > G then
6: return RelProdS(G,F,X, S)
7: if memo.get(F,G,X, S,R) then return R
8: x ← first(var(F ), var(G))
9: 〈F0, F1〉 ← if x = var(F ) then 〈low(F ), high(F )〉 else 〈F, F 〉

10: 〈G0, G1〉 ← if x = var(G) then 〈low(G), high(G)〉 else 〈G,G〉
11: if x ∈ X then
12: R0 ← RelProdS(F0, G0, X, S)
13: if R0 = 1 then
14: R ← 1
15: else
16: R1 ← RelProdS(F1, G1, X, S)
17: R ← R0 ∨R1

18: else
19: R0 ← RelProdS(F0, G0, X, S)
20: R1 ← RelProdS(F1, G1, X, S)
21: R ← MK(S(x), R1, R0)
22: memo.put(F,G,X, S,R)
23: return R

which preserves the variable ordering <. RelProdS returns a BDD of function

R
def
=

(∃X∃ F ∧G
)
[S],

Let xF ∈ X and xG ∈ X be the variables of the root BDD nodes of F and

G, respectively, and let x be the smallest of xF and xG according to ordering <.

Let RPSx=v denote the recursive execution of RelProdS that calculates Rx=v with

v ∈ {0, 1}. Then we define the RelProdS algorithm is as follows:

RelProdS(F,G,X∃, S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 F = 1 ∧G = 1

0 F = 0 ∨G = 0

RPSx=0 ∨ RPSx=1 x ∈ X∃
MK(S(x), RPSx=1, RPSx=0) otherwise

The full algorithm of RelProdS is given in Algorithm 2. This algorithm is

identical to the algorithm of RelProd (see Algorithm 1 for a simplified version)

except for l. 21, where the variable is substituted. To guarantee that the result is

still ordered according to <, the ordering < must be preserved under S. Here >

can be any total ordering, e.g. the index in the hashtable. We use a memoization

table (l. 7, 22) to memorize the results. Normalization rules are added (l. 3-6), so

similar operations use the same entry in the memoization table. We also insert a

shortcutting optimization that omits calculating R1 when R0 = 1 (l. 14).

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143132



Table 1
Comparison of RelProd+S and RelProdS (numbers rounded to 106)

Model
#states #trans Units of work (·106) BDD nodes (·106)

RP + S RPS Decr. RP + S RPS Decr.

bakery.4 1.5 105 4.1 105 5 4 18.3% 2 1 38.1%

bakery.8 2.5 108 9.8 108 1,188 997 14.0% 353 219 38.0%

collision.5 4.3 108 1.6 109 1,187 983 18.2% 470 297 36.9%

iprotocol.7 9.8 106 2.0 108 759 601 20.8% 344 204 40.8%

lifts.4 1.1 105 2.4 105 41 38 8.1% 8 5 36.5%

lifts.7 5.1 106 1.4 107 533 489 8.2% 107 65 39.0%

sched world.2 1.6 106 1.4 107 15 14 10.4% 5 3 32.4%

sched world.3 1.7 108 2.0 109 200 178 11.0% 68 48 29.7%

We compared the computational and memory requirements of reachability using

RelProdS to using RelProd and a separate variable substitution. Our implementation

of RelProd includes the same optimizations as RelProdS. Both implementations use

complement edges [27,5], which is a technique that represents F and ¬F using the

same graph and allows negation and comparison of F and ¬F in constant time. For

this experiment we used a subset of the BEEM database [31]. We selected models

of various sizes from this database.

Table 1 shows the total number of non-trivial BDD suboperations. These are ∨,
RelProd and Substitute suboperations that do not immediately return a result,

but consult the memoization table or calculate the result based on the Shannon

decomposition. We only counted the number of suboperations required to calculate

the successors in every iteration of the reachability algorithm. Table 1 also shows

the total number of BDD nodes in the BDD table after execution of the reachability

algorithm. We disabled garbage collection to calculate this number. For iprotocol.7

the amount of work reduces by 20%, and the number of BDD nodes decreases by

40%.

4 Parallelizing BDD operations

Figure 2. Task
dependency graph

We parallelized RelProdS and ∨, which are the required

BDD operations for reachability. This section presents

two parallelization approaches that we applied. We will

use the following terminology: An algorithm consists of

a number of operations, which can be decomposed into

small tasks or suboperations. Tasks require the results of

other tasks in order to progress. This can be visualized in

a task dependency graph. See also Figure 2.

Tasks are executed by multiple workers. Typically, the

number of workers is equal to the number of available

processor cores. The speedup is a measure for the performance gain of parallelizing

an algorithm. If an algorithm with 20 workers is executed 5 times faster than with

1 worker, we say the speedup for 20 workers relative to 1 worker is 5. The ideal

speedup in that case would be 20. In this example, the efficiency is 5/20 = 25%.

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 133



Algorithm 3 Parallelizing RelProdS (Alg. 2) using Wool

19: SPAWN RelProdS(F0, G0, X, S)
20: R1 ← CALL RelProdS(F1, G1, X, S)
21: R0 ← SYNC
22: R← MK(S(x), R1, R0)

4.1 Parallelization using work stealing

The primary goal of parallelizing an algorithm is speedup. Ideally, work is distributed

evenly among workers and a speedup is obtained equal to the number of workers.

The problem of distributing work evenly is called load balancing. One approach is to

store subtasks in queues and to let workers “steal” tasks from the queue of other

workers when they run out of work. After executing a stolen task, the result must

be returned to the original task owner.

Several frameworks implement task-based parallelism, e.g. the compiler-based

frameworks Cilk and OpenMP and the library-based framework Wool [17]. These

frameworks support creating tasks (spawn) and waiting for their completion (sync)

to use the results. We selected Wool for the parallelization of symbolic reachability

for several reasons. According to [32], Wool offers superior scalability in fine-grained

task-based parallelism, compared to Cilk and OpenMP. There is also a blog reporting

on parallelizing the BDD package BuDDy using Cilk [20] and using Wool we expect

similar results. Finally, it is quite straightforward to implement parallelism using

the Wool framework.

We parallelize RelProdS and ∨ by creating new tasks, whenever there are two

recursive calls in Algorithm 2. To this end, we use the C macro SPAWN provided

by Wool, followed by the matching macro SYNC to retrieve the results. Whenever

the SPAWN would immediately be followed by a SYNC, macro CALL is used instead.

Note that CALL causes the task to be immediately executed by the owner, while

SPAWN will add a new task to the task queue. In particular, to parallelize RelProdS,

we replace l. 19-21 from Algorithm 2 by the lines in Algorithm 3. The subtask at

line 19 is put on the task queue, so that it can be stolen, and the subtask at line 20

is executed by the current worker.

Note that we could also have used SPAWN and SYNC on lines 12 and 16 in

Algorithm 2. However, this would disable the shortcutting optimization, increasing

the total amount of work. A performance gain is only expected for models that have

insufficient work to steal otherwise, and do not benefit from the optimization. As

in Algorithm 2, a memoization table is used to store results of suboperations. This

table is shared globally, i.e., there is only one memoization table per operation.

4.2 Parallelization using result sharing and randomized load balancing

We also considered a simplified method for parallel BDD operations. It avoids the

overhead of explicit load balancing, based on work stealing from task queues. Instead,

all workers start with the same task, and execute subtasks in random order. The

only synchronization between workers is that the results of suboperations are stored

in a shared memoization table. This prevents workers to compute a suboperation

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143134



that was finished already by some worker.

Of course, it can be the case that multiple workers start the same suboperation,

as is always the case for the initial task. However, due to the random order of

handling suboperations, the workers will quickly branch off to different subtasks. So

load balancing depends purely on randomization. For example, if a task has two

subtasks, workers start on different subtasks with 50% probability. This increases

rapidly with a larger number of subtasks.

5 Lockless data structures for BDDs

In parallel BDD operations, most of the communication between workers occurs in

the hashtable containing BDD nodes and in the memoization table. It is essential

that these data structures are designed for optimum scalability.

Traditionally, concurrency conflicts like data races are solved by locks, providing

mutual exclusion. Since blocked processes must wait, locks have a negative impact on

the speedup of parallel programs. Recent research has been dedicated to developing

non-blocking data structures and algorithms. Herlihy and Shavit [21] distinguish

lock-free algorithms, wait-free algorithms and lockless algorithms. Our algorithms

fall in the last category. Here explicit locks are avoided by using atomic processor

instructions like compare and swap.

The compare and swap(ptr,old,new) instruction atomically compares the value

of *ptr to old and, if equal, sets *ptr to the value new. It returns true if this

succeeded, or false if *ptr did not equal old. In the latter case, the value of *ptr

remains unchanged.

Below, we discuss the lockless implementations of a lossy memoization table and

a hashtable that supports garbage collection by reference counting.

5.1 Lockless lossy memoization table

The lockless lossy memoization table is a hashtable consisting of two arrays. One

array contains the hash values of the keys plus one bit for a local short-lived lock on

the bucket. The other contains the data, consisting of a key, i.e., a representation of

the parameters of each task, and the result value.

The main requirement is that one cannot get results from the table that have not

been put in the table. This is guaranteed by controlling access to specific buckets

in the hashtable using the local locks in the hash array. This lock is set using the

compare and swap instruction and released using a normal memory write. Since the

memoization table is lossy, results may be overwritten. The result of a hash collision

is that the new entry will overwrite the existing entry. Since recalculating results of

a single task is not expensive in our case, occasionally overwriting results should not

cause a significant performance loss.

The algorithm for put is given in Algorithm 4. The algorithm is designed to

abort the operation immediately if some other worker uses the bucket. If there is a

lock on the bucket or if compare and swap fails, then there is already some relevant

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 135



Algorithm 4 put: Insert an entry into the memoization table

Input: key, data (note: key is a subset of data)
1: hash ← calculate hash(key)
2: index ← hash % tablesize
3: 〈curhash, curlock〉 ← hasharray[index]
4: if curlock = 1 then return
5: if curhash = hash then if key matches the key in data array then return
6: if not compare and swap(hasharray[index], 〈curhash, 0〉, 〈hash, 1〉) then return
7: write data to data array
8: hasharray[index] ← 〈hash, 0〉
9: return

Algorithm 5 get: Retrieve an entry from the memoization table

Input: key
1: hash ← calculate hash(key)
2: index ← hash % tablesize
3: 〈curhash, curlock〉 ← hasharray[index]
4: if curhash �= hash or curlock = 1 then return NOTHING
5: if not compare and swap(hasharray[index], 〈hash, 0〉, 〈hash, 1〉) then return NOTHING
6: if key matches the key in data array then
7: read result from data array
8: hasharray[index] ← 〈hash, 0〉
9: return result

10: else
11: hasharray[index] ← 〈hash, 0〉
12: return NOTHING

result in that bucket and we return immediately. Waiting until the lock is released

and then replacing a relevant result by a new result is probably inefficient. Also, it

is always allowed not to store the data, therefore it is not necessary to protect line 5.

The algorithm for get is given in Algorithm 5. This algorithm compares the

hash, acquires the lock, compares the parameters and returns the result value. If any

of these steps fail, NOTHING is returned. We do not wait until the lock is released.

These algorithms obey the requirement, since the returned data is only read when

there is a lock on the bucket, in which case it is not possible that another worker is

modifying the data.

5.2 Lockless hashtable with reference counting

To store BDD nodes we implemented a lockless hashtable that supports garbage

collection using reference counting. We extended a data structure for monotonically

growing shared hash-tables [24] with the possibility to delete nodes and allow garbage

collection.

The lockless hashtable in [24] is based on open addressing. It supports one

operation, find or put, which notifies if some data was present, and inserts it if it

was new. It works as follows. When inserting data, its hash value is stored in the

hash array, at the first empty bucket according to the probe sequence. This is some

fixed list of buckets, calculated deterministically from the hash value of the data.

The data is stored in the data-array at the same index; the data array is protected

by a short-lived lock-bit in the hash array. When retrieving data, the same probe

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143136



EMPTY WAIT(h) DONE(h,count)

TOMBSTONE

cas write data

+, − : cas

garbage collect
cas

Figure 3. State transitions of hashtable buckets

sequence is followed, until either an index with the correct hash value and data

is found, or an empty bucket is encountered, which indicates that the data is not

present.

Note that hash values cannot simply be deleted, since this would break the probe

sequence, potentially leading to inserting identical data twice and reporting that

it was new. We solve this by replacing data by a special value, instead of deleting

it. For garbage collection, we also add a reference count to the hash array. So hash

buckets assume one of the following values:

• EMPTY : empty bucket, and end of a probe sequence

• TOMBSTONE : empty bucket, but the probe sequence continues

• 〈WAIT, hash〉 : some data with this hash is being written at this index

• 〈DONE, hash, count〉 : complete data, with the given hash and reference count

We encode these values in 32 bits: 15 bits for the hash, 1 bit for the lock, and 16

bits for the reference count. The reference count is prevented from integer overflow

by reserving a special value SATURATED. When the reference count is saturated, it

will no longer be increased or decreased.

Figure 3 indicates the transitions that a bucket can perform. Transitions to WAIT

should obtain an exclusive lock, hence they are implemented with compare and swap.

So are modifications to the reference count, since they must happen atomically.

The transition from DONE to TOMBSTONE is only allowed during a separate garbage

collection phase (and only if count = 0).

Our extended version of find or put is called lookup or insert. The algorithm

(Alg. 7) consists of two loops over the probe sequence. The first loop checks whether

the data is already in the table. The second loop inserts the data in the first

available bucket, either marked EMPTY or TOMBSTONE. Since we assume that garbage

collection occurs in a separate phase, no new TOMBSTONE buckets can appear during

the execution of lookup or insert.

Algorithm 6 increase: Increase the reference count of a given bucket
Input: bucket
1: repeat
2: 〈DONE, hash, count〉 ← bucket
3: if count = SATURATED then return
4: until compare and swap(bucket, 〈DONE, hash, count〉, 〈DONE, hash, count+1〉)

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 137



Algorithm 7 lookup or insert: Ensure that data is in the table

Input: data
1: hash ← calculate hash(data)
2: for i ∈ probe sequence(data) do
3: if bucket[i] = EMPTY then break
4: if bucket[i] = 〈. . . , hash, . . . 〉 then
5: while bucket[i] = 〈WAIT, hash〉 do nothing
6: if data matches data in data array then
7: increase(bucket[i])
8: return i
9: for i ∈ probe sequence(data) do

10: value ← bucket[i]
11: if value = EMPTY or value = TOMBSTONE then
12: if compare and swap(bucket[i], value, 〈WAIT, hash〉) then
13: write data to data array at i
14: bucket[i] ← 〈DONE, hash, 1〉
15: return i
16: if bucket[i] = hash then
17: while bucket[i] = 〈WAIT, hash〉 do nothing
18: if data matches data in data array then
19: increase(bucket[i])
20: return i
21: return TABLE FULL

Algorithms increase (Alg. 6) and decrease modify the reference count. Their

precondition is that the bucket is of the form 〈DONE, hash, count〉. They can be called

externally (for instance by the BDD package), or internally by lookup or insert

and garbage collection.

6 Results

We experimented with a representative selection of models from the BEEM data-

base [31] using a symbolic BFS reachability algorithm of dve2-reach from the

LTSmin toolset [4]. Experiments ran on a 48-core machine, consisting of 4 AMD

OpteronTM 6168 processors with 12 cores each. This machine has a NUMA archi-

tecture with 8 memory domains and 6 cores per domain. We first parallelized the

BDD operations using work stealing with Wool (see Section 4.1) by implementing

an experimental parallel BDD package Sylvan. 2

We made Wool NUMA-aware by binding each worker to a memory domain and

by allocating the task queue of each worker locally, i.e., on the selected domain. With

less than 48 workers, we calculated a minimum subset of memory domains at minimal

distance, as reported by the NUMA library and assigned workers to each memory

domain in a round-robin fashion. For example, for 10 workers we would assign 5

workers to 2 domains each, selected at minimal distance. We used preallocated

BDD hashtables and memoization tables, which were allocated interleaved over all

selected memory domains. We also modified LTSmin to run symbolic reachability

twice: in the first run the transition relation groups are learned on-the-fly and stored

as BDDs. The second run reuses this precalculated transition relation to compute

2 Sylvan is part of LTSmin 2.0, http://fmt.cs.utwente.nl/tools/ltsmin/

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143138

http://fmt.cs.utwente.nl/tools/ltsmin/


Table 2
Runtimes in seconds and speedups of reachability with Sylvan and BuDDy

Model
Sylvan

BuDDy Sp.
1 2 4 8 16 32 48 Sp.

bakery.4 11.4 6.8 5.4 4.5 4.4 4.4 4.7 2.4 1.9 0.4

bakery.8 1370.0 681.5 348.1 184.7 102.4 62.0 49.8 27.5 517.7 10.4

collision.5 1828.4 920.8 505.6 256.5 138.6 76.6 57.2 32.0 623.3 10.9

iprotocol.7 1012.2 507.9 261.1 137.2 76.0 46.3 37.4 27.1 351.9 9.4

lifts.4 34.1 17.8 10.0 6.3 5.0 5.0 5.8 5.9 12.4 2.1

lifts.7 473.1 239.0 123.4 67.3 40.2 28.9 27.6 17.2 194.6 7.1

sched world.2 17.8 9.5 5.6 3.6 2.7 2.4 2.4 7.4 6.5 2.7

sched world.3 260.1 131.4 67.5 35.6 19.7 11.8 9.5 27.4 114.3 12.0

5

10

15

20

25

30

0 10 20 30 40
Workers

S
p
ee
d
u
p

Model

bakery.4

bakery.8

collision.5

iprotocol.7

lifts.4

lifts.7

sched world.2

sched world.3

Figure 4. Speedups of reachability with Sylvan on a 48-core machine

the set of reachable states symbolically. We only measured the time spent in the

second run, since we are interested in the speedup of the BDD operations only.

Table 2 and in Figure 4 show the results for several representative models. From

these results we see a clear relation between the size of the model and the obtained

speedup. Comparing the results to Table 1, we see that smaller models (less than

100,000,000 units of work, and less than 10,000,000 total created BDD nodes) have

very limited speedups, while the largest models exhibit the best speedups. The

smaller sched world.3 model is an exception that still shows a decent speedup.

Note that the numbers average the speedups of all BDD operations during a full

reachability analysis, hence the individual larger BDD operations likely scale better

since the BDDs in initial BFS levels are small.

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 139



Although a relative speedup of 32 on 48 cores is already very nice, we investigated

further to find reasons why this number is not higher. When running benchmarks of

Wool parallelizing the Fibonacci algorithm without memoization, i.e., each task only

consists of adding the results of two subtasks, we found that Wool itself scales to a

speedup of about 34 on 48 cores. This may be increased in future work by redesigning

the work-stealing algorithm to be lockless instead of using mutual exclusion on the

task queues, as in [38]. We also experimented with using the memoization table only

every 1 in N variable levels. With low values of N , this resulted in some increased

performance (up to 10%) and significant reduction of the memoization table usage,

but little improvement in relative speedup [15].

We compared the runtimes of the reachability algorithm of the LTSmin toolset

using our parallel implementation Sylvan to the popular sequential BDD package

BuDDy [25]. We witness a speedup of up to 12 times compared to BuDDy (Table 2).

There are several differences between the implementation in BuDDy and the imple-

mentation in Sylvan that make comparing the performances difficult. BuDDy does

not implement RelProdS or complement edges. Sylvan uses reference counting for

garbage collection, while BuDDy uses mark-and-sweep. However, the preallocated

tables were large enough that garbage collection did not occur with Sylvan nor with

BuDDy. Sylvan still updated reference counts, so there is an advantage to BuDDy,

since mark-and-sweep requires less bookkeeping. BuDDy also uses several other

optimizations, such as increased memory locality by storing related BDD nodes near

each other in the hashtable, while Sylvan stores BDD nodes at the same position

as the hash in the hashtable. Finally, BuDDy is not thread safe and only uses

normal memory transfers, while we replace some normal memory transfers by more

expensive compare and swap operations to ensure thread safety.

We also experimented using randomized load balancing (see Section 4.2) and

report decent performance and scalability elsewhere [15]. The conclusion there is

that this alternative approach is viable, but the approach using Wool currently gives

slightly higher performance and a larger speedup.

7 Related work

In the literature, there is some earlier work prior to 2000 that parallelizes BDD

manipulation on massively parallel SIMD machines and on distributed architectures.

There is no recent work on modern multi-core shared-memory architectures that

parallelizes the actual BDD operations.

In the early 90’s, several researchers tried to speed up BDD manipulation by

parallel processing. The first paper [23] views BDDs as automata, and combines

them by computing a product automaton followed by minimization. Parallelism

arises by handling independent subformulae in parallel: the expansion and reduction

algorithms themselves are not parallelized. Most other work in this era implemented

BFS algorithms for vector machines [28] or massively parallel SIMD machines [8,18]

with up to 64K processors. Experiments were run on supercomputers, like the

Connection Machine. Other solutions were based on Distributed Shared Memory

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143140



abstractions, to implement the standard depth-first algorithm [30,9], or a hybrid

depth/breadth-first approach [39].

Attention shifted towards Networks of Workstations, based on message passing

libraries. The motivation was to combine the collective memory of computers

connected via a fast network. Both depth-first [2,37,3] and breadth-first [34] traversal

has been proposed. In the latter, BDDs are distributed according to variable levels. A

worker can only proceed when its level has a turn, so these algorithms are inherently

sequential. The experiments showed that very large BDDs can be manipulated,

but no speedups were observed. Finally, BDDNOW [26] was the first system for

distributed BDD manipulation claiming some speedup before physical memory is

exhausted.

After 2000, research attention shifted from parallel implementations of BDD

operations towards the use of BDDs for symbolic reachability in distributed [19,10]

or shared memory [16,12]. Based on BDD partitioning strategies nice speedups could

be obtained [33,19]. Also saturation, an optimal iteration strategy, was parallelized

using Cilk [10,16]. A compositional algorithm that computes an overapproximation

of the reachable state set was parallelized by conjunctively splitting invariants into

local components, using separate BDD tables for each worker [14].

Published research on multi-core BDD algorithms is notably absent. In a thesis

on JINC [29], Chapter 6 describes a multi-threaded extension. JINC’s parallelism

relies on concurrent tables and delayed evaluation. However, it doesn’t parallelize the

basic BDD operations. A Cilk-based parallel implementation of the Apply function

is reported in a blog [20]. It reports some speedup on a single example. Detailed

information is not online.

8 Conclusion

In this paper, we presented a new algorithm RelProdS that calculates the relational

product and the variable substitution in one step. We showed that this algorithm

reduces the amount of work of symbolic reachability by up to 20% and decreases

the memory requirements by up to 40%.

We designed and implemented two data structures to support a parallel imple-

mentation of BDD operations: a lockless lossy memoization table and a lockless

hashtable supporting garbage collection with reference counting. We implemented

the parallel operations RelProdS and ∨ in our parallel BDD package Sylvan using

these lockless data structures and the work-stealing framework Wool.

Performance measurements with this parallel implementation demonstrated

relative speedups of up to 32 using 48 cores. Compared to the popular BDD

package BuDDy we get a speedup of up to 12 using 48 cores. We demonstrated

that parallelizing BDD operations on a low level is a viable method to get good

speedups for symbolic reachability on multi-core multi-processors with a non-uniform

shared-memory architecture.

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 141



References

[1] Akers, S., Binary Decision Diagrams, IEEE Trans. Computers C-27 (1978), pp. 509–516.

[2] Arunachalam, P., C. M. Chase and D. Moundanos, Distributed binary decision diagrams for verification
of large circuit, in: ICCD (1996), pp. 365–370.

[3] Bianchi, F., F. Corno, M. Rebaudengo, M. S. Reorda and R. Ansaloni, Boolean function manipulation
on a parallel system using BDDs, in: HPCN Europe, LNCS 1225, 1997, pp. 916–928.

[4] Blom, S., J. van de Pol and M. Weber, LTSmin: distributed and symbolic reachability, in: Proc. of the
22nd int. conf. on Computer Aided Verification, CAV’10 (2010), pp. 354–359.

[5] Brace, K. S., R. L. Rudell and R. E. Bryant, Efficient implementation of a BDD package, in: DAC,
1990, pp. 40–45.

[6] Bryant, R. E., Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. Computers
C-35 (1986), pp. 677–691.

[7] Burch, J., E. Clarke, D. Long, K. McMillan and D. Dill, Symbolic model checking for sequential circuit
verification, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13
(1994), pp. 401–424.

[8] Cabodi, G., S. Gai and M. Sonza Reorda, Boolean function manipulation on massively parallel computers,
in: Proc. of 4th Symp. on Frontiers of Massively Parallel Computation, 1992, pp. 508–509.

[9] Chen, J.-S. and P. Banerjee, Parallel construction algorithms for BDDs, in: ISCAS (1) (1999), pp.
318–322.

[10] Chung, M.-Y. and G. Ciardo, Saturation NOW, in: QEST (2004), pp. 272–281.

[11] Ciardo, G. and A. S. Miner, Smart: The stochastic model checking analyzer for reliability and timing,
in: QEST, 2004, pp. 338–339.

[12] Ciardo, G., Y. Zhao and X. Jin, Parallel symbolic state-space exploration is difficult, but what is the
alternative?, in: L. Brim and J. van de Pol, editors, PDMC, EPTCS 14, 2009, pp. 1–17.

[13] Ciardo, G., Y. Zhao and X. Jin, Ten years of saturation: A petri net perspective, T. Petri Nets and
Other Models of Concurrency 5 (2012), pp. 51–95.

[14] Cohen, A., K. Namjoshi, Y. Saar, L. Zuck and K. Kisyova, Parallelizing a symbolic compositional model-
checking algorithm, in: Hardware and Software: Verification and Testing, Lecture Notes in Computer
Science 6504, Springer Berlin / Heidelberg, 2011 pp. 46–59.

[15] Dijk, T. v., “The Parallelization of Binary Decision Diagram operations for model checking,” Master’s
thesis, University of Twente, Department of Computer Science (2012), available at http://fmt.cs.
utwente.nl/tools/ltsmin/papers/thesis-sylvan-tvdijk.pdf.

[16] Ezekiel, J., G. Lüttgen and G. Ciardo, Parallelising symbolic state-space generators, in: CAV, LNCS
4590, 2007, pp. 268–280.

[17] Faxén, K.-F., Efficient work stealing for fine grained parallelism, in: 2010 39th International Conference
on Parallel Processing (ICPP) (2010), pp. 313–322.

[18] Gai, S., M. Rebaudengo and M. Sonza Reorda, An improved data parallel algorithm for Boolean function
manipulation using BDDs, in: Proc. Euromicro Workshop on Par. and Distrib. Processing (1995), pp.
33–39.

[19] Grumberg, O., T. Heyman and A. Schuster, A work-efficient distributed algorithm for reachability
analysis, Formal Methods in System Design 29 (2006), pp. 157–175.

[20] He, Y., Multicore-enabling a binary decision diagram algorithm (October 27, 2009), intel blog, originally
posted at www.cilk.com on May 29, 2009. Available at http://software.intel.com/en-us/articles/
multicore-enabling-a-binary-decision-diagram-algorithm/.

[21] Herlihy, M. and N. Shavit, “The Art of Multiprocessor Programming,” Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[22] Janssen, G., Design of a pointerless BDD package, in: Note at Int’l Workshop Logic and Synthesis
(IWLS-2001), 2001.

[23] Kimura, S. and E. Clarke, A parallel algorithm for constructing binary decision diagrams, in: Proc. of
IC on Computer Design: VLSI in Computers and Processors ICCD, 1990, pp. 220–223.

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143142

http://fmt.cs.utwente.nl/tools/ltsmin/papers/thesis-sylvan-tvdijk.pdf
http://fmt.cs.utwente.nl/tools/ltsmin/papers/thesis-sylvan-tvdijk.pdf
www.cilk.com
http://software.intel.com/en-us/articles/multicore-enabling-a-binary-decision-diagram-algorithm/
http://software.intel.com/en-us/articles/multicore-enabling-a-binary-decision-diagram-algorithm/


[24] Laarman, A., J. van de Pol and M. Weber, Boosting multi-core reachability performance with shared
hash tables, in: Formal Methods in Computer-Aided Design (2010), pp. 247–255.

[25] Lind-Nielsen, J., BuDDy: A Binary Decision Diagram library., http://buddy.sourceforge.net.

[26] Milvang-Jensen, K. and A. J. Hu, BDDNOW: A parallel BDD package, in: FMCAD, LNCS 1522, 1998,
pp. 501–507.

[27] Minato, S.-i., N. Ishiura and S. Yajima, Shared binary decision diagram with attributed edges for efficient
Boolean function manipulation, in: Proceedings of the 27th ACM/IEEE Design Automation Conference,
DAC ’90 (1990), pp. 52–57.

[28] Ochi, H., N. Ishiura and S. Yajima, Breadth-first manipulation of SBDD of Boolean functions for vector
processing, in: DAC, 1991, pp. 413–416.

[29] Ossowski, J., “JINC – A Multi-Threaded Library for Higher-Order Weighted Decision Diagram
Manipulation,” Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (2010).

[30] Parasuram, Y., E. P. Stabler and S.-K. Chin, Parallel implementation of BDD algorithms using a
distributed shared memory, in: HICSS (1), 1994, pp. 16–25.

[31] Pelánek, R., BEEM: benchmarks for explicit model checkers, in: SPIN (2007), pp. 263–267.

[32] Podobas, A., M. Brorsson and K.-F. Faxen, A comparison of some recent task-based parallel programming
models, 3rd Workshop on Programmability Issues for Multi-Core Computers (2010).

[33] Sahoo, D., J. Jain, S. K. Iyer, D. L. Dill and E. A. Emerson, Multi-threaded reachability, in: Proceedings
of the 42nd annual Design Automation Conference, DAC ’05 (2005), pp. 467–470.

[34] Sanghavi, J. V., R. K. Ranjan, R. K. Brayton and A. L. Sangiovanni-Vincentelli, High performance
BDD package by exploiting memory hiercharchy, in: DAC, 1996, pp. 635–640.

[35] Shannon, C. E., A Symbolic Analysis of Relay and Switching Circuits, Transactions of the American
Institute of Electrical Engineers 57 (1938), pp. 713–723.

[36] Somenzi, F., Efficient manipulation of decision diagrams, International Journal on Software Tools for
Technology Transfer (STTT) 3 (2001), pp. 171–181.

[37] Stornetta, T. and F. Brewer, Implementation of an efficient parallel BDD package, in: DAC, 1996, pp.
641–644.

[38] Sundell, H. and P. Tsigas, Brushing the locks out of the fur: A lock-free work stealing library based on
wool, in: 2nd Swedish Workshop on Multi-Core Computing MCC09 (2009), pp. 126–130.

[39] Yang, B. and D. R. O’Hallaron, Parallel breadth-first BDD construction, in: PPOPP, 1997, pp. 145–156.

T. van Dijk et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 127–143 143

http://buddy.sourceforge.net

	Introduction
	Preliminaries
	Symbolic reachability using Boolean functions
	Binary decision diagrams
	Relational product

	Improving reachability using RelProdS
	Parallelizing BDD operations
	Parallelization using work stealing
	Parallelization using result sharing and randomized load balancing

	Lockless data structures for BDDs
	Lockless lossy memoization table
	Lockless hashtable with reference counting

	Results
	Related work
	Conclusion
	References

